Total Product and Total Edge Product Cordial Labelings of Dragonfly Graph (Dg_{n})

N. Inayah $\mathbb{C}^{1},{ }^{1}$ A. Erfanian $\left(\mathbb{D},{ }^{2}\right.$ and M. Korivand ()2
${ }^{1}$ Department of Mathematics, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University, Indonesia
${ }^{2}$ Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran
Correspondence should be addressed to N. Inayah; nur.inayah@uinjkt.ac.id

Received 25 June 2022; Revised 25 August 2022; Accepted 9 September 2022; Published 15 November 2022
Academic Editor: Alfred Peris
Copyright © 2022 N. Inayah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study the total product and total edge product cordial labeling for dragonfly graph Dg_{n}. We also define generalized dragonfly graph and find product cordial and total product cordial labeling for this family of graphs.

1. Introduction

In this paper, all graphs $G=G(V, E)$ are simple and finite connected with order p and size q. We will give some definitions and other information, which are useful for this research. Terms that are not defined here, we refer to West [1]. Let function f be a vertex labeling of graph G and f^{*}, an edge labeling of graph G. Let $v_{f}(i)$ (respectively $e_{f^{*}}(i)$) denote the number of vertices (edges) labeled with $i=0,1$.

The cordial labeling was introduced in 1987 by Cahit [2], which he defines that a graph G is said to be cordial graph if there exists a vertex labeling $f: V \longrightarrow\{0,1\}$ such that induces an edge labeling $f^{*}: E \longrightarrow\{0,1\}$ defined by $f^{*}(u v)=\mid f(u)$ $-f(v) \mid$ and satisfied $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f^{*}}(0)-e_{f^{*}}(1)\right|$ ≤ 1. In [2], Cahit proved many result for cordial labeling. Prime cordial labeling, A-cordial labeling, product cordial labeling, Hcordial labeling, etc. are some variations of labeling schemes introduced after cordial labeling. For product cordial labeling, it was introduced in 2004 by Sundaram, et al. [3], which $f^{*}(u$ $v)=|f(u)-f(v)|$ on cordial labeling is replaced by $f^{*}(u v)=$ $f(u) f(v)$. In this paper we investigate the total product and total edge product cordial labelings of dragonfly graph $\left(\mathrm{Dg}_{n}\right)$.

The product cordial labeling is defined in Definition 1.1.

Definition 1.1. A graph G is said to be the product cordial if there exists a vertex labeling $f: V \longrightarrow\{0,1\}$ such that
induces an edge labeling $f^{*}: E \longrightarrow\{0,1\}$ defined by $f^{*}(u v$ $)=|f(u)-f(v)|$ and satisfied $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\mid e_{f^{*}}(0)$ $-e_{f^{*}}(1) \mid \leq 1$.

In [3], Sundaram et al. proved that unicycle graphs with odd order, trees, helms, triangular snakes, dragons, and unicon with two paths are product cordial. Furthermore, Vaidya and Barasara [4] discussed product cordial labeling of graph fans F_{n}, C_{n} with one chord, and C_{n} with two chord. Gao et al. [5] discussed product cordial labeling of graph $P_{n+1}^{(m)}$.

Motivated by definition of product cordial labeling, in [6], Sundaram et al. introduce a total product cordial labeling and investigate the total product cordial of some standard graphs. The total product cordial labeling is defined in Definition 1.2.

Definition 1.2. A graph G is said to be the total product cordial if there exists a vertex labeling $f: V \longrightarrow\{0,1\}$ such that induces an edge labeling $f^{*}: E \longrightarrow\{0,1\}$ defined by $f^{*}(u v$ $)=|f(u)-f(v)|$ and satisfied $\mid\left(v_{f}(0)+e_{f^{*}}(0)\right)-\left(v_{f}(1)-\right.$ $\left.e_{f^{*}}(1)\right) \mid \leq 1$.

The total product cordial labeling of cycle C_{7} is shown in Figure 1.

In $[6,7]$, Sundaram et al. proved that tree graph P_{n}, fans graph F_{n}, graph C_{n}, except $n=4$, wheels graph w_{n}, helms

Figure 1: Total product cordial labeling of cycle C_{7}.
graph H_{n}, and graph C_{n} with m edges appended at each vertex are total product cordial graph. They also proved that every product cordial graph G is a total product cordial if G has either even size and even order or odd order.

In [8], Vaidya and Barasara introduce the concept of edge product cordial labeling, which is defined in Definition 1.3.

Definition 1.3 (see [8]). A graph G is said to be edge product cordial if there exits an edge labeling $\mathrm{f}: \mathrm{E} \longrightarrow\{0,1\}$ such that it induces a vertex labeling $f^{*}: V \longrightarrow\{0,1\}$ defined by $f^{*}(v)=\Pi f\left(e_{i}\right)$ for $\left\{e_{i} \mid e_{i} \in E / e_{i}\right.$ and e_{i} is incident to $\left.v\right\}$ and satisfies $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and $\left|v_{f^{*}}(0)-v_{f^{*}}(1)\right| \leq 1$.

In [8-10], Vaidya and Barasara have investigated several results related to edge product cordial labeling.

In, Vaidya and Barasara introduce the concept of total edge product cordial labeling, which is defined in Definition 1.4.

Definition 1.4 (see [10]). A graph G is said to be the total edge product cordial if there exits an edge labeling $f: E \longrightarrow\{0,1\}$, such that it induces a vertex labeling $f^{*}: V \longrightarrow\{0,1\}$ defined by $f^{*}(v)=\Pi f\left(e_{i}\right)$ for $\left\{\mathrm{e}_{\mathrm{i}} \mid \mathrm{e}_{\mathrm{i}} \in E / e_{i}\right.$ and e_{i} is incident to $\left.v\right\}$ and satisfies $\left|\left(e_{f}(0)+v_{f^{*}}(0)\right)-\left(e_{f}(1)+v_{f^{*}}(1)\right)\right| \leq 1$.

The total edge product cordial labeling of graph $C_{4}^{(3)}$ is shown in Figure 2.

In [4], Vaidya and Barasara have investigated total edge product cordial labeling in the context of various graph operations.

Proposition 1.5 (see [10]). If every edge product cordial graph G has either even size or even order, then graph G is the total edge product cordial.

In this paper, we determine the total product and total edge product cordial labelings of dragonfly graph, denoted by Dg_{n}, which is defined in Definition 1.6. Also, we generalized dragonfly graph, defined in Definition 3.1, and present two family of graphs in that, which are product and total product cordial graph.

Definition 1.6. For an integer n, the dragonfly graph Dg_{n} is the graph with vertex set:

$$
\begin{equation*}
V=\left\{u_{i}, v_{j}, w_{k} \mid i, j \in\{1,2, \cdots, n+2\}, k \in\{1,2,3\}\right\} \tag{1}
\end{equation*}
$$

Figure 2: Total edge product cordial labeling of $C_{4}^{(3)}$.
and edge set

$$
\begin{gather*}
E=\left\{u_{i} u_{i+1}, i \in\{1,2, \cdots, n+1\}\right\} \cup, \\
\\
\left\{u_{i} w_{0} \mid i \in\{1,2, \cdots, n+2\}\right\} \cup, \tag{2}\\
\left\{v_{i} v_{i+1}, i \in\{1,2, \cdots, n+1\}\right\} \cup, \\
\left\{v_{i} w_{0} \mid i \in\{1,2, \cdots, n+2\}\right\} \cup, \\
\left\{w_{0} w_{i} \mid i \in\{1,2\}\right\} .
\end{gather*}
$$

In Figure 3, we give a representation of our definition.

2. Main Results

Theorem 2.1. The dragonfly $D g_{n}$ is product cordial graph.
Proof. Let Dg_{n} is the dragonfly graph. Define the function $f: V\left(D g_{n}\right) \longrightarrow\{0,1\}$, we consider following two cases.

Case 1. Let n be even.

$$
\begin{gather*}
f\left(w_{0}\right)=1, \\
f\left(w_{i}\right)=0,1 \leq i \leq 2, \\
f\left(u_{i}\right)=1,1 \leq i \leq \frac{n+4}{2}, \\
f\left(u_{i}\right)=0, \frac{n+4}{2}+1 \leq i \leq n+2, \tag{3}\\
f\left(v_{i}\right)=1,1 \leq i \leq \frac{n+4}{2}-1, \\
f\left(v_{i}\right)=0, \frac{n+4}{2} \leq i \leq n+2 .
\end{gather*}
$$

By of the above labeling, we have $v_{f}(0)=2 . n+4 / 2$ and $v_{f}(1)=2 . n+4 / 2-1$. On the other hand, the edges of Dg_{n} with labels one are the following:

$$
\begin{align*}
& f^{*}\left(u_{i} w_{0}\right)=1,1 \leq i \leq \frac{n+4}{2} \\
& f^{*}\left(v_{i} w_{0}\right)=1,1 \leq i \leq \frac{n+2}{2} \tag{4}\\
& f^{*}\left(u_{i} u_{i+1}\right)=1,1 \leq i \leq \frac{n+2}{2}, \\
& f^{*}\left(v_{i} v_{i+1}\right)=1,1 \leq i \leq \frac{n}{2}
\end{align*}
$$

Figure 3: The dragonfly graph Dg_{n}.
and the edges of Dg_{n} with labels zero are the following:

$$
\begin{gather*}
f^{*}\left(w_{0} w_{i}\right)=0,1 \leq i \leq 2 \\
f^{*}\left(u_{i} w_{0}\right)=0, \frac{n+4}{2}+1 \leq i \leq n+2 \\
f^{*}\left(v_{i} w_{0}\right)=0, \frac{n+2}{2}+1 \leq i \leq n+2 \tag{5}\\
f^{*}\left(u_{i} u_{i+1}\right)=0, \frac{n+4}{2} \leq i \leq n+1 \\
f^{*}\left(v_{i} v_{i+1}\right)=0, \frac{n+4}{2}-1 \leq i \leq n+1 .
\end{gather*}
$$

By of the above labeling, we have $e_{f^{*}}(0)=2 n+4$ and $e_{f^{*}}(1)=2 n+4$. Hence, $\left|v_{f}(0)-v_{f}(1)\right|=1$ and $\mid e_{f^{*}}(0)-e_{f^{*}}($ $1) \mid=0$. Thus, the graph Dg_{n} is product cordial labeling.

Case 2. Let n be odd.

$$
\begin{gather*}
f\left(w_{0}\right)=1, \\
f\left(w_{i}\right)=0,1 \leq i \leq 2, \\
f\left(u_{i}\right)=1,1 \leq i \leq\left\lceil\frac{n+2}{2}\right\rceil, \\
f\left(u_{i}\right)=0,\left\lceil\frac{n+2}{2}\right\rceil+1 \leq i \leq n+2, \tag{6}\\
f\left(v_{i}\right)=1,1 \leq i \leq\left\lceil\frac{n+2}{2}\right\rceil, \\
f\left(v_{i}\right)=0,\left\lceil\frac{n+2}{2}\right\rceil+1 \leq i \leq n+2
\end{gather*}
$$

By of the above labeling, we have $v_{f}(0)=2 .\lceil n+2 / 2\rceil$ and $v_{f}(1)=2 .\lceil n+2 / 2\rceil+1$. On the other hand, the edges of Dg_{n} with labels one are the following:

Figure 4: Total product cordial labeling of Dg_{5}.

$$
\begin{gather*}
f^{*}\left(u_{i} w_{0}\right)=1,1 \leq i \leq\left\lceil\frac{n+2}{2}\right\rceil \\
f^{*}\left(v_{i} w_{0}\right)=1,1 \leq i \leq\left\lceil\frac{n+2}{2}\right\rceil \tag{7}\\
f^{*}\left(u_{i} u_{i+1}\right)=1,1 \leq i \leq\left\lceil\frac{n+2}{2}\right\rceil-1 \\
f^{*}\left(v_{i} v_{i+1}\right)=1,1 \leq i \leq\left\lceil\frac{n+2}{2}\right\rceil
\end{gather*}
$$

and the edges of Dg_{n} with labels zero are the following:

$$
\begin{gather*}
f^{*}\left(w_{0} w_{i}\right)=0,1 \leq i \leq 2 \\
f^{*}\left(u_{i} w_{0}\right)=0,\left\lceil\frac{n+2}{2}\right\rceil+1 \leq i \leq n+2 \\
f^{*}\left(v_{i} w_{0}\right)=0,\left\lceil\frac{n+2}{2}\right\rceil+1 \leq i \leq n+2 \tag{8}\\
f^{*}\left(u_{i} u_{i+1}\right)=0,\left\lceil\frac{n+2}{2}\right\rceil \leq i \leq n+1 \\
f^{*}\left(v_{i} v_{i+1}\right)=0,\left\lceil\frac{n+2}{2}\right\rceil+1 \leq i \leq n+1
\end{gather*}
$$

By of the above labeling, we have $e_{f^{*}}(0)=2\lceil n+2 / 2\rceil+2$ and $e_{f^{*}}(1)=2\lceil n+2 / 2\rceil+2$. Hence, $\left|v_{f}(0)-v_{f}(1)\right|=1$ and \mid $e_{f^{*}}(0)-e_{f^{*}}(1) \mid=1$. Thus, the graph Dg_{n} is product cordial labeling. Therefore, considering two cases above, we prove that graph Dg_{n} is product cordial graph.

Theorem 2.2. The dragonfly $D g_{n}$ is a total product cordial.
Proof. By: Theorem 2.1, $\left|\left(e_{f}(0)+v_{f^{*}}(0)\right)-\left(e_{f}(1)+v_{f^{*}}(1)\right)\right|$ ≤ 1. Thus, the graph Dg_{n} is a total product cordial.

The total product cordial labeling of Dg_{5} is shown in Figure 4.

Theorem 2.3. The dragonfly $D g_{n}$ is an edge product cordial.

Proof. Let Dg_{n} is dragonfly graph. Define the function $f: E$ $\left(D g_{n}\right) \longrightarrow\{0,1\}$, we consider following two cases.

Case 1. Let n be even.

$$
\begin{gather*}
f\left(w_{0} w_{i}\right)=1,1 \leq i \leq 2, \\
f\left(w_{0} u_{i}\right)=0,1 \leq i \leq \frac{n+4}{2}, \\
f\left(w_{0} u_{i}\right)=1, \frac{n+4}{2}+1 \leq i \leq n+2, \\
f\left(w_{0} v_{i}\right)=0,1 \leq i \leq \frac{n+2}{2}, \\
f\left(w_{0} v_{i}\right)=1, \frac{n+2}{2}+1 \leq i \leq n+2, \tag{9}\\
f\left(u_{i} u_{i+1}\right)=0,1 \leq i \leq \frac{n+2}{2}, \\
f\left(u_{i} u_{i+1}\right)=1, \frac{n+2}{2} \leq i \leq n+1, \\
f\left(v_{i} v_{i+1}\right)=0,1 \leq i \leq \frac{n}{2}, \\
f\left(v_{i} v_{i+1}\right)=1, \frac{n}{2} \leq i \leq n+1 .
\end{gather*}
$$

By of the above labeling, we have $e_{f}(0)=4 . n+2 / 2$ and $e_{f}(1)=4 . n+2 / 2$. On the other hand, the vertices of Dg_{n} with labels zero are the following:

$$
\begin{gather*}
f^{*}\left(w_{0}\right)=0 \\
f^{*}\left(u_{i}\right)=0,1 \leq i \leq \frac{n+4}{2} \tag{10}\\
f^{*}\left(v_{i}\right)=0,1 \leq i \leq \frac{n+2}{2}
\end{gather*}
$$

and the vertices of Dg_{n} with labels one are the following:

$$
\begin{gather*}
f^{*}\left(w_{i}\right)=1,1 \leq i \leq 2 \\
f^{*}\left(u_{i}\right)=1, \frac{n+4}{2}+1 \leq i \leq n+2 \tag{11}\\
f^{*}\left(v_{i}\right)=1, \frac{n+2}{2}+1 \leq i \leq n+2
\end{gather*}
$$

By of the above labeling, we have $v_{f^{*}}(0)=n+4$ and $v_{f^{*}}$ $(1)=n+3$. Hence, $\left|e_{f}(0)-e_{f}(1)\right|=0$ and $\left|v_{f^{*}}(0)-v_{f^{*}}(1)\right|$ $=1$. Thus, the graph Dg_{n} is an edge product cordial labeling.

Case 2. Let n be odd.

$$
\begin{gather*}
f\left(w_{0} w_{i}\right)=1,1 \leq i \leq 2, \\
f\left(w_{0} u_{i}\right)=0,1 \leq i \leq \frac{n+3}{2}, \\
f\left(w_{0} u_{i}\right)=1, \frac{n+3}{2}+1 \leq i \leq n+2, \\
f\left(w_{0} v_{i}\right)=0,1 \leq i \leq \frac{n+3}{2}, \\
f\left(w_{0} v_{i}\right)=1, \frac{n+3}{2}+1 \leq i \leq n+2, \tag{12}\\
f\left(u_{i} u_{i+1}\right)=0,1 \leq i \leq \frac{n+1}{2}, \\
f\left(u_{i} u_{i+1}\right)=1, \frac{n+1}{2} \leq i \leq n+1, \\
f\left(v_{i} v_{i+1}\right)=0,1 \leq i \leq \frac{n+1}{2}, \\
f\left(v_{i} v_{i+1}\right)=1, \frac{n+1}{2} \leq i \leq n+1 .
\end{gather*}
$$

By of the above labeling, we have $e_{f}(0)=n+2$ and $e_{f}(1$ $)=n+2$. On the other hand, the vertices of Dg_{n} with labels zero are the following:

$$
\begin{gather*}
f^{*}\left(w_{0}\right)=0 \\
f^{*}\left(u_{i}\right)=0,1 \leq i \leq \frac{n+3}{2} \tag{13}\\
f^{*}\left(v_{i}\right)=0,1 \leq i \leq \frac{n+3}{2}
\end{gather*}
$$

and the vertices of $D g_{n}$ with labels one are the following:

$$
\begin{gather*}
f^{*}\left(w_{i}\right)=1,1 \leq i \leq 2 \\
f^{*}\left(u_{i}\right)=1, \frac{n+3}{2}+1 \leq i \leq n+2 \tag{14}\\
f^{*}\left(v_{i}\right)=1, \frac{n+3}{2}+1 \leq i \leq n+2
\end{gather*}
$$

By of the above labeling, we have $v_{f^{*}}(0)=n+4$ and $v_{f^{*}}$ (1) $=n+3$. Hence, $\left|e_{f}(0)-e_{f}(1)\right|=0$ and $\left|v_{f^{*}}(0)-v_{f^{*}}(1)\right|$ $=1$. Thus, the graph Dg_{n} is an edge product cordial labeling. Therefore, considering two cases above, we prove that graph Dg_{n} is edge product cordial.

Corollary 2.4. The dragonfly $D g_{n}$ is a total edge product cordial graph.

Proof. Let Dg_{n} is dragonfly graph. Here, graph Dg_{n} has even size and in Theorem 2.3, Dg_{n} is edge product cordial. Then, by proposition 3.2 , the result holds.
The total edge product cordial labeling of Dg 5 is shown in Figure 5.

3. The Generalized Dragonfly Graphs

In this section, we present a generalization of dragonfly graph and show that some of those graphs are total product cordial graphs.

Definition 3.1. For every $m \geq 2$ and $k \geq 1$, the generalized dragonfly graph, denoted by $\mathrm{Dg}_{n}^{(m, k)}$, is the graph with vertex set

$$
\begin{equation*}
V=\left\{v_{i}^{1}, v_{i}^{2}, \cdots, v_{i}^{m}, w_{j} \mid i \in\{1,2, \cdots, n+2\}, j \in\{1,2, \cdots, k\}\right\} \tag{15}
\end{equation*}
$$

and edge set

$$
\begin{align*}
E= & \left\{v_{i}^{\ell} v_{i+1}^{\ell}, i \in\{1,2, \cdots, n+1\},\right. \\
& \text { for } \ell \in\{1,2, \cdots, m\}\} \cup, \\
& \left\{v_{i}^{\ell} w_{0} \mid i \in\{1,2, \cdots, n+2\},\right. \tag{16}\\
& \text { for } \ell \in\{1,2, \cdots, m\}\} \cup \\
& \left\{w_{0} w_{j} \mid j \in\{1,2, \cdots k\}\right\} .
\end{align*}
$$

It is clear that $\mathrm{Dg}_{n}^{(2,1)}=\mathrm{Dg}_{n}$ (see Figure 6, for the case $m=k=3$).

Theorem 3.2. For $k \geq 1$, graph $D g_{2 k}^{(3,2)}$ is a product cordial graph.

Proof. We define vertex labeling $f: V\left(\mathrm{Dg}_{2 k}^{(3,2)}\right) \longrightarrow\{0,1\}$, of vertices $\mathrm{Dg}_{2 k}^{(3,2)}$ as follow.

$$
\begin{gather*}
f\left(w_{0}\right)=1, \\
f\left(w_{i}\right)=0,1 \leq i \leq 2, \\
f\left(v_{i}^{\ell}\right)=1,1 \leq i \leq k+1,1 \leq \ell \leq 2, \\
f\left(v_{i}^{\ell}\right)=0, k+2 \leq i \leq 2 k+2,1 \leq \ell \leq 2, \tag{17}\\
f\left(v_{i}^{3}\right)=1,1 \leq i \leq k+1, \\
f\left(v_{i}^{3}\right)=0, k+2 \leq i \leq 2 k+2 .
\end{gather*}
$$

By the above labeling, we have $v_{f}(0)=3(k+1)+1$ and $v_{f}(1)=3(k+1)+2$. On the other hand, the edges of $\mathrm{Dg}_{2 k}^{(3,2)}$ with labels one are the following:

$$
\begin{gathered}
f^{*}\left(v_{i}^{\ell} w_{0}\right)=1,1 \leq i \leq k+1,1 \leq \ell \leq 2, \\
f^{*}\left(v_{i}^{3} w_{0}\right)=1,1 \leq i \leq k+2, \\
f^{*}\left(v_{i}^{\ell} v_{i+1}^{\ell}\right)=1,1 \leq i \leq k, 1 \leq \ell \leq 2, \\
f^{*}\left(v_{i}^{3} v_{i+1}^{3}\right)=1,1 \leq i \leq k+1,
\end{gathered}
$$

Figure 5: Total edge product cordial labeling of Dg_{5}.
and the edges of $\mathrm{Dg}_{2 k}^{(3,2)}$ with labels zero are the following:

$$
\begin{gather*}
f^{*}\left(w_{0} w_{i}\right)=0,1 \leq i \leq 2, \\
f^{*}\left(v_{i}^{\ell} w_{0}\right)=0, k+2 \leq i \leq 2 k+2,1 \leq \ell \leq 2, \\
f^{*}\left(v_{i}^{3} w_{0}\right)=0, k+3 \leq i \leq 2 k+2, \tag{19}\\
f^{*}\left(v_{i}^{\ell} v_{i+1}^{\ell}\right)=0, k+1 \leq i \leq 2 k+1,1 \leq \ell \leq 2, \\
f^{*}\left(v_{i}^{3} v_{i+1}^{3}\right)=0, k+2 \leq i \leq 2 k+1 .
\end{gather*}
$$

By the above labeling, we have $e_{f^{*}}(0)=6(k+1)$ and $e_{f^{*}}$ $(1)=6(k+1)-1$. Hence, $\left|v_{f}(0)-v_{f}(1)\right|=1$ and $\mid e_{f^{*}}(0)-$ $e_{f^{*}}(1) \mid=1$. Thus, labeling f is a product cordial labeling for $\mathrm{Dg}_{2 k}^{(3,2)}$, and the proof is completed.

Corollary 3.3. For $k \geq 1$, graph $D g_{2 k}^{(3,2)}$ is a total product cordial.

Proof. By: Theorem 3.2, $\left|\left(e_{f}(0)+v_{f^{*}}(0)\right)-\left(e_{f}(1)+v_{f^{*}}(1)\right)\right|$ ≤ 1. Therefore, the graph $\mathrm{Dg}_{2 k}^{(3,2)}$ is a total product cordial.

Theorem 3.4. For $k \geq 1$, graph $D g_{2 k+1}^{(3,3)}$ is a product cordial graph.

Proof. We define vertex labeling $f: V\left(D g_{2 k+1}^{(3,3)}\right) \longrightarrow\{0,1\}$, of vertices $\mathrm{Dg}_{2 k+1}^{(3,3)}$ as follow.

$$
\begin{gather*}
f\left(w_{0}\right)=1, \\
f\left(w_{i}\right)=0,1 \leq i \leq 3, \\
f\left(v_{i}^{\ell}\right)=1,1 \leq i \leq k+2,1 \leq \ell \leq 3, \tag{20}\\
f\left(v_{i}^{\ell}\right)=0, k+3 \leq i \leq 2 k+3,1 \leq \ell \leq 3 .
\end{gather*}
$$

By the above labeling, we have $v_{f}(0)=3(k+2)+1$ and $v_{f}(1)=3(k+1)+3$. On the other hand, the edges of D

Figure 6: The generalize dragonfly graph $\mathrm{Dg}_{n}^{(3,3)}$.
$\mathrm{g}_{2 k+1}^{(3,3)}$ with labels one are the following:

$$
\begin{align*}
& f^{*}\left(v_{i}^{\ell} w_{0}\right)=1,1 \leq i \leq k+2,1 \leq \ell \leq 3 \tag{21}\\
& f^{*}\left(v_{i}^{\ell} v_{i+1}^{\ell}\right)=1,1 \leq i \leq k+1,1 \leq \ell \leq 3
\end{align*}
$$

and the edges of $\mathrm{Dg}_{2 k+1}^{(3,3)}$ with labels zero are the following:

$$
\begin{gather*}
f^{*}\left(w_{0} w_{i}\right)=0,1 \leq i \leq 3 \\
f^{*}\left(v_{i}^{\ell} w_{0}\right)=0, k+3 \leq i \leq 2 k+3,1 \leq \ell \leq 3 \tag{22}\\
f^{*}\left(v_{i}^{\ell} v_{i+1}^{\ell}\right)=0, k+2 \leq i \leq 2 k+2,1 \leq \ell \leq 3
\end{gather*}
$$

By the above labeling, we have $e_{f^{*}}(0)=6(k+1)+3$ and $e_{f^{*}}(1)=3(k+2)+3(k+1)$. Hence, $\left|v_{f}(0)-v_{f}(1)\right|=1$ and \mid $e_{f^{*}}(0)-e_{f^{*}}(1) \mid=0$. Thus, labeling f is a product cordial labeling for $\mathrm{Dg}_{2 k+1}^{(3,3)}$, and the proof is completed.

Corollary 3.5. For $k \geq 1$, graph $D g_{2 k+1}^{(3,3)}$ is a total product cordial.

It is interesting to find all values m, k, and n such that generalized dragonfly $\mathrm{Dg}_{n}^{(m, k)}$ is cordial product graph. We end the paper with the following question.

Question. Find all values m, k, and n, such that $\mathrm{Dg}_{n}^{(m, k)}$ is (edge) cordial product graph.

Data Availability

Data sharing is not applicable to this article as no data were collected or analyzed in this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

We would like to acknowledge the support and help of the late Budi Harianto in the preparation and contribution of this paper. This study was supported by the center of research and publication of State Islamic University Syarif Hidayatullah Jakarta.

References

[1] D. B. West, An Introduction to Graph Theory, Prentice-Hall, New Jersey, USA, 2nd ed. edition, 2003.
[2] I. Cahit, "Cordial graphs: a weaker version of graceful and harmonius graphs," Ars Combinatoria, vol. 23, pp. 201-207, 1987.
[3] M. Sundaram, R. Ponraj, and S. Somansundaram, "Product cordial labeling of graphs," Bulletin of Pure and Applied Sciences, vol. 23E, no. 1, pp. 155-162, 2004.
[4] S. K. Vaidya and C. M. Barasara, "On total edge product cordial labeling," Intenational Journal of Mathematics and Scientific Computing, vol. 3, no. 2, pp. 12-16, 2013.
[5] Z. B. Gao, G. Y. Sun, Y. N. Zhang, Y. Meng, and G. C. Lau, "Product cordial and total product cordial labelings of $\mathrm{P}_{\mathrm{n}+1}^{(\mathrm{m})}$," Journal of Discrete Mathematis, vol. 2015, article 512696, 6 pages, 2015.
[6] M. Sundaram, R. Ponraj, and S. Somansundaram, "Total product cordial labeling of graphs," Bulletin of Pure and Applied Sciences, vol. 23E, no. 1, pp. 199-203, 2005.
[7] M. Sundaram, R. Ponraj, and S. Somasundaram, "Some results on total product cordial labeling of graphs," Indian Academy of Mathematics, vol. 28, no. 2, pp. 309-320, 2006.
[8] S. K. Vaidya and C. M. Barasara, "Edge product cordial labeling of graphs," Jounal of Mathematical and Computational Science, vol. 5, no. 2, pp. 1436-1450, 2012.
[9] S. K. Vaidya and C. M. Barasara, "Some new families of edge product cordial graphs," Advanced Modeling and Optimization, vol. 15, no. 1, pp. 103-111, 2013.
[10] S. K. Vaidya and C. M. Barasara, "Total edge product cordial labeling of graphs," Malaya Journal of Matematik, vol. 3, no. 1, pp. 55-63, 2013.

