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Robust yield test for a normal production process
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aDepartment of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran; bDepartment of
Mathematical Sciences, University of Copenhagen, Copenhagen Ø, Denmark; cDepartment of Statistics, Faculty of Mathematics and
Computer, Shahid Bahonar University of Kerman, Kerman, Iran

ABSTRACT
Testing the performance of a production process is a very serious and important topic in
statistical quality control. This article presents a robust yield test to investigate the perform-
ance of an industrial production process in the presence of outliers. For this purpose, a new
robust estimator of Spk is introduced to test the production yield for any normal distribution
in the presence of various numbers of outliers. Moreover, a Monte Carlo simulation method
to estimate the decision-making components is proposed for testing the production yield
based on the yield index Spk by normal data. Meanwhile, this article discusses how well the
proposed Monte Carlo method can be used for some non-normal data. Numerical computa-
tions of the simulation and real data analyses are provided to explain the proposed
method.
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1. Introduction

Process capability indices (PCIs) have been extensively
applied in the industrial processes to evaluate whether
the quality of products meets the preset specification
limits (SLs). The two most popular indices Cp and Cpk

are introduced as

Cp ¼ USL� LSL
6r

,

and

Cpk ¼ min
USL� l

3r
,
l� LSL

3r

� �
,

where LSL is the lower SL, USL is the upper SL, l is
the process mean, and r is the process standard devi-
ation; see Kane (1986). The PCI Cp measures the pro-
cess variation related to the preset SLs. The PCI Cpk

considers the magnitudes of the process variation as
well as the degree of the process centering, which
measures the performance of the process based on the
production yield. For situations with two-sided speci-
fications in the process capability analysis, Yield ¼
PðLSL � X � USLÞ is a process yield, in which X is a
process quality characteristic. If X is normally distrib-
uted, then the process yield can be exactly defined as
Yield ¼ U½ðUSL� lÞ=r� � U½ðLSL� lÞ=r�, where U
is the cumulative distribution function of the standard

normal distribution; see Pearn and Chuang (2004).
Moreover, for a normally distributed process with the
fixed Cpk, the bounds on the process yield can be
obtained as (see Boyles, 1991) Q2

2Uð3CpkÞ � 1 � Yield � Uð3CpkÞ:
It must be noted that the PCI Cpk presents a prox-

imate measurement rather than a precise measure-
ment of the process yield. To acquire a precise
measurement, Boyles (1994) proposed the PCI

Spk ¼ 1
3
U�1 1

2
U

USL� l
r

� �
þ 1
2
U

l� LSL
r

� �� �
,

(1)

for a normal process, in which U�1 represents the
inverse function of U: It is obvious that there is a
one-to-one relationship between the PCI Spk and the
production yield, which can be given by

Yield ¼ 2Uð3SpkÞ � 1: (2)

For the normal process, the expected number of
nonconformities corresponding to a capable process
with Spk ¼ 1.00 will be 2700 parts per million.
Therefore, the conventional PCI Spk is widely pro-
posed in the normal industrial production processes
to present a precise measurement of the process yield.
The exactitude of the natural estimator (NE) of Spk
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was checked in Pearn and Chuang (2004) based on
the simulation method to acquire the relative mean
square error and relative bias for several quality
requirements. Pearn, Wang, and Yen (2006) developed
a generalized yield index, and they obtained a lower
confidence bound for the production yield. The rela-
tionship between the distribution of the overall index
STpk and process parameters was investigated in Pearn

and Cheng (2010). A fuzzy-based procedure was pre-
sented in Afshari, Sadeghpour Gildeh, and Ahmadi
Nadi (2020) to evaluate the overall yield with the
presence of a determined degree of vagueness.

In general, using PCIs is necessary to measure how
much of the process productions meet the preset cap-
ability requirement. Since outliers mask the attribut-
able causes of the variation, one may face unreliable
results on using the PCIs. Robust time series methods
were considered in Prasad and Bramorski (1998) to
define new sets of PCIs for a wide range of industrial
processes. The second author (Jabbari Nooghabi,
2020) introduced the PCIs based on the parametric
model of outliers. The motivation for using a Monte
Carlo (MC) technique was discussed in Parchami,
Iranmanesh, and Sadeghpour Gildeh (2022) to test the
quality of a manufacturing process based on
Yongting’s index. Iranmanesh, Parchami, and
Sadeghpour Gildeh (2022) proposed the statistical
fuzzy quality test for analyzing the manufacturing pro-
cess based on fuzzy SLs. The MC simulation method
was presented in Iranmanesh, Parchami, and Jabbari
Nooghabi (2023) to test the quality of a production
process based on the popular capability index Cpk.
However, the presence of outliers might have a ser-
ious effect on statistical analyses and decisions in test-
ing the performance of the production process.
Therefore, the Bootstrap technique for statistical infer-
ences was applied in Naya et al. (2016) to investigate
the capability of the process in the presence of
outliers.

The aim of the present study is to introduce a
new robust estimator of Spk to test the process per-
formance based on the production yield. For this
aim, the MC technique is used to estimate the com-
ponents of the decision-making for testing the pro-
cess yield based on the PCI Spk. A simulation study
as well as a real data example is provided to show
the performance of testing the production yield. This
article is structured as follows. Section 2 introduces
the non-robust and robust estimators of Spk.
Section 3 provides a comparison study between the
proposed robust estimator and different estimators of
Spk. Section 4 incorporates hypotheses testing for

analyzing the performance of the production process
on the basis of the proposed robust estimator of Spk.
Section 5 proposes the MC simulation procedure to
estimate the decision-making components in testing
the production yield based on the yield index Spk.
The proposed MC simulation method is also
extended based on some non-normal processes.
Numerical and simulation results are presented in
Section 6. Section 7 compares the proposed method
with different methods. Finally, conclusions and
future works are detailed.

2. Non-robust and robust estimators

During the last three decades, the statistical term
“Outlier” has been discussed in the literature. An
outlier is an observation in the distribution of data
that swerves so much from the other observed data
points (Jabbari Nooghabi, 2020). When a dataset is
contaminated with a single or few outliers, we face a
serious problem in parameter estimations. In this
regard, robust estimation methods can be very
applicable to investigate the yield/capability of the
process.

Generally, two simple robust estimators of location
and scale parameters are the median and the median
absolute deviation (MAD), respectively. The MAD is
one of the alternatives of the robust estimator of the
standard deviation. Therefore, Hampel (1974) defined
the MAD as

MAD ¼ median
i

Xi �Mj,j (3)

where M is the sample median, which is used as a
robust estimator of l. In this study, 1:4826�MAD,
which is commonly called the standardized MAD, is
considered as a consistent robust estimator of r at the
normal distribution (Rousseeuw and Croux 1993).

Also, the simpler but less robust estimator of the
scale parameter is the interquartile range (IQR), that
can be computed with the IQR function.

Definition 1. Let IQR be the difference between the
75th and 25th percentiles of the sample data
(IQR ¼ Q3 � Q1). Then, an IQR-based threshold is
defined as follows:

Tmin ¼ Q1 � 1:5� IQR,
Tmax ¼ Q3 þ 1:5� IQR,

�
(4)

where Tmin and Tmax are the minimum and maximum
threshold for detecting the outliers. Generally, the
data point which lies outside of the interval
½Tmin,Tmax�, is considered as an outlier (Yang,
Rahardja, and Fr€anti 2019).
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In order to estimate the yield index Spk, one can
consider the following definition as a non-robust esti-
mator of Spk (see Lee et al. 2002).

Definition 2. Let �X ¼Pn
i¼1 Xi=n and S2 ¼Pn

i¼1 ðXi � �XÞ2=ðn� 1Þ be the sample mean and the
sample standard deviation, respectively. Then, the NE
of Spk is defined as

Ŝpk ¼ 1
3
U�1 1

2
U

USL� �X
S

� �
þ 1
2
U

�X � LSL
S

� �� �
,

(5)

where LSL and USL are the SLs, as expressed in
Section 1.

In what follows, by inspiration of the provided ideas in
Besseris (2014) and Aslam et al. (2019), in order to esti-
mate the yield index Spk, we define two new robust estima-
tors of Spk, which are useful in the presence of outliers.

Definition 3. Let M and IQR be the sample median
and the sample IQR, respectively. Then, the IQR-
based estimator (IE) of Spk is introduced as

Ŝ
I
pk ¼

1
3
U�1 1

2
U

USL�M
IQR=3

� �
þ 1
2
U

M � LSL
IQR=3

� �� �
,

(6)

where the superscript “I” denotes that the IQR of the
observations is used as a robust estimator of 3r:

Definition 4. Let M and 1:4826�MAD be the sam-
ple median and the sample standardized MAD,
respectively. Then, an MAD-based estimator (ME) of
Spk, which is used as the robust estimator of Spk, is
introduced in the following:

Ŝ
r
pk ¼

1
3
U�1

�
1
2
U

USL�M
1:4826�MAD

� �

þ 1
2
U

M � LSL
1:4826�MAD

� ��
, (7)

where the superscript “r” denotes that the standar-
dized MAD of the observations is used as a more
robust estimator of r.

It is obvious that the variance of M can be com-

puted by VarðMÞ ¼ pr2
2n at normal distributions, in

which the number p (p � 3:14159) is a mathematical
constant that is the ratio of a circle’s circumference to
its diameter (see more details about the asymptotic
distribution of the sample median in Ferguson, 1996).
By inspiration of the presented idea in Bellio and
Ventura (2005), in order to estimate an approximate
ð1� aÞ100% confidence interval for the median of the
population, one can consider the following interval:

L1, L2½ � ¼ M6z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1:4826�MADÞ2

2n

s
, (8)

where z1�a=2 is the (1� a=2)th quantile of the standard
normal distribution. It should be noted that the median
of a normal distribution is equivalent to its mean.
Therefore, several different possible points from the
above interval are considered to apply a robust confi-
dence interval for the location parameter l, for imple-
menting the steps of the MC simulation in Section 5.

3. A comparison study between the non-
robust and robust estimation methods

In this section, we are going to a comparison between
NE, IE, andME statistics based on the mean square error
(MSE) and the mean absolute deviation (MADmean) cri-
terions. In order to investigate the robustness of different
estimation methods against outliers, we consider m ran-
dom samples, each of size n, from the normal distribu-
tion with various numbers of outliers (np). The MSE and
MADmean of the non-robust and robust estimators of Spk
for various numbers of outliers are presented in Table 1
and Figure 1. It should be mentioned that the MSE and
MADmean by usingm replications, are calculated as

MSE ¼ 1
m

Xm
i¼1

ðh� ĥiÞ2, (9)

and

MADmean ¼ 1
m

Xm
i¼1

jh� ĥij, (10)

where ĥi is the estimator of h for i ¼ 1, :::,m: In order
to compute the presented MSE and MADmean in
Table 1 and Figure 1, we perform Algorithm 1 to gen-
erate the sample data sets based on considering m ¼
1000, LSL ¼ 0:0, USL¼ 10.0, l¼ 5, r¼ 4, d¼ 20, and
c¼ 3 for different sample sizes, n ¼ 24ð44Þ156, with
various numbers of outliers (np ¼ 0, 1, 2, 3, and 4).
Note that, by inspiration of Jabbari Nooghabi (2020),
we consider that the outliers are occurred from the
same distribution but with different parameters in this
simulation method.

Algorithm 1 Simulation method for calculating MSE
and MADmean based on generating m samples each of
size n with np outliers

Require:

(1) n � 1, np � 0, m � 1, r, c > 0, l, d, LSL,USL 2 R:

(2) Probability density for the random variable X.
(3) Probability density for the random outlier.
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Ensure: MSE and MADmean of three estimators

Ŝpk, Ŝ
I
pk, and Ŝ

r
pk (NE, IE, and ME).

for i¼ 1 to m do
Generate independently X1, i, :::,Xn�np, i�Nðl, r2Þ:
Generate independently Xn�npþ1, i, :::,Xn, i�N

ðlþ d, cr2Þ:
Combine two samples (X1, i, :::,Xn�np, i)
and (Xn�npþ1, i, :::,Xn, i),
to achieve X1, i, :::,Xn�np, i,Xn�npþ1, i, :::,Xn, i

� �
:

Compute Ŝpk, i based on the sample data set
X1, i, :::,Xn, if g by Eq. (5).

Compute Ŝ
I
pk, i based on the sample data set

X1, i, :::,Xn, if g by Eq. (6).

Compute Ŝ
r
pk, i based on the sample data set

X1, i, :::,Xn, if g by Eq. (7).
end for
Calculate Spk from Eq. (1).

1. Calculate MSE of three estimators Ŝpk, Ŝ
I
pk, and

Ŝ
r
pk by Eq. (9).

2. Calculate MADmean of three estimators Ŝpk, Ŝ
I
pk,

and Ŝ
r
pk by Eq. (10).
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Table 1. Results of the MSE and MADmean of the PCI Spk, for different estimators (NE, IE, and ME) with various numbers of outliers
based on the preset SLs [0.0, 10.0].

Parameters Sample size Number of outliers
Non-robust method Robust method Robust method
Natural estimator (NE) IQR-based estimator (IE) MAD-based estimator (ME)

(l, r) ¼ (5, 4) n np MSE (MADmean) MSE (MADmean) MSE (MADmean)
Result of simulation based on
a normal distribution

24 0 0.004 (.050) 0.321 (0.510) 0.012 (0.082)
1 0.019 (0.126) 0.277 (0.471) 0.011 (0.081)
2 0.034 (0.180) 0.236 (0.427) 0.010 (0.079)
3 0.047 (0.214) 0.158 (0.346) 0.010 (0.084)
4 0.057 (0.238) 0.103 (0.267) 0.014 (0.100)

68 0 0.001 (0.028) 0.279 (0.510) 0.004 (0.048)
1 0.005 (0.064) 0.263 (0.495) 0.004 (0.047)
2 0.012 (0.101) 0.243 (0.476) 0.003 (0.045)
3 0.018 (0.131) 0.220 (0.450) 0.003 (0.048)
4 0.025 (0.156) 0.206 (0.435) 0.004 (0.050)

112 0 0.001 (0.022) 0.273 (0.512) 0.002 (0.037)
1 0.003 (0.044) 0.260 (0.499) 0.002 (0.038)
2 0.006 (0.072) 0.243 (0.482) 0.002 (0.036)
3 0.010 (0.098) 0.240 (0.480) 0.002 (0.037)
4 0.014 (0.117) 0.230 (0.469) 0.002 (0.037)

156 0 0.001 (0.019) 0.264 (0.506) 0.002 (0.031)
1 0.002 (0.034) 0.259 (0.501) 0.002 (0.031)
2 0.004 (0.056) 0.252 (0.495) 0.002 (0.031)
3 0.007 (0.077) 0.244 (0.486) 0.001 (0.031)
4 0.010 (0.094) 0.238 (0.481) 0.002 (0.031)
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Figure 1. The MSE (left graphs) and the MADmean (right graphs) of the PCI Spk for different estimators (NE, IE, and ME) with various
numbers of outliers (np ¼ 0, 1, 2, 3, and 4).

4 H. IRANMANESH ET AL.



 

return MSE and MADmean of three estimators

Ŝpk, Ŝ
I
pk, and Ŝ

r
pk (NE, IE, and ME).

For instance, in the last column of Table 1, for
n¼ 24 with one outlier (np ¼ 1), we generate
m¼ 1000 samples, each of size n� np ¼ 24� 1 ¼ 23

from the normal distribution Nðl ¼ 5, r2 ¼ 42Þ
(X1, i, :::,X23, i �i:i:d:Nð5, 42Þ for each i ¼ 1, :::, 1000), and
also for having one outlier in the sample data set, we
generate 1000 samples, each of size one from the nor-
mal distribution with different parameters
(X24, i � Nðlþ 20, 3r2Þ for each i ¼ 1, :::, 1000).
Consequently, by performing Algorithm 1 on the basis

of using the ME of Spk (Ŝ
r
pk) based on the sample data

X1, i, :::,X23, i,X24, if g for i ¼ 1, :::, 1000, the MSE and

MADmean of Ŝ
r
pk, i are computed by the following for-

mulas in this simulation study:

MSE ¼ 1
1000

X1000
i¼1

ðSpk � Ŝ
r
pk, iÞ2 ¼ 0:011,

and

MADmean ¼ 1
1000

X1000
i¼1

jSpk � Ŝ
r
pk, ij ¼ 0:081,

where Spk is calculated by

Spk ¼ 1
3
U�1 1

2
U

10� 5
4

� �
þ 1
2
U

5� 0
4

� �� �
¼ 0:417:

The results of Table 1 and Figure 1 showed that
the sample size has a significant impact on both MSE
and MADmean for the non-robust and robust estima-
tion methods (NE, IE, and ME). By comparing the
results of these methods, one can observe that the
best result is on the basis of using the ME of Spk
(Ŝ

r
pk), since different numbers of outliers have the least

impact on both MSE and MADmean for this estimator.
Hence, with regard to the values of both MSE and
MADmean in this simulation study, one can conclude
that the proposed ME of Spk is a more robust estima-
tor to the outliers.

Exclusively, the robust yield test on the basis of

using the proposed estimator Ŝ
r
pk, is presented in the

next section. The proposed test is useful to make a
reliable decision on evaluating the performance of the
normal process, which can be affected by outliers.

4. Decision-making components in testing the
production yield

Throughout this study, it is supposed that the quality
characteristic is approximately normally distributed
and the process is in a state of statistical control. To
determine whether the production process is capable
or not, one can consider the following hypotheses
test:

H0 : Yield � c0 ðprocess is incapableÞ,
H1 : Yield > c0 ðprocess is capableÞ,

�
(11)

in which the designed constant c0 is the standard min-
imal criterion for the process yield. It must be mentioned
that the designed constant c0 is a stringent requirement
for the possible mean shift or the variation change which
is determined by the producer in the factory/company.
In many cases, a minimal criterion 99.73% (c0 ¼ 0:9973)
for evaluating the process is suggested. According to the
existence a one-to-one relationship between the produc-
tion yield and the PCI Spk (see Eq. (2)), testing the above
hypotheses is equivalent to testing

H0 : Spk � s0,
H1 : Spk > s0,

�
(12)

where s0 ¼ 1
3U

�1 c0þ1
2

	 

is the standard minimal criter-

ion for the PCI Spk, which is determined based on the
designed constant c0.

For making a decision, one can use the compo-
nents of the decision-making—such as the p value, the
critical value, the probability of type II error, and the
power function of the robust yield test—to assess the
production yield based on the PCI Spk. Herein, we
intend to consider the following test function:

/ðx1, x2, :::, xnÞ ¼ 1, ŝrpk > s,
0, otherwise,

�
(13)

where s is the critical value in testing hypotheses
(Iranmanesh, Parchami, and Sadeghpour Gildeh
2022). Suppose the probability that an incapable pro-
cess is mistakenly considered capable, is a (the signifi-
cant level of the proposed robust yield test). Then,
/ðx1, x2, :::, xnÞ rejects the null hypothesis H0 ðSpk �
s0Þ if ŝrpk > s (i.e., the process is capable). Also,

a ¼ P Ŝ
r
pk > sjSpk ¼ s0

	 

, (14)

is the probability of type I error. Hence, we can write

1� a ¼ P Ŝ
r
pk � sjSpk ¼ s0

	 

: (15)

Therefore, the critical value of this robust yield test

is the ð1� aÞ th quantile of Ŝ
r
pk distribution such that
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Spk ¼ s0: On the other hand, the p value of this robust
yield test is given by

p� value ¼ P Ŝ
r
pk > ŝrpkjSpk ¼ s0

	 

¼ E I Ŝ

r
pk > ŝrpkjSpk ¼ s0

	 
h i
, (16)

where ŝrpk is the observedME of Spk on the basis of obser-

vations x1, :::, xn, which is computed by Eq. (7), while
the indicator function of an event A is indicated by I(A).
Also, the probability of type II error can be calculated as

bðs	pkÞ ¼ P Ŝ
r
pk � sjSpk ¼ s	pk

	 

¼ E I Ŝ

r
pk � s j Spk ¼ s	pk

	 
h i
, (17)

for any arbitrary point s	pk > s0:Hence, for every Spk> 0

PðSpkÞ ¼ 1� bðSpkÞ ¼ P Ŝ
r
pk > sjSpk

	 

¼ E I Ŝ

r
pk > s j Spk

	 
h i
, (18)

is the power function of the proposed robust yield
test based on the yield index Spk.

5. Monte Carlo simulation method

In this section, we intend to propose the MC simula-
tion method (MC method) based on the proposed

robust estimator Ŝ
r
pk for estimating the decision-mak-

ing components.

5.1. Methodology

To simulate the components of the decision-making
for the statistical testing with null hypothesis H0 :
Yield � c0 versus alternative hypothesis H1 : Yield >

c0, at the considered significance level, a, we propose
the following procedure as the MC-method:

Step 1. Test the null hypothesis H0 : Spk � s0 versus
alternative hypothesis H1 : Spk > s0, which is equiva-
lent for testing H0 : Yield � c0 versus H1 : Yield >

c0, to specify whether a production process is cap-
able or not. Then, based on the existence of a one-
to-one relationship between the production yield and
the index Spk, compute the standard minimal criter-
ion s0 by substituting c0 and s0 to Eq. (2) as

s0 ¼ 1
3
U�1 c0 þ 1

2

� �
, (19)

where c0 is the designed constant for testing the
process yield.

Step 2. By Eq. (7), calculate the observed value of the
robust estimator ŝrpk based on the observa-
tions x1, :::, xn:

Step 3. Compute the sequence l1, l2, :::, lhf g to cover
several different possible points from the interval
L1, L2½ � by the formula

lj ¼ L1 þ j� 1
h� 1

L2 � L1ð Þ, j ¼ 1, 2, :::, h, (20)

where L1 and L2 are computable by Eq. (8) based on the
observations x1, x2, :::, xn: The positive natural number
h specifies the number of the ljs that can be selected
according to the sensitivity of the applicant. It must be
noted that the greater the spread of the observed data,
the greater h is recommended in the simulation.

Step 4. Follow the below (i)–(vi) parts for j ¼ 1, :::, h :

(i) calculate the unknown root rj on the basis of
lj, from

1
3
U�1 1

2
U

USL� lj
rj

 !
þ 1
2
U

lj � LSL

rj

 !( )
¼ s0,

(21)

(ii) considering k ¼ 103, simulate k random sam-
ples with size n from Nðlj, r2j Þ,

(iii) by Eq. (7), estimate ŝr½1�pk, j, ŝ
r½2�
pk, j, :::, ŝ

r½k�
pk, j for every

simulated sample in Part (ii),
(iv) according to Eq. (3), the critical value based on

1000 simulated samples is equivalent to the
ð1� aÞ th quantile of Ŝ

r
pk distribution,

sj ¼ ŝrðdkð1�aÞeÞ
pk, j , (22)

where ŝrð1Þpk, j, ŝ
rð2Þ
pk, j, :::, ŝ

rðkÞ
pk, j are the ordered indices from

Part (iii), and dte is the smallest integer greater than
or equal to t,

i. the simulated p value is equal to

p� valuej ¼ 1
k

Xk
l¼1

I ŝr l½ �pk, j > ŝrpk jl ¼ lj, r ¼ rj
	 


,

(23)

where the estimated indices are indicated by

ŝr½1�pk, j, :::, ŝ
r½k�
pk, j and rj is the obtainable root of the equa-

tion Spk ¼ s0 from Part (i),

i. the simulated b for every point s	pk > s0, is

bjðs	pkÞ ¼
1
k

Xk
l¼1

I ŝr	 l½ �
pk, j � sj j l ¼ lj, r ¼ r	j

	 

,

(24)

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

6 H. IRANMANESH ET AL.



 

where r	j is the obtainable root from the following

equation

1
3
U�1 1

2
U

USL� lj
r	j

 !
þ 1
2
U

lj � LSL

r	j

 !( )
¼ s	pk:

(25)

Likewise, the estimated indices based on lj and r	j are

indicated by ŝr	½1�pk, j , :::, ŝ
r	½k�
pk, j :

Step 5. The MC critical value of this proposed robust
yield test is equivalent to

sMC ¼ 1
h

Xh
j¼1

sj: (26)

Step 6. The null hypotheses in Eqs. (11) and (12) are
rejected at the significance level of a, if ŝrpk > sMC

(i.e., the process is capable); otherwise, the process is
incapable.

Step 7. The MC p value in the proposed robust yield
test is equivalent to

p� valueMC ¼ 1
h

Xh
j¼1

p� valuej: (27)

Step 8. The MC probability of type II error for any
point s	pk > s0 can be simulated in the proposed
robust yield test by the total average of h calculated
probability of type II errors at the fixed point s	pk in
repetitions of Part (vi), that is,

bMCðs	pkÞ ¼
1
h

Xh
j¼1

bjðs	pkÞ: (28)

Remark 1 Note that the power function of the robust
yield test in the proposed MC-method for every Spk >
0 is equal to

PMCðSpkÞ ¼ 1� bMCðSpkÞ: (29)

5.2. Generalization of the robust yield test based
on some non-normal processes

Generally, the yield index Spk is applied based on the
normal distribution of process output. Also, it has a
one-to-one relation with the production yield.
Typically, the first idea for non-normality assumptions
is using the surrogate PCIs based on Clements’s per-
centile method (Clements, 1989) for non-normal pro-
duction processes. But based on the lack of the
existence of a one-to-one relationship between the
proposed Clements’s PCIs and the production yield,

we prefer to transform non-normal data by Box–Cox
method (Box and Cox, 1964) which can be useful to
normalize some non-normal variables. Given a ran-
dom variable X from any distribution with only posi-
tive values, we consider the following family of the
transformation:

Y ¼
Xk � 1

k
, k 6¼ 0,

log ðXÞ, k ¼ 0,

8<
: (30)

where k 2 R is the Box–Cox transformation param-
eter. Box and Cox (1964) presented the maximum
likelihood and Bayesian methods to estimate the par-
ameter k.

Remark 2 Note that the methodology of the MC-
method is proposed for the normal distribution of the
process output. Under the non-normality assumption,
if the Box–Cox transformation method is able to
transform non-normal data into normal data, then by
considering the following points one can generalize
the MC-method:

1. The generalization idea is used for the family of
distributions with only positive values such as the
log-normal, weibull, gamma, and the generalized
exponential distribution.

2. Box–Cox transformation method is applied to
transform the original data (x1, :::, xn) into normal
data. Hence, one can use each type of goodness-
of-fit tests (Shapiro–Wilk test, Lilliefors test, and
Robust Jarque–Bera test of normality) to confirm
the normality assumption of the transformed
observations (y1, :::, yn).

3. After confirming that the normal distribution
model is suitable to fit the transformed data, the
observed value of robust estimator ŝrpk can be cal-
culated based on the transformed observations
(y1, :::, yn) for implementing the steps of the simu-
lation in the MC-method.

The following section presents the obtained results
corresponding to the application of the robust yield
test using a real dataset.

6. Illustrative example and numerical results

6.1. Numerical results

Capacitors are invaluable parts of electronic devices—
such as laptops, biomedical devices, and satellites—
that have duties to retain the voltage at a certain level.
Capacitors are used for reducing the voltage pulsation.
An aluminum foil is an important part that affects the
quality of capacitors. The voltage is the most
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significant quality characteristic of the aluminum foil
for any capacitor in an electronic device. Figure 2
indicates the details of a capacitor. Fifty random sam-
ples are taken from data of voltages for aluminum
foils (in terms of a volt) (Tong and Chen 2003). The
lower and upper SLs of the voltages of aluminum foils
(VAFs) are considered as [LSL, USL]¼ [510, 530].

Now, we are going to test H0 : Yield � 0:9973 ver-
sus H1 : Yield > 0:9973 based on the observed ran-
dom sample x1, x2, :::, x50, under the significance level
of a ¼ 0:01: According to Eq. (19), the standard min-
imal criterion for the index Spk can be computed as
s0 ¼ 1:00: Shapiro–Wilk test confirms fitting the nor-
mal distribution on the data with W¼ 0.9901 and p
value ¼ 0.9493. Also, the Lilliefors (corrected
Kolmogorov–Smirnov) normality test with D¼ 0.0639
and p value ¼ 0.8774, shows that the VAFs variable
follows the normal distribution. Moreover, using the
Robust Jarque–Bera test of normality, a normal distri-
bution is fitted on the data (X-squared ¼ 0.4154, df ¼
2, p value ¼ 0.8124). The empirical cumulative distri-
bution function of the data versus theoretical ones
(normal P-P (probability–probability) plot) is shown
in Figure 3. Therefore, Box–Cox transformation
method is not required to transform the VAFs obser-
vations into normality. Whenever the alternative
hypothesis is that “the lowest value 514.7 is an out-
lier”, the result of the chi-square test for the detection
of the outlier shows that one outlier exists.
Furthermore, on the basis of the box plot and the

histogram, observations are contaminated with one
outlier (Figure 4).

Meanwhile, the value of the observed median is
522.55, and the observed standardized MAD is equal
to 2.82. Hence, the robust estimator of Spk according
to Eq. (7) is

ŝrpk ¼
1
3
U�1

�
1
2
U

USL� 522:55
2:82

� �

þ 1
2
U

522:55� LSL
2:82

� ��
¼ 0:957:

Therefore, 0:957 < sMC is the MC critical region of
the test based on the PCI Spk at the significance level
of 0.01, where the critical value sMC should be simu-
lated based on the MC-method. It must be noted that
this proposed method, which is presented in
Section 5, is performed based on the observed robust
estimator ŝrpk, where the mean is changed over the fol-

lowing sequence according to Eq. (20):

522:213 522:309 522:406 522:502 522:598

522:694 522:791 522:887:

The unknown root rj is computed in Table 2 for
all h¼ 8 considered possible cases from Eq. (21).
Therefore, for each case, 1000 independent random
samples are simulated with size 50 from Nðlj, r2j Þ: In
every simulated sample, we estimate the index Spk
based on observations x1, x2, :::, x50 according to Eq.
(7). After ordering 1000 estimated indices, the 990th
index is selected as the critical value, and the results
are recorded in Table 2 for all eight considered cases.
For instance, in the sixth row of Table 2, the following
results are obtained:


 l6 ¼ 522:694 is the sixth considered value for l in
the simulation using Step 3 from the proposed
MC-method,


 r6 ¼ 2:626 is the computed value of r for j¼ 6
using Part (i),


 s6 ¼ 1:519 is the simulated critical value using
Part (iv),


 p value 6 ¼ 0:657 is the simulated p value using
Part (v), and


 b6ð1:98Þ ¼ 0:026 is the simulated b at the fixed
point 1.98 using Part (vi) of Step 4 from the MC-
method.

Monte Carlo critical values of the considered yield
test are determined in Table 2 for eight possible val-
ues of the process mean to make a decision on the
robust yield test in this study. Moreover, the last row
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Figure 2. Graph of the components of a capacitor.
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Figure 3. P-P plot for 50 observed voltages of aluminum foils.
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of this table contains the MC critical value, the MC p
value, and the MC probability of type II at the fixed
point 1.98, respectively. Consequently, in evaluating

based on the robust estimator Ŝ
r
pk, the average of

eight obtained critical values is equivalent to sMC ¼
1.512, which is considered the MC critical value for
testing the quality of the production process. Hence,
with regard to the preset SLs in this illustrative
example, the null hypothesis H0 : Spk < s0 is not
rejected at the significance level of a ¼ 0:01, because
ŝrpk ¼ 0:957 < sMC, therefore, one can conclude that

this process cannot meet the capability requirement at
the significance level of 0.01.

6.2. Simulation results

For the purpose of investigating whether outliers
can affect decisions in a robust yield test, we pre-
sent the numerical results of the simulation method
by using Algorithm 1 for generating m samples
each of size n with np outliers. In order to compare
the original data (VAFs observations) and the simu-
lated data in testing the production yield, we intend

to use the mean and standard deviation of the ori-
ginal observed data (VAFs data) for estimating the
mean and standard deviation parameters of the nor-
mal distribution, respectively. These two values are

obtained �x ¼P50
i¼1 xi=50 ¼ 522:172 and sn�1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP50

i¼1 ðxi � �xÞ2=ð50� 1Þ
q

¼ 2:974 from VAFs data,

respectively. Firstly, allow us to use Algorithm 1 for gen-
erating the sample data sets based on considering m ¼
1, LSL ¼ 510,USL ¼ 530, l ¼ 522:172, r ¼ 2:974, d¼
16, and c¼ 3 for the sample size n¼ 50, with various
numbers of outliers (np ¼ 0, 1, and 2). Under the desired
quality condition with c0 ¼ 0:9973 (s0 ¼ 1:00), and a ¼
0:01, the power function of the proposed test PMCðSpkÞ
on the basis of the following considered samples is pre-
sented in Table 3 for the considered
points Spk ¼ 1:25ð0:01Þ1:86 :

a. The original data (VAFs data, in which the value
of the outlier is 514.700).

b. The simulated sample data without outliers,
c. The simulated sample data with the presence of

one outlier (the value of the outlier is 537.341).
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Figure 4. Box plot and histogram for 50 observed voltages of aluminum foils.

Table 2. Results of simulated components of the decision-making for all repetitions of the proposed
MC-method, based on VAFs data for the considered SLs [510, 530], at the significance level a ¼ 0:01:
j lj rj sj p value j bðs	pkÞj
1 522.213 2.798 1.475 0.648 0.019
2 522.309 2.764 1.447 0.653 0.004
3 522.406 2.729 1.530 0.647 0.034
4 522.502 2.695 1.543 0.648 0.037
5 522.598 2.660 1.511 0.660 0.024
6 522.694 2.626 1.519 0.657 0.026
7 522.791 2.591 1.541 0.675 0.030
8 522.887 2.557 1.528 0.669 0.024
Total average sMC ¼ 1.512 p� valueMC ¼ 0:657 bMCð1:98Þ ¼ 0:025
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d. The simulated sample data with the presence of
two outliers (the values of outliers are 536.284
and 538.055).

It should be mentioned that the values of outliers
in the above parts (a)–(d) are detected according to
the threshold in Eq. (4).

The results of Table 3 showed that the presence of
outliers in the VAFs data and the simulated data do
not have a significant impact on changing the power
function of the proposed test PMCðSpkÞ on the basis
of the considered samples in parts (a)–(d). For
example, in the first row of Table 3, for the consid-
ered point Spk ¼ 1.25 based on the considered sam-
ples in parts (a)–(d), the values of the power function
of these four quality tests are approximately equivalent
(i.e., because the values of the power function of the
proposed test PMCðSpkÞ by changing in the number of
outliers close approximately together for each consid-
ered point Spk, one can conclude that our proposed
method for testing the performance of the production
process in the illustrative example (VAFs observations
in subsection 6.1) is a robust method).

Furthermore, in order to show that the presence of
outliers often does not have a huge impact on making

the decision in the proposed robust yield test, we use
Algorithm 1 to generate the sample data sets based on
considering m ¼ 200, LSL ¼ 510,USL ¼ 530, l ¼
522:172, r ¼ 2:974, d¼ 16, and c¼ 3 for different
sample sizes, n ¼16, 20, 24, 30, 35, 50, 100, and 150,
with various numbers of outliers (np ¼ 0, 1, and 2).
For this purpose, we should consider /iðx1, x2, :::, xnÞ
as the test function that it rejects the null hypothesis
H0 : Spk � 1:00 if ŝrpk, i > sMC, i where sMC, i is the simu-

lated MC critical value in testing hypotheses
(Iranmanesh, Parchami, and Sadeghpour Gildeh
2022), for i ¼ 1, 2, :::, 200: Therefore, the calculated
percentage of rejecting the null hypothesis H0 : Spk �
1:00 on the basis of the sample data set which are
simulated from the considered normal distribution
Nðl ¼ 522:172,r2 ¼ 2:9742Þ with the presence of
various numbers of outliers (0, 1, and 2), are pre-
sented in Table 4 under the desired quality condition
with c0 ¼ 0:9973 (s0 ¼ 1:00), and a ¼ 0:01:

Both Tables 3 and 4 are presented as the confirma-
tions of the correctness and robustness of the pro-
posed yield test with the difference that Table 3 is
merely the presentation of a comparison between the
VAFs observations and the considered samples in
parts (b)–(d), and Table 4 are provided in a general
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Table 3. Results of the simulated MC power function of the proposed test PMCðSpkÞ on the basis of four considered samples in
parts (a)–(d) (A comparison between the VAFs data and the simulated samples with the presence of zero, one, and two outliers),
under the desired quality condition with LSL ¼ 510,USL ¼ 530, c0 ¼ 0:9973 (s0 ¼ 1:00), and a ¼ 0:01:

Spk (a) (b) (c) (d) Spk (a) (b) (c) (d)

Result of
simulation based
on the
considered
normal
distribution
Nðl ¼
522:172,r2 ¼
2:9742Þ

1.25 0.1549 0.1511 0.1547 0.1550 1.56 0.6121 0.6036 0.6115 0.6124
1.26 0.1649 0.1598 0.1648 0.1650 1.57 0.6271 0.6181 0.6269 0.6272
1.27 0.1769 0.1715 0.1766 0.1770 1.58 0.6442 0.6360 0.6440 0.6446
1.28 0.1881 0.1830 0.1879 0.1883 1.59 0.6585 0.6508 0.6583 0.6589
1.29 0.2000 0.1940 0.1999 0.2001 1.60 0.6729 0.6647 0.6727 0.6734
1.30 0.2156 0.2082 0.2155 0.2157 1.61 0.6865 0.6790 0.6861 0.6867
1.31 0.2276 0.2228 0.2276 0.2276 1.62 0.7024 0.6935 0.7015 0.7026
1.32 0.2415 0.2364 0.2414 0.2415 1.63 0.7184 0.7080 0.7180 0.7184
1.33 0.2557 0.2487 0.2555 0.2557 1.64 0.7330 0.7241 0.7329 0.7330
1.34 0.2712 0.2651 0.2711 0.2712 1.65 0.7474 0.7399 0.7471 0.7476
1.35 0.2866 0.2795 0.2865 0.2866 1.66 0.7591 0.7525 0.7591 0.7591
1.36 0.2999 0.2936 0.2998 0.3000 1.67 0.7699 0.7640 0.7696 0.7701
1.37 0.3146 0.3073 0.3146 0.3146 1.68 0.7820 0.7758 0.7819 0.7820
1.38 0.3301 0.3212 0.3297 0.3302 1.69 0.7954 0.7883 0.7953 0.7955
1.39 0.3454 0.3396 0.3453 0.3455 1.70 0.8093 0.8025 0.8090 0.8094
1.40 0.3624 0.3541 0.3618 0.3626 1.71 0.8211 0.8140 0.8206 0.8213
1.41 0.3777 0.3710 0.3774 0.3777 1.72 0.8301 0.8249 0.8297 0.8304
1.42 0.3940 0.3885 0.3937 0.3941 1.73 0.8404 0.8353 0.8401 0.8404
1.43 0.4108 0.4034 0.4104 0.4110 1.74 0.8499 0.8446 0.8495 0.8499
1.44 0.4273 0.4201 0.4271 0.4274 1.75 0.8571 0.8519 0.8571 0.8575
1.45 0.4441 0.4345 0.4439 0.4442 1.76 0.8664 0.8609 0.8661 0.8665
1.46 0.4615 0.4532 0.4611 0.4617 1.77 0.8755 0.8700 0.8752 0.8756
1.47 0.4779 0.4704 0.4775 0.4781 1.78 0.8838 0.8790 0.8835 0.8838
1.48 0.4935 0.4846 0.4931 0.4939 1.79 0.8886 0.8855 0.8886 0.8886
1.49 0.5115 0.5019 0.5109 0.5118 1.80 0.8959 0.8924 0.8956 0.8959
1.50 0.5308 0.5210 0.5305 0.5310 1.81 0.9021 0.8984 0.9020 0.9022
1.51 0.5484 0.5400 0.5483 0.5487 1.82 0.9079 0.9044 0.9077 0.9081
1.52 0.5657 0.5563 0.5654 0.5660 1.83 0.9140 0.9100 0.9139 0.9140
1.53 0.5826 0.5745 0.5820 0.5827 1.84 0.9213 0.9183 0.9213 0.9213
1.54 0.5971 0.5894 0.5971 0.5974 1.85 0.9263 0.9231 0.9260 0.9263
1.55 0.6121 0.6036 0.6115 0.6124 1.86 0.9315 0.9293 0.9314 0.9316

10 H. IRANMANESH ET AL.



 

confirmation. Herein, in order to show that the
change of our decision is not big based on changing
in the number of outliers in the simulated data, the
values of the percentage of rejecting the null hypoth-
esis H0 are presented in Table 4, and because the
values of percentages by changing in the number of
outliers close approximately together for each n, one
can conclude that our proposed method for testing
the performance of a production process is the
robust method. For example, in the third row of
Table 4, for the considered sample size n¼ 16 with
the presence of one outlier (np ¼ 2), the value of
the percentage of rejecting the null hypothesis H0 :

Spk � 1:00 based on the simulated data is 0.5% (this
value is very small, i.e., one robust estimator from

200 robust estimators Ŝ
r
pk, i s is greater than the

simulated MC critical value sMC, i, for i ¼
1, 2, :::, 200, that is one test function from 200 test
functions /iðx1, x2, :::, xnÞ rejects the null hypothesis
H0 : Spk � 1:00), and one can conclude that the null
hypothesis H0 : Spk < s0 is not rejected at the signifi-
cance level of a ¼ 0:01: Generally, in order to show
that the changes of making the decision are not
huge, we added the average of percentages of reject-
ing the null hypothesis H0 : Spk � 1:00 in the last
row of Table 4 (i.e., by changing in the number of
outliers for the simulated data, the values of 0.25%,
0.19%, and 0.13% close approximately together for

making a reliable decision). Hence, based on the
results of Table 4, one can conclude that the null
hypothesis H0 : Spk < s0 is not rejected at the signifi-
cance level of a ¼ 0:01, and also, this conclusion
corresponds to the conclusion in subsection 6.1 that
the production process based on the original data
(VAFs observations) cannot meet the capability
requirement at the significance level of 0.01.
Therefore, based on these results, we confirm the
correctness and robustness of our proposed yield
test.

7. Comparison study between the proposed
MC-method and various methods

Traditional PCIs, such as, Cp, Cpk and Cpm ¼
USL�LSL

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðl�TÞ2

p have many applications in the manufac-

turing industry, where LSL, USL, l, and r are
expressed in Section 1, and T is the target value. In
this section, we are going to test the quality of inside
diameters of piston rings with different PCIs Cp, Cpk,
Cpm, and Spk based on various presented methods at
different significance levels. It must be noted that the
piston rings data (with the detected values of outliers
73.967 and 74.030) are available by “qcc” package in
R software (Scrucca 2004). Shapiro–Wilk test shows
that the piston rings data follow normal distribution
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Table 4. Results of the percentage of rejecting the null hypothesis H0 for m¼ 200, with various numbers of outliers and sample
sizes n> 15, under the desired quality condition with LSL ¼ 510,USL ¼ 530, c0 ¼ 0:9973 (s0 ¼ 1:00), and a ¼ 0:01:

n Number of outliers Percentage of rejecting H0
Result of simulation based on the
normal
distribution Nð522:172, 2:9742Þ

16 0 0.0%
1 0.0%
2 0.5%

20 0 0.5%
1 0.5%
2 0.5%

24 0 0.5%
1 0.5%
2 0.0%

30 0 0.0%
1 0.0%
2 0.0%

35 0 0.5%
1 0.0%
2 0.0%

50 0 0.5%
1 0.5%
2 0.0%

100 0 0.0%
1 0.0%
2 0.0%

150 0 0.0%
1 0.0%
2 0.0%

Average of percentages of
rejecting H0

0 0.25%
1 0.19%
2 0.13%
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(p value ¼ 0.7861). Based on the standard minimal
criterion c for the considered PCIs Cu such that u 2
p, pk, pmf g, we consider the following hypotheses

H0 : Cu � c,
H1 : Cu > c,

�
(31)

and the hypotheses (Iranmanesh, Parchami, and
Sadeghpour Gildeh 2022) to test the quality of the
production process in this comparison study. It must
be clarified that the decision-making components for
the proposed MC-method are compared with various
presented methods (Iranmanesh, Parchami, and
Sadeghpour Gildeh 2022; Pearn and Kotz 2006; Pearn
and Chuang 2004) in Table 5. Therefore, four follow-
ing non-robust and robust quality tests are considered
based on the value of the standard minimal criterion
1.00 in Table 5 at different significance levels for
inside diameters of piston rings:

1. non-robust quality test based on Cp, for the con-
sidered SLs [73.96, 74.03],

2. non-robust quality test based on Cpm, for the con-
sidered SLs [73.96, 74.03] and target value
T¼ 73.999,

3. non-robust quality test based on Cpk, for the con-
sidered SLs [73.96, 74.03], and

4. robust quality test based on Spk, for the consid-
ered SLs [73.96, 74.03].

For each case, the critical value, the p value, and
the probability of type II error based on the consid-

ered NEs Ĉp ¼ USL�LSL
6S , Ĉpm ¼ USL�LSL

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2þð�X�TÞ2

p , Ĉpk ¼

min USL��X
3S , �X�LSL

3S

n o
, and the proposed robust estima-

tor Ŝ
r
pk were computed and shown in Table 5 at sig-

nificance levels of 0.010, 0.025, 0.05, and 0.1. It must
be mentioned that the statistical critical value based

on the NE Ĉp was calculated by c
ffiffiffiffiffiffiffiffiffi
n�1
v2n�1, a

q
, where c is

the standard minimal criterion and v2n�1, a is the lower
a-quantile of the chi-square distribution with n� 1
degrees of freedom (Pearn and Kotz 2006). Moreover,
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Table 5. Results of comparing some non-robust and robust quality tests with different PCIs based on various methods at differ-
ent significance levels.

a ¼ 0:010 a ¼ 0:025 a ¼ 0:050 a ¼ 0:100

Non-robust quality test based on c¼ 1.00 for the preset SLs [LSL, USL]¼ [73.96, 74.03]

Method (Pearn and
Kotz 2006)

Statistical critical value
for Cp

1.172 1.142 1.118 1.090

Decision based
on ĉp ¼ 1:1586

Not reject H0 Reject H0 Reject H0 Reject H0

Process Incapable Capable Capable Capable
p value 0.015 0.015 0.015 0.015
Probability of type II

error
bð1:344Þ ¼ 0:011 bð1:289Þ ¼ 0:021 bð1:239Þ ¼ 0:042 bð1:179Þ ¼ 0:096

Non-robust quality test based on c¼ 1.00, for the preset SLs [LSL, USL]¼ [73.96, 74.03], and
T¼ 73.999

Method (Iranmanesh,
Parchami, and
Sadeghpour Gildeh
2022)

Monte Carlo critical
value for Cpm

1.156 1.132 1.109 1.082

Decision based
on ĉpm ¼ 1:1324

Not reject H0 Reject H0 Reject H0 Reject H0

Process Incapable Capable Capable Capable
p valueMC 0.025 0.025 0.025 0.025
Probability of type II

error
bMCð1:295Þ ¼ 0:030 bð1:239Þ ¼ 0:046 bMCð1:223Þ ¼ 0:051 bMCð1:168Þ ¼ 0:101

Non-robust quality test based on c¼ 1.00 for the preset SLs [LSL, USL]¼ [73.96, 74.03]

Method (Pearn and
Chuang 2004)

Monte Carlo critical
value for Cpk

1.090 1.060 1.035 1.007

Decision
by ĉpk ¼ 0:954

Not reject H0 Not reject H0 Not reject H0 Not reject H0

Process Incapable Incapable Incapable Incapable
p valueMC 0.689 0.689 0.689 0.689
Probability of type II

error
bMCð1:445Þ ¼ 0:083 bMCð1:335Þ ¼ 0:093 bMCð1:235Þ ¼ 0:153 bMCð1:135Þ ¼ 0:345

Robust quality test based on s0 ¼ 1:00 for the preset SLs [LSL, USL]¼ [73.96, 74.03]

MC-method Monte Carlo critical
value for Spk

1.281 1.228 1.194 1.150

Decision
by ŝ rpk ¼ 1:002

Not reject H0 Not reject H0 Not reject H0 Not reject H0

Process Incapable Incapable Incapable Incapable
p valueMC 0.511 0.511 0.511 0.511
Probability of type II

error
bMCð1:585Þ ¼ 0:011 bMCð1:485Þ ¼ 0:021 bMCð1:385Þ ¼ 0:053 bMCð1:285Þ ¼ 0:110
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the critical values based on the NEs Ĉpm and Ĉpk were
simulated in Iranmanesh, Parchami, and Sadeghpour
Gildeh (2022) and Pearn and Chuang (2004) on the
basis of the Monte Carlo simulation methods. By
comparing the results of Table 5, one can observe that
both critical value and p value increase in the pro-
posed MC-method. Therefore, the more reliable result
is on the basis of using the proposed MC-method,
since this procedure is based on the robust quality test
and outliers cannot affect on it.

8. Conclusions and future works

The evaluation of the production process performance
was investigated in this article by using the yield index
Spk. Testing the performance of a production process is
an effective technique for making a decision on the pro-
cess yield/capability. It was widely discussed that the
presence of outliers might have a deleterious effect on
statistical analyses and decisions. In this regard, a
robust estimator of Spk based on the MAD-based
method was introduced to test the production yield. A
comparison study was shown that the outliers have the
least impact on both mean square error and mean abso-
lute deviation for the proposed robust estimator of Spk.
Moreover, an MC simulation method was applied to
estimate the components of the decision-making for
testing the process yield based on the index Spk by nor-
mal data. Meanwhile, this article discussed how well the
MC-method can be used for some non-normal data.
Numerical results of the simulation and real data analy-
ses were presented to explain the proposed method. As
a future study, one can develop the rule of the proposed
robust yield test to assess the performance of processes
with multiple characteristics.
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