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ABSTRACT

In this paper, we introduce the twin g-noncommuting graph of a finite group that is developed
by combining the concepts of the g-noncommuting graph and the twin noncommutin.% graph of
a finite group. The twin g-noncommuting graph of a finite group G, denoted by
structed by considering the twin vertex set as one vertex and the adjacency of the two vertices
are determined from their adjacency on the g-noncommuting graph. Furthermore, we choose
dihedral group, whose representation of the twin g-noncommuting graph is determined. In add-
ition, we determine the clique number of the twin g-noncommuting graph of dihedral group.

1. Introduction

Combining graph theory with abstract algebra is an interest-
ing topic of study. One of the studies in abstract algebra is a
group theory. A finite group can be represented as a graph
by considering the group elements as vertices and the adja-
cency of two vertices is determined from the operation on
the group. There are many researches that associated a
graph and a finite group, such as the noncommuting graph
by Abdollahi et al. [1], the power graph by Cameron and
Ghosh [2], the conjugate graph by Erfanian and Tolue [5],
the coprime graph by Ma et al. [9], and the noncentralizer
graph by Tolue [13]. The research on graph that represented
of certain group such as the identity graph of a cyclic group
by Yalcin and Kirgil [16], the noncommuting graph of dihe-
dral group by Khasraw et al. [8], and the coprime graph of
generalized quaternion group by Zahidah et al. [17].

The concept of the noncommuting graph of a finite
group is interesting to study in detail. In 1975, Paul Erd 6 s
had first introduced a graph associated to a group that is
denoted by I'G, before this concept was developed by
Moghaddamfar et al. [10] in terms of the noncommuting
graph. Tolue et al. [15] generalized the noncommuting
graph to the g-noncommuting graph, denoted by I'%,, which
is a graph with the vertex set G and two distinct vertices x
and y are adjacent if and only if [x,y] # g and [x,y] # g .

In graph theory, two vertices a and b in a connected
graph I are called twins if 4 and b have the same neighbors
in V(T')\{a, b} [12]. From that definition, Tolue [14] inves-
tigated the twin vertices of the noncommuting graph and
yielded the concept of the twin noncommuting graph of a
finite group. The twin noncommuting of a finite group is
constructed by considering the twin vertex set as one vertex
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and the adjacency of the two vertices are determined from
their adjacency on the noncommuting graph. Moreover,
Tolue [14] also discussed the clique number of the twin
noncommuting graph of a finite group. Based on these
results, it is interesting to combine the concepts of the g-
noncommuting graph and the twin noncommuting graph of
a finite group that later is called by the twin g-noncommut-
ing graph of a finite group. Moreover, in this paper we
construct and determine the clique number of the twin
g-noncommuting graph of dihedral group.

Throughout the paper, graphs are simple, undirected, and
without loops. All of the notations and terminologies about
graphs can be found in [3, 13], and for the groups in [4,
6, 7.

2. Twin g-noncommuting graph of a finite group

In this part, we introduce some definitions related to the
twin g-noncommuting graph of a finite group. Let G be a
finite group with the identity element e and I'{. be the g-
noncommuting graph of a group G for fixed element g €
G\{e}. Let x,y € G, note that [x,y] = x 'y !xy is the com-
mutator of x and y of G and K(G) = {[x,y] : Vx,y € G} [7].
Let T be a graph and x € V(I'), Tolue in [14] defined
N(x)={ye V() :d(x,y) =1} is the vertex set that is
adjacent to x. A vertex u € V(I') is called a dominant vertex
if d(u,v) = 1 for any other vertices v € V(I').

Definition 2.1. Let G be a finite group and x € G. The set of
elements of the group G whose commutator with x is g or
g !, denoted by Ly(x), is defined as Ly(x) ={y € G: [x,y] =
g or [x,y] =g '} where g is a non-identity element of G.
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Let G be a finite group with the identity element e and
I¥%. be the g-noncommuting graph of G for g€ G.
According to [15], I';; is not a connected graph, hence in
this paper we only discuss about I, for g € G\{e} = G".
Meanwhile, based on Definition 2.1 we know that on F‘é,
the set Ly(x) U {x} where x € V(I'%,) is the vertex set that is
not adjacent to x. Consequently, the vertex set that is adja-
cent to x of I'§, for g € G is N(x) = G\ (Lg(x) U {x}).

Definition 2.2. Let G be a finite group and ', be the g-non-
commuting graph of G for g € G*. Let a € V(I'{,), we denote
the twin vertex set of a on I% as a={beG:
Ly(a) U{a,b} = Ly(b)U{a,b}}.

The twin vertex set on the g-noncommuting graph in
Definition 2.2 is used to bring out the concept of the twin
g-noncommuting graph as follows.

Definition 2.3. Let G be a finite group, T'%. be the g-noncom-
muting graph of G for g € G*, and X be the twin vertex set of
x on IS, The twin g-noncommuting graph of G for g € G,
denoted by T%, is a graph with the vertex set V(I'}) =
{X|x € V(I'%} and two distinct vertices X and y are adjacent
if and only if xy € E(T,).

If G is a finite abelian group, then I% is a complete
graph [11]. Consequently, if G is a finite abelian group, then
r gG is a trivial graph. Moreover, I'%. is a regular graph if and
only if ¢ & K(G) [11], so we get a corollary as follows.

Corollary 2.1. Let G be a finite non-abelian group with the
identity element e. The twin g-noncommuting graph of G
for g € G* is a trivial graph if and only if ¢ & K(G).

Let G be a finite non-abelian group with the identity elem-
ent e. Obviously f‘gG = l:‘gGi1 and e € K(G). Furthermore, in

the following results we consider f‘é for a finite non-abelian
group G and g € K(G)\{e} = K*(G).

Lemma 2.1. If f‘gG is a twin g-noncommuting graph of a
non-abelian group G for g € K*(G), then ¢ is a dominant
vertex on l"gG

Proof. For any x € V(Ff}) and certain ¢ € V(F‘é) where ¢ #
x implies [x,e] = e # g,¢g~!. It means e is adjacent to any x
on F‘gG |

Proposition 2.1. Ifl"é is a twin g-noncommuting graph of a

non-abelian group G for g € K*(G), then I is a connected
graph with diameter two.

Proof. Let X and y be two distinct vertices on FgG Then the
following two cases occur.

If X and y are adjacent on lng’ then d(x,y) = 1.
2. If x and y are not adjacent on f‘gG, then based on

Lemma 2.1, X and y are adjacent to ¢ € V(l"gG) respect-
ively, so d(x,y) = d(x,e) +d(y,e) = 2.

Since the distance among the vertices either one or two,
then the diameter of f‘é is two. ]

Lemma 2.2. If f‘é is a twin g-noncommuting graph of a
non-abelian group G for g € K*(G), then fé is not a com-
plete graph.

Proof. Suppose fgc is a complete graph K,, of order n, then
every pair of distinct vertices x and y are adjacent on f‘é or
in other words [x,y] # ¢ and g~!. It means for all x,y €
V(') implies [x,y] & K(G), which is a contradiction. M

Proposition 2.2. If f‘gG is a twin g-noncommuting graph of a
non-abelian group G for g € K*(G), then IS, is not a
cycle graph.

Proof. There are two cases, i.e.

1. Based on Lemma 2.2, it is clear that f‘gG # K3 = G;.

2. Suppose fé >~ C, where n>3. Note that for all x €
Z(G) and y € G\Z(G) we get [x,y] = e implies deg(x) =
n—1>2 on F‘gG This is contrary to the fact that the
degree of any vertices on a cyclic graph is two. ]

3. The twin g-noncommuting graph of the
dihedral group

The Dihedral group of order 2#, is denoted by D,,, can be rep-
resented as D,, =< a,b|a" =b*=ebab=a'> for ne
N,n > 3, and e is the identity element of D,, [12]. We can
see that Z(D,,) = {e} and K(D,,) = <a> where n is an odd
number. If 7 is an even number, we have Z(D,,) = {e,a?} and
K(D,,) = <a*> . Before we discuss the twin g-noncommuting
graph of D,,, we introduce a special graph as follows.

Definition 3.1. Let k be a non-negative integer, Qy be a k-
regular graph, ie a graph that each vertex has the same
degree k and given two distinct vertices u and v where
u,v & V(). A graph Ay is defined as a graph with the ver-
tex set V(Ax) = V() U {u,v} and the edge set E(A;) =
E(Q) U{uw:we V(Q)U{v}}.

Let € be a k-regular graph for a non-negative integer k
and has order n. A graph Ay is a connected graph, consist-
ing of a unique end vertex and a unique dominant vertex.
Consequently, the maximal degree of vertex on Ay is n+ 1.
Therefore, we know that the order and the size of Aj are
n+2 and %+ n+1 respectively. Furthermore, in this
paper, D;, <can be written as D,,= {e,a,d?, ...,
a" 1, b,ab,a’b,...,a" b} and for all a’,al € D,, where
p-g=12,...,nand p # q implies [a?,ad] = e. For simplicity,
we denote K(D5,)\{e} = K*.

Lemma 3.1. Let F%Zn be the ‘g-noncommuting graph of Dy,
for g € K* and define S, = {a' :i=1,2,..,n} C V(F%Zn)'

i If nis an odd number and g=a% € K(D,,) for

j=12,..., %51 then @ ={d,a"7} and ¢ =S\ @ are
twin vertex sets in S;.



ii. Ifn > 6 is an even number and g = a¥ € K(D,,) for
=12, %], then &= {d,a",a57,a577} and & =
Sl\; are twin vertex sets in S;.

iii. If n=4j and g=a¥ € K(Dy,) for j €N, then @ =

{aj, a”_j} and e = Sl\; are twin vertex sets in S;.

Proof.
i Let n is an odd number and g=a¥ € K(D,,)
forj=1,2,.., 551
a. If[abal=g=a%forallr=1,2,..,n, theni=].
b. If [abad]=g'=a"% for al r=12..,n
then i =n —j.
Hence, we have Lo(@/) = Lg(a" /) ={a’b:r=1,2,..,n}
and Ly(e) = Ly(a¥) =0 for all k=1,2,...n— Lk #jn—j.
According to Definition 2.2, the twin vertex sets in S; are

@ ={d,a" 7} andé =S\ .

ii. Let n > 6 is an even number and g = a¥ € K(D,,)
forj=1,2,..., %]
a. If[aba]=g=aYforallr=1,2,...,n, theni=j
ori=72%+j.
b. If [@'b,a] =g ' =a"¥ for all r=1,2,...,n, then
i=J—jori=n-—j.
Hence, we have Ly(d)=Ly(a"7) = Lg(zﬁ_j) =
L(a) ={a'b:r=1,2,...,n} and Lg(e) = Ly(a*) =0 for
all k=1,2,...,n—1Lk#jn—j5—j 5+j. According to

Definition 2.2, the twin vertex sets in S, are a =
{aj,a”’j,ag’j,agﬂ} and e = S\ @ .
ii. For n=4j and g=a¥ €K(Dy) for jeN. If

[@bad]=g=g'=aYforallr=1,2,..,n, theni=j
or i=n—j. Hence, we have Lg(a@/)=Ly(a"7)=
{ab:r=1,2,..,n} and Ly(e) = Lg(a*) = 0 for all k =
L,2,...n—1Lk#jn—j. According“to Definition 2.2,
the twin vertex sets in S, are @ ={d,a" 7} and

Lemma 3.2. Let I'}, be the g-noncommuting graph of Dy,
for g € K* and define S, = {a*b : k = 1,2,...,n} C V(g ).

i Let n is an odd number and g=a¥ € K(Dy,)
forj=1,2,.., "T_l

a. If n=23j and j is an odd number, then a™b =
{a™b,a™b,a™ b} for m = 1,2,...,j are twin ver-
tex sets in S.

b. If n#3j then akb = {d*b} for k=1,2,...,n are

twin vertex sets in S,.
ii. Let n > 6 is an even number and g = a¥ € K(D,,)

forj=1,2,.., %]
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i. Ifn=8j, then a’b = {a'b,a” ¥b,a" b,a" b} for
r=1,2,...,2j are twin vertex sets in S2.
ii. Ifn+ 8j, then aib = {aqb, ag+qb} forqg=1,2,..,
are twin vertex sets in S2.
iii. Let n=4j and g =a? € K(Dy,) for j € N. Then a’b =
{a'b,a¥b} for r =1,2,...,2j are twin vertex sets in S,.

n
2

Proof.
i. Let n is an odd number and g = a¥ € K(D,,) for j =
1,2,.., 51,

. If[d*b,a') = g =a¥ forallk = 1,2,...,n, theni=}.
2. If [db,a]=g'=a""% for all k=1,2,..,n,
then i=n —j.
3. If [a*b,a'b] = g =a¥ for k=1,2,..,n and k # 1,
then l=n—j+k.
4. If [d*b,a'b) =g ' =a"¥ for k=1,2,..,n and k #
I, then I=j+k.

Hence, for any ab e V(F‘%M) for k = 1,2, ...,n implies
Ly(a*b) = {d,a" 7, & b, a" b}
a. If n=3j and j is an odd number, then for any
a'b e V(I ) for k=1,2,..,n implies Lyg(a*b)U
{a*b} = L (a/**b) U{atFb} = Ly (a¥*b) U {a¥tFb}
and on another hand we know that @/™*b,a%*p ¢
Lg(a*b). According to Definition 2.2, the twin ver-

tex sets in S, a™b = {a™b,a™ b,

a"t b} for m=1,2,...,j.

b. If n+#3j, then for all two distinct vertices a*b and a'b,
where k,I=1,2,..,n and k#I, implies Ly(akb)U
{a*b,a'b} #Ly(a'b) U{a*b,a'b}.  According  to
Definition 2.2, the twin vertex sets in S,

are akb = {d*b} for k= 1,2,...,n.
ii. Letn > 6 is an even number and g = a¥ € K(D,,) for
j=12.., 5.

are

1. If [a*b,a') = g =a¥ for all k=1,2,...,n, then i =
jori=25+j.

2. If [@"b,a) =g ' =a"¥ for all k = 1,2,...,n, then
i=2—jori=n—j

3. If [a*b,a'b) = g =a¥ for k=1,2,..,n and k # 1,
thenl=n—j+korl=2%—j+k.

4. If [@*b,a'b) =g ' =a"¥ for k=1,2,...,n and k #
I then I =j+k or [=1+j+k.

Hence, for all akb € V(I§, ) for k= 1,2,...,n implies
Ly(a*b) = {d,a" 7, ai, a¥"i d*Kp, a" itk gi-itkp, gitithp}

a. If n=8j, then for all a*b € V(I'}, ) where k=

1,2,...n implies L(a*b) = Ly(a¥'*b) =
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Lo(a¥*b) = Ly(a%**b). According to Definition
2.2, the twin vertex sets in S, are

a'b ={a'b,a"™¥b,a"™b,a" b} for r = 1,2,...,2j.

b. If n+#8j, then for all a*b € V(F‘%M) where k =
1,2,...n implies Ly(a*b) = L,(a3**b). According
to Definition 2.2, the twin vertex sets in S,
are aib” = {alb,a* b} for ¢ =1,2,..., .
iii. Ifn=4jand g =a¥ € K(D,,) for j € N.
1. If [@bal=g=g'=a¥ for all k=1,2,...,n,
theni=jori=n—j.

2. If [db,dlb)=g=g'=a""¥ for k=1,2,..,n
and k# 1, thenl=n—j+korl=j+k
Therefore, for all a*b V(F‘Ig)n) where k = 1,2, ...,n implies
Ly(a*b) = {d/,a" 7, d"*b,a" T+ b} that Lg(a*b) =
Lg(a¥**b). According to Definition 2.2, the twin vertex sets

such

in S, are a’b = {a’"b,a” ™ ¥b} for r = 1,2,...,2j. [ ]

Referring to Lemma 3.1 and Lemma 3.2, the construction
of the twin g-noncommmuting graph of D,, for g € K* is
served in the following theorems.

g ‘ '
Theorem 3.1. Let I'},  be the twin g-noncommuting graph of
D,, for g € K*. Let n be an odd number and g= a¥
forji=12,.., ”T‘l

. : .. eg

i Ifn=3jandjis an odd number, then I';, is A1 of

order j + 2.
ii. Ifn#3j, then l';‘;z” is Ay_3 of order n + 2.

Proof. Let n is an odd number and g=a¥ € K(D,,)

forj=1,2,.., 551

i. Let n=3j and j is an odd number. According to
Lemma 3.1 and Lemma 3.2, the vertex set of 1;%2” is

V(f‘,g)ZW) = {E, a,ab,ab,.., %} Then, there are
three cases to investigate the adjacency of any vertices
on f‘ém,

a. Based on Lemma 2.1, ¢ is a dominant vertex
on f‘ém.

b. Since for all m = 1,2,...,j implies [a"b,d/] = a¥ =g,
then for all m = 1,2, ...,j, a™b is not adjacent to @ .

c. The adjacency of vertex in H= {% :
m=1,2..j}C V(I'} ). [a™ b,
amb] = a?mm) £ g = ¢ [a™b,a™b] =
am=m) oL g=% — o=l for my,my = 1,2,...,j and
my # m,, then every two distinct vertices in H are
adjacent. Consequently, the induced subgraph by H

Since

and

g
on FD2n is Q.
Based on three cases above and Definition 3.1, l"}g)u is
Aj_y of order j+2.

ii. Let n# 3j, According to Lemma 3.1 and Lemma 3.2,
the vertex set of I} —is V(I} )= {E, a,b,

ab, a*b,.., a" 'b}. Then, there are three cases to
investigate the adjacency of any vertices on f‘éw

a. Based on Lemma 2.1, ¢ is a dominant vertex
on fin.

b. Since for all k = 1,2,...,n implies [a*b,d/] = a¥ =g,
then for all k =1,2,...,n, akb is not adjacent to a.

c. The adjacency of wvertex in H= {% :
k=1,2,..,n}C V(l:‘fjh). According to Lemma 3.2,

akb is adjacent to any vertices in H, except @itk
and a" 7tk . Consequently, the induced subgraph
by H on f‘im is Q,_3.

Based on three cases above and Definition 3.1, f‘éz” is
A,_3 of order n—+ 2. [ |

Corollary 3.1. Let ff)h be the twin g-noncommuting graph
of D,, for g € K*.

i. If n=3j and j is an odd number, then the induced

subgraph by S = {W tm= 1,2,...,]} - V(fzj

D2<3j>) is
a complete subgraph of fgzm for an odd natural num-
ber j.

ii. If n is an odd non-prime number and g=a" €
K(D,,) for m € {1,2}, then the induced subgraph by

S= {%, a”"’"b, al+£mb,..., a”("?g)”’b} where =
1,2,...,n is a complete subgraph of qu:.
iti. If n>5 is a prime number and g = a¥ € K(D,,) for

j=12,..,%51%, then the induced subgraph by §=

{azf“*’b , a4j#lb, a6f“+’b - a<”1.))+’b} where I=

1,2,...,n is a complete subgraph of fgm.

Example 1. Some constructions of the twin g-noncommuting
graph of D;g for g € K* can be seen in Figure 1.

Theorem 3.2. Let fim be the twin g-noncommuting graph of
Dy, for g € K*.
i. Ifn=4jand g=a¥ € K(Dy,) for jEN,
Ayj> of order 2j 4 2.
ii. Ifn=6j and g=a% € K(Dy,) for j €N,
Asj_3 of order 3j + 2.
iii. If n=8j and g=a% € K(D,y,) for jEN,
Ajj_y of order 2j+ 2.
iv. Ifn=2pandg=a¥ € K(Dy,) for j €N, where p > 5

Y Le
5 then T s

then fém is
then f‘lg)m is

then f‘;n is

is a prime number and j=1,2,..,
Ay—3 of order p 4 2.



(a)

Figure 1. Graph (a) I, () I3, (O 0, (&) 5.

Proof.
i. Let n=4j and g = a¥ € K(D,,) for j € N. According to

Lemma 3.1 and Lemma 3.2, the vertex set of l:“f-,zﬂ is

V(f‘%m) = {é, @,ab,ab, ..., %}. Then, there are

three cases to investigate the adjacency of any vertices
g

onl’p

a. Based on Lemma 2.1, e is a dominant vertex
on f‘;m.

b. Since for all r=1,2,...,2j implies [a"b,d] = a¥ =
g then for all r=1,2,..,2j, a’b is not adjacent
to a.

c. The adjacency of  vertices in H=

{a’b ir= 1,2,...,2]} CV(I'p, ). According to
Lemma 3.2, for all k =1,2,...,n implies Ly(a*b) =
{d,a%, a* b, a*3b} and aktib = {akﬂ'b, ak+3jb}.
Therefore, a'b for r = 1,2,...,2j is adjacent to any
vertices in H, except a'*b. Consequently, the
. ag
induced subgraph by H on [y, is Q.
Based on three cases above and Definition 3.1, if n = 4j
and g=a¥ € K(D,,) for j€N, then f‘éz” is Ay, of
order j+2.

ii. Let n=6j and g =a% € K(D,,) for j € N. According
to Lemma 3.1 and Lemma 3.2, the vertex set of I ‘Ig)u is
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V(fim) = {é, @,ab,ab,.., ﬁ}. Then, there are

three cases to investigate the adjacency of any vertices

on £,

a. Based on Lemma 2.1, e is a dominant vertex
on 15,

b. Since for all k = 1,2,...,3j implies [a*b, a/] = a¥ = g,

then for all k = 1,2, ...,3j, a*b is not adjacent to a .

c. The adjacency of vertices in H = {% k=1,
2,..,3j}C V(f“lg)u). According to Lemma 3.2, for all
I=1,2,..,n implies Lg(alb) =A{d,a¥, a¥,a%, a b,

W = {a"b, a%"'},

ak+3jb) a2j+l) a4j+l} and

a5t = {a¥t'h, @%b}, Therefore, akb for k=
1,2,..,3j is adjacent to any vertices in H, except
@*kb and a%+kb. Consequently, the induced sub-
graph by H on T’ ‘Ig)m is Q3;_3.
Based on the above three cases and Definition 3.1, if n =
6j and g =a% € K(D,,) for j €N, then l:“i)m is Asj_3 of
order 3j + 2.

iii. Let n=8j and g = a¥ € K(D,,) for j € N. According
to Lemma 3.1 and Lemma 3.2, the vertex set of ff)n is
V(f‘%n) = {é, @,ab,ab,.., %}. Then, there are
three cases to investigate the adjacency of any vertices

g
on FDM,
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a. Based on Lemma 2.1, e is a dominant vertex

on 1%, .
b. Since forall r =1,2,.

then for all r = 1,2, ..
c. The

2j implies [a"b, @] = a¥ =
.»2j, a’b is not adjacent to a/ .
H =

adjacency of  vertices in

{E r= 1,2,...,2j} - V(f%ZH). According  to
Lemma 3.2, for all k=1,2,...,
{d,a¥,a%, a”l, kb, aitkp,

a¥tk, a5j+k} aj-;kb — { @, ¥ tkp, g5 tkp,

a’7*kp}. Therefore, a’b for r = 1,2, ..,

n implies Ly(a*b) =

and

2j is adjacent

to any vertices in H, except a’tb. Consequently,

the induced subgraph by H on I" %2

Based on three cases above and Definition 3.1, if n = 8j

and g=a¥ € K(D,,) for j€N, then f‘éh is Ay, of
order 2j + 2.

, is sz_z

iv. Let n=2p and g=a% € K(Dy,) for j€N, where
pol

p > 5 is prime number and j = 1,2,. ’T'

to Lemma 3.1 and Lemma 3.2, the vertex set of I %Zn is

According

V(f‘%h) = {é, @,ab,ab,.., %} Then, there are

three cases to investigate the adjacency of any vertices

on I,

a. Based on Lemma 2.1, e is a dominant vertex
on 15,

b. Since for all k = 1,2, ..., p implies [a*b, @] = a¥ = g,

then for all k = 1,2, ..., p, akb is not adjacent to @ .

c. The adjacency of vertices in H = {% k=1,
2,..,p}C V(l;'lg)m). According to Lemma 3.2, for all
1=1,2,...n implies Lg(alb) ={d,a"7,ab,
ap+j’ aj+lb, an—j+lb, ap—ij) aPJerb},

{anfij’ ap7j+lb}.

.»p is adjacent to any vertices in

atlh = {aj”b a1y}, and apitlh =
Therefore, b for k= 1,2,.
H, except &b and @b Consequently, the induced
subgraph by H on FDZ" is Q,_3.

Based on three cases above and Definition 3.1, if n = 2p and
g =a¥ € K(Dy,) for j €N, where p > 5 is a prime number
andj=1,2,..., pTl, then fiu is A,_3 of order p+2. [ |

Corollary 3.2. If n=mj and g = a¥ € K(D,,) where j € N

and m={4,6}, then the induced subgraph by
{a,"*lb, atHlp L, azj*H’b} where 1=1,2,.., 2 is a com-

.
plete subgraph of I’ Djz

g
Corollary 3.3. Let I',

_ be the twin g-noncommuting graph
of Dy, for g = K*. Then

L
i I'p for jeN
(4J>
2j . g%

ii. If n>5 is a prime number, then l:gz”%l"

forj=1,2,.., %=1

Dyam)

4. The clique number of the twin g-noncommuting
graph of the dihedral group

In this part, we discuss related to the clique number of the
twin g-noncommuting graph of dihedral group. Referring to
Definition 3.1 we have that graph A, = (Q,UK;) +Kj,
where K is a trivial graph. Hence, we get clique number of
Ay as follows.

Corollary 4.1. Let Qp be a
then w(Ax) = o(Qk) + 1.

Henceforth, we observe the clique number of the twin g-
noncommuting graph of dihedral group regarding to the

k-regular  graph,

previous section. Note that notation f‘lg)
noncommuting graph of D,, for g € K(Dy,)\{e} = K*. A

claims the twin g-
2n

vertex @/ € V(fém) is an end vertex, so it is not possible to
be a vertex candidate for clique on fém' Meanwhile a vertex
ee V(f‘é“) is a dominant vertex, so € is a vertex candidate

for clique on f‘;n. Based on these two conditions, the larg-

est clique’s proof in this section only observe to the adja-

cency of the twin vertex sets in S, = {a*b: k =1,2,...,n} in

Lemma 3.2.
Theorem 4.1. If n = 3j and g = a¥ € K(D,,) for j € N and

j is an odd number, then w(F o ) j+ 1L

Proof. According to Corollary 3.1, the induced subgraph by
S= {% tm= 1,2,...,j} - V<FD2(3>> is a complete sub-

graph. It means the spanning vertex set of a clique A on

leZ:m is V(A) =Su{e} where |V( )] =j+ 1. In another

hand, we know that ‘V ‘—]—1—2 and based on

Lemma 2.2, l"ij) is not a complete graph. Consequently, a

. .. g6
clique A is the largest clique on I ;)2(3)_) (see Figure 1c Fgm as

an evidence of this theorem for j=3). ]

Theorem 4.2. If n is an odd non-prime number and

g = a,a> € K(Dy,), then w(fih) =2t

Proof. Let n is an odd non-prime number.

i. Let g=a€K(Dy) and g !'=a""!eK(Dy).
According to Corollary 3.1, the spanning vertex set of a
clique A on fg is V(A)={e}UH where H=

o, a5, 7 b}

Consequently, | (A)| =

1=1,2,..,n
vertices on H

and
and
are sequential.



Hereafter, suppose there is another clique A where
V(A) C V(l;‘f)m) and V(A) > V(A). Without loss of gener-

V(A)=V(A)U {%} for me {I+23+

r:r=12,.., 21} then there are two cases for m,

ality, let

a. Ifme{l+%53+s:5=1,2,.., 5}, thenmeV(A)

is not ad]acent to a™ (_)b € V(A) since [a"b,a""7'b] =
a"~! = g~ which is a contradiction.

b. If m=I1+n—1, then amb € V(A) is not adjacent
to A" c V(A) [a"b, a+Tb) =
a”Tb] = a = g which is a contradiction.

since [a*"1b,

) ) g
Based on two cases above, A is not a clique of I'},

Hence, clique A is the largest «clique of l:‘;m,
g

thus o(I'p, ) = 2L

ii. Let g=a?>€K(Dy) and g '=a""?¢eK(Dy).

According to Corollary 3.1, the spanning vertex set of a
V(A) ={e} UH where H=

{%’ al+‘.2b, al;‘lb al+ b}
V(A )I=%

clique A on fg is

[1=1,2,..,n
vertices on H

and
Consequently, and
are sequential.

Hereafter, suppose there is another clique A where

V(A) C V(l'*f)z”) and V(A) > V(A). Without loss of gener-

VA = via) U i@}

ality, let for m e

{I+@r—1):r=12,..,%32}U{l+n—1}, then there

are two cases for m,

a. If me {l+(2r—1) r=1,2,.., "—’1}, then a™b €
V(A) is not adjacent to a™t'b e V(A) since

[a™b,a™ b = a"? = g~ which is a contradiction.
b. If m=1+n—1, then amb € V(A) is not adjacent to

alb € V(A) [a"b, a'b] = [a" b, alb] = a2 =
g~ ! which is a contradiction.

since

Based on two cases above, A is not a clique of l;f)z”
Hence, clique A is the largest clique of l:‘;m,

g
thus (I, ) =2, [ |
Theorem 4.3. If n > 5 is a prime number and g =a¥ €

K(Dy,) forj=1,2,.., "5%, (I, ) =2£L.

Proof. According to Corollary 3.1, the spanning vertex set of

a clique A on I, is V(A)={¢}UH where H=

{azf””b , a4f;’b, aéjn”b s a<"*1)f+lb} and [=1,2,..,n

_ ntl
Consequently,  |V(A)| =2H
are sequential.

and vertices on H
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Hereafter, suppose there is another clique A where
V(A) C V(fim) and V(A) > V(A). Without loss of gener-

ality, let V(A)=V(A)U {W} for me
{r+1:r=j}3j,5j,...,nj}, then there are two cases for m,
a. If me{r+l:r=4}3}5,..(n— ]}

V(A) is not adjacent to amib € V(A) since
[a™b,a™"b] = a"¥ = g~ which is a contradiction.

then a™b €

b. If m=mnj+1, then @b ¢ V(A) is not adjacent to

a0ty € V(A) [a"b, a"~Vitlp] =
a"=Vitlp] = g% = g~ which is a contradiction.

since [a*b,

Based on two cases above, A is not a clique of T ‘;2”
Hence, clique A is the largest clique of f‘éu, thus

g
w(FDZH) = nzj |

Example 2. All possibilities of the largest clique of twin g-
noncommuting graph of dihedral group for n=7 can be seen
in Figure 2.

Theorem 4.4. If n=4j and g=a¥ € K(Dy,) for jEN,
e )
then w(FDMJ_)) =j+1

" e 12
Proof. Let S = {a’b r= 1,2,...,2j} - V(FZ,:W)), then there

are two cases,
. . ead . .
i. Ifj=1, then I'y is A ie, a star graph. Thus, obviously

the clique number of ff is 2.
ii. If j>1, then according to Corollary 3.2, the spanning

vertex set of a clique A on rD() is V(A)={e}UH

where H= {a7+’b, af“”b,..., azf—”’b} and [=
2,...,2j. Consequently, |V(A)| =j+ 1 and vertices on
H are sequential.

Hereafter, suppose there is another clique A where

V(A) C V(] 4j)) and V(A) > V(A). Without loss of gen-
erality, let V(A)=V(A)U {%} for me
{r+1l:r=12,..,j—1}U{2j+1}. Then there are two
cases for m,

case . f me {r+1:r=12,..,j— 1}, then WEV(A)

is not adjacent to a"ib € V(A) since [a"b,d "] = a¥ =
¢! which is a contradiction.

case 2. If m =2j+1, then amb € V(A) is not adjacent to

atlb € V(A) since [a™b,dt'b] = [a¥ b, d/t'b] =
which is a contradiction.

-1

azj = g
Based on two cases above, A is not a chque of FD )’
o) thus
=j+1 |

Hence,

e
w(rDm]))

clique A is the largest clique of F
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ath

ath a’b

v g
Figure 2. All possibilities of the largest clique of FZM.

Corollary 4.2. If n=8j and g=a¥ € K(D,,) for j€N,
g
then w(FD: )=j+1.

(8)

Theorem 4.5. If n=6j and g=a¥ € K(Dy,) for jEN,
then w(fgi( )=j+1.

)
Proof. According to Corollary 3.2, then the spanning vertex set

of a clique A on quz;s is V(A)={e} UH where H=

5)

{af”b , atitlp azj—l“b} and 1=1,2,..,3j.
Consequently, |V(A)| =j + 1 and vertices on H are sequential.
Hereafter, suppose there is another clique A where

V(A) € V(i ) and V(A) > V(4). Without loss of gen-

V(A)=V(A)U {%} for me{r+1:
Then

erality, let

r=0,1,2,..j — 1}U{s+1:5=2j,2j+1,..,3j — 1}

there are two cases for m,

a. Ifme{r+1l:r=0,1,2,....j— 1}, then a"b € V(A) is
not adjacent to a™tib € V(A) since [a™/b,a™b] = a¥ =
g which is a contradiction.

b. If me{s+l:5=2j,2+1,..,3—1}, then ambc
V(A) is not adjacent to a™Jbe€ V(A) since
[a™7b,a™b] = a""¥ = g~! which is a contradiction.

a¥

Based on two cases above, A is not a clique of Ih
)

. o
Hencg, clique A 1is the largest clique of l"aDz(éj), thus

e .
w(FDz(ﬁj)) =j+1. |

Corollary 4.3. If n=3j and g=a¥ € K(Dy,) for j€N,
v g2l
then w(FaDi )=j+1.

(i)

5. Conclusion

In this research, we have built up the new concept of twin
g-noncommuting graph of a group. We also have con-
structed the twin g-noncommuting graph of the dihedral
group. Furthermore, we have determined the clique number
of the twin g-noncommuting graph of the dihedral group.
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