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Abstract
Content-based image retrieval is the process of retrieving a subset of images from an extensive image gallery based on visual 
contents, such as color, shape or spatial relations, and texture. In some applications, such as localization, image retrieval is 
employed as the initial step. In such cases, the accuracy of the top-retrieved images significantly affects the overall system 
accuracy. The current paper introduces a simple yet efficient image retrieval system with a fewer trainable parameters, which 
offers acceptable accuracy in top-retrieved images. The proposed method benefits from a dilated residual convolutional neural 
network with triplet loss. Experimental evaluations show that this model can extract richer information (i.e., high-resolution 
representations) by enlarging the receptive field, thus improving image retrieval accuracy without increasing the depth 
or complexity of the model. To enhance the extracted representations’ robustness, the current research obtains candidate 
regions of interest from each feature map and applies Generalized-Mean pooling to the regions. As the choice of triplets 
in a triplet-based network affects the model training, we employ a triplet online mining method. We test the performance 
of the proposed method under various configurations on two of the challenging image-retrieval datasets, namely Revisited 
Paris6k (RPar) and UKBench. The experimental results show an accuracy of 94.54 and 80.23 (mean precision at rank 10) 
in the RPar medium and hard modes and 3.86 (recall at rank 4) in the UKBench dataset, respectively.
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1 Introduction

An old research topic in computer vision is content-based 
image retrieval (CBIR), whose aim is to retrieve similar 
images in an extensive image gallery by analyzing their vis-
ual content (Fig. 1). The applications of CBIR include visual 
geo-localization [1, 2], medical image search [3], person 
re-identification (Re-ID) [4], 3D reconstruction [5], remote 
sensing [6], shopping recommendations in online markets 
[7], and many others.

The primary methods of image retrieval rely on powerful 
hand-crafted features, such as SIFT1, and encoding methods, 
such as BoW,2 VLAD,3 and Fisher Vector. Robust to scaling, 
translation, and rotation changes, SIFT and BoW can also 
represent images. VLAD has achieved significant results in 
capturing a compact image representation. Combining these 
methods with compression produces global descriptors that 
can be scaled to more extensive databases but at the expense 
of accuracy. These methods can also integrate with post-
processing strategies, such as query expansion. Since 2012, 
with deep learning, much research has focused on convolu-
tional neural network (CNN) models as image representation 
extractors for a content-based image search. Research has 
proved that superior semantic information is attained if CNN 
is utilized to extract image features [8]. The usage of deep 
learning also reduces the semantic gap, a challenging issue 
in CBIR. The origin of this gap is the difference between the 
interpretation of images by humans and computers. Humans 
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use high-level concepts to express visual content. In con-
trast, computers extract low-level features from image pixels. 
Deeper architectures assist in learning higher-level abstract 
features to reduce the semantic gap [9].

Several earlier methods apply CNN activation to image 
retrieval [8, 10, 11]. Some of these methods use fully con-
nected layer (FC) activation as a global image descriptor. 
However, research has shown that features built on fully con-
nected layers are less ideal for image representation [12]. 
Each neuron in the FC layer is related to all previous neu-
rons and has a global receptive field but is limited in terms 
of geometric invariance and spatial information [13]. The 
features of the convolutional layers (usually the last layer) 
preserve further structural details useful for applications, 
such as retrieval [14, 15].

The usage of the pooling layer after the convolutional 
layers improves the robustness of the convolutional features 
[16]. Sum/average pooling and max pooling are two standard 
methods applied to convolutional feature maps, hybrid pool-
ing and weighted average pooling are a few other suggested 
methods [17]. Tolias et al. [11] propose Regional Maximum 
Activations of Convolutions (R-MAC) that aggregates acti-
vation features of convolutions in different regions of the 
image using a multi-scale rigid grid with overlapping cells. 
The present work also utilizes a regional pooling mechanism 
and applies GeM pooling to the regions, such as the regional 
generalized-mean pooling proposed by Weiqing [18]. The 
GeM layer is a trainable pooling layer that generalizes max 
and average pooling to preserve the information of each 
channel. Usage of the GeM pooling layer has been shown to 
boost retrieval performance [19].

The current work considers image retrieval as a deep 
metric learning (DML) problem. The architecture of the 
proposed method is depicted in Fig. 2, which will be then 
explained in more details in Section 3. First, in DML, deep 
neural networks are utilized to embed images in an embed-
ded metric space. Then the similarity between images can 
be measured using simple criteria, such as the Euclidean 
distance or the cosine distance. Siamese [20] and triplet 

networks [21, 22] are typical architectures for metric 
learning. The most common loss function employed in 
DML is the triplet loss function that works with triplets 
(anchor, positive, negative) [20]. The selection of triplets 
is essential for efficient training [23]. Various applications 
have followed different triplet selection methods [20, 22, 
24, 25]. Many image retrieval tasks employ the offline 
method for choosing triplets, an inefficient process by 
which triplets are randomly selected from the entire train-
ing dataset after each training epoch [26]. In their online 
triplet mining technique, Schroff et al. pick valid triplets 
from each mini-batch in training, which results in easier 
convergence [20].

The online selection of triplets can face challenges when 
there are unrelated images and a few similar images of each 
class in the dataset. Besides these problems, the datasets used 
for localization also encounter the issue of changes in the 
appearance of images. Different seasons, altering weather 
conditions, the illumination at other times of the day, dynamic 
objects, such as pedestrians or cars passing by, and changes 
in viewpoints cause changes in image appearance. Image 
retrieval tasks that deal with images with such changes and 
challenges often use the offline method and randomly select 
triplets [18, 21, 27]. Several studies have also employed 3D 
image information as a triplet mining solution for valid triplet 
selection [19, 28]. The 3D reconstruction process is compu-
tationally expensive and requires much memory for the map. 
The current paper presents a deep triplet-based network with 
an online triplet mining module. The proposed method has 
yielded promising results on datasets that meet the challeng-
ing conditions mentioned above.

As known, one necessity for any image retrieval system 
is to display the features of the images distinctly. Conse-
quently, deep CNN must be designed to extract features from 
images that contain helpful and discriminative information. 
For this purpose, the current research uses the idea of dilated 
convolutional networks. As an image passes through the 
layers of the convolutional networks, its resolution gradu-
ally decreases so that the spatial structure of the scene is 
no longer recognizable by the small output feature map 
obtained at the end of the network. Furthermore, this reduces 
the accuracy problems where a detailed understanding of the 
scene is necessary (e.g., semantic segmentation) [29]. Dila-
tion can ease these problems and is an efficient technique 
for increasing the network receptive field without the loss of 
resolution. Researchers have studied dilated convolutional 
networks in different problems, such as semantic segmenta-
tion and image classification, and achieved excellent results 
[29–31].

The current research has shown that dilation can extract 
richer information to improve image retrieval accuracy 
without increasing the depth or complexity of the model. 
Thus, tasks that deal with complex and challenging images 

Figure 1  Illustration of the image retrieval system. It aims to retrieve 
all images that contain the same content as the query image from a 
sizeable unordered collection of images. The basic principles of 
CBIR are feature extraction and similarity measurement.
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and need an accurate understanding of the scene may use 
dilated networks.

One feature of the work performed is the model’s sim-
plicity and fluent training without added complexity and 
calculations. CNN-based image retrieval methods vary 
in complexity, growth capacity, and execution time. As 
known, in many applications, such as some methods intro-
duced for position estimation and navigation and land-
mark recognition, retrieving similar images is an initial 
step followed by other subsequent processing steps [32, 
33]. Moreover, the accuracy of the top retrieved images 
is critical. Therefore, designing a simple model that can 
accurately retrieve similar images without creating more 
complexity is necessary.

The main contributions of this paper are summarized as 
follows:

• In image retrieval, the accuracy of the top-retrieved 
images is usually important because it is visually checked 
by a user (recommendation systems). Most times, such as 
localization, image retrieval is an initial step followed by 
subsequent processing steps. Therefore, the top retrieved 
images must be correct. The primary emphasis in this 
work is to offer a simple model with low training param-

eters and no added complexity that can provide accept-
able accuracy in top-retrieved images.

• The present study uses a deep residual CNN with dilated 
convolution layers to capture high-level features with 
larger receptive fields and to produce high-resolution 
density maps without expanding network depth or com-
plexity. The present study results indicate that residual 
dilated networks can be helpful for image analysis and 
retrieval tasks since the output from dilated convolution 
includes information with more details. This is especially 
advantageous when there are complex natural images, 
and an accurate understanding of the scene is essential.

• This paper presents a deep triplet-based network with an 
online triplet mining module. The online nature of the 
proposed method is more efficient because it provides 
more triplets for one mini-batch and does not require 
offline extraction calculations. The proposed approach 
has yielded promising results on datasets that meet the 
challenging conditions such as changes in appearance, 
viewpoints, the incomplete view of the object, the lack 
of sufficiently similar images, and unrelated images. 
Image retrieval tasks that deal with images with such 
changes and challenges often use the offline method and 
randomly select triplets or employ 3D image information 

Figure  2  The proposed architecture. A mini-batch of images is 
entered into the feature extractor in the training phase. We identify 
the valid triplets using the proposed triplet online mining module, and 
the triplet loss function calculates the corresponding error. In the test 
phase, after the extraction of query image features, similar images 
from the database are found by using the similarity criterion, and the 

results are ranked. The proposed feature extractor is based on the idea 
of dilated residual convolutional layers. The obtained feature maps 
and their regions of interest using the region proposal network (RPN) 
are passed through the Pooling and FC layers. After normalization, 
the features vectors are added together element-wise and normalized 
to get the image representation.
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for valid triplet selection that is computationally expen-
sive and requires much memory for the map.

The remaining parts of the present paper are as follows. 
Section 2 presents related works. Section 3 details the net-
work’s architecture, including dilated residual networks, 
Generalized-Mean (GeM) pooling, triplet loss function, the 
selection of training image pairs and the similarity meas-
ure. Section 4 presents the database images used, the per-
formance evaluation measures are discussed, and covers the 
experiments and results. Finally, Section 5 concludes.

2  Related Work

Recent developments have shown that CNNs are the right 
choice for obtaining image search representations [8, 34]. 
The resulting representations are compact, efficient for 
searching, and highly differentiated. Some image retrieval 
methods use the output of the last fully connected layer as 
global image descriptors. Recently, research has focused 
on features extracted from CNN’s deep convolution layers. 
The training of CNNs is possible from scratch or by fine-
tuning. In fine-tuning, a pre-trained network, which is not 
necessarily optimal for a study’s work, can be retrained for 
an intended task, thus resulting in significant improvement 
in adaptability. Babenko improves the pre-trained models on 
ImageNet by fine-tuning them on a Landmark dataset [35]. 
Other studies follow this concept by fine-tuning the pre-
trained models for image retrieval or employing ranking loss, 
thus resulting in significant improvements [1, 19, 28]. Gordo 
et al. propose a triplet network with a ranking loss to produce 
discriminative feature representation [21]. Razavian utilizes 
the activations of convolutional layers followed by a global-
pooling aggregation [15]. Feature aggregation, a feature 
enhancement method, improves the discriminative ability 
and robustness of in-depth features. Babenko et al. suggest 
SPoC, in which a sum-pooling mechanism obtains compact 
global descriptors for image retrieval [10]. Kalantidis et al. 
extend SPoC by allowing cross-dimensional weighting and 
the aggregation of neural codes [17]. Tolias et al. Propose 
R-MAC, which aggregates the activation features of 
convolutions in several image regions into a compact feature 
vector of fixed length [11]. Radenović et al. [19] propose 
a novel trainable Generalized-Mean (GeM) pooling layer 
that generalizes max and average pooling to preserve the 
information of each channel.

Research has indicated that usage of the GeM pooling 
layer boosts retrieval performance [19]. Consequently, the 
present research has included this pooling layer in its net-
work architecture. Similar to [18], the current study has 
obtained candidate regions of interest from each image 
and applied GeM pooling to the areas. By localizing the 

candidates of regions in images, the Region Proposal Net-
work (RPN) enables deep models to learn regional features 
for particular objects [21, 36]. Similar to [27], the present 
research implements RPN with a fully convolutional net-
work constructed on top of the convolutional layers and 
trains it with bounding boxes estimated for the Landmark 
images [36]. This model provides the proposed regions at 
the cost of almost zero.

Triplet Networks and Metric Learning The present study 
considers image retrieval as a metric learning problem. 
The two-branch Siamese [20, 37] and triplet networks [21, 
22] are typical architectures for metric learning which use 
matching and non-matching pairs of images to carry out the 
training. In these networks, matching pairs are similar and 
adjacent images that belong to the same class, and it is easy 
to consider two dissimilar images, taken far from each other 
and rarely belonging to the same class, as non-matching 
pairs. Many computer vision tasks successfully use triplet 
loss, such as image classification [24], face recognition [20], 
and metric learning [38] whose usage of triplet loss is wide-
spread. The performance of triplet loss is much affected by 
how triplets are selected [23]. It can be said that, if triplets 
are randomly chosen, convergence becomes difficult or, if 
the hardest triplets are selected, this often leads to a bad 
local optimum [39–41].

Different applications have used various triplet selection 
methods [20, 22, 24, 25]. Many image retrieval tasks 
randomly select triplets from the entire training dataset 
after each training epoch [18, 26, 27, 38]; known as the 
offline method, this approach is inefficient. In contrast, 
triplets can be extracted from each mini-batch during 
the training process, a technique known as online triplet 
mining suggested in [20]. Online techniques render the 
training process easier to converge. The research [25] 
selects triplets (anchor, positive, negative) using the 
top k triplets in each mini-batch based on the margin, 
distance(anchor, positive) − distance(anchor, negative)  , 
where distance is the squared Euclidean distance. Hoffer 
and Ailon [22] chooses only hard triplets, i.e., distance
(anchor, negative) < distance(anchor, positive) , while [20] 
picks semi-hard triplets, i.e., distance(anchor, positive)+
𝛼 < distance(anchor, negative) , where � is a positive scalar. 
The Simo-Serra work employs hard positive examples, 
in which samples are extracted with the help of three-
dimensional reconstruction [42]. Hard positive pairs must 
be chosen with great care to avoid overfitting [40, 43].

The challenges of choosing triplets online can be images 
with changes in appearance, unrelated images, images with 
a low and incomplete view of the object or landmark, and 
a lack of sufficiently similar images from each class. Most 
image retrieval tasks that work on such images, e.g., land-
mark images, use the offline method [18, 21, 27]. Several 
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studies have also employed 3D image information as a triplet 
mining solution for selecting valid triplets [19, 28]. Never-
theless, the 3D reconstruction process is computationally 
expensive, and its need for much memory for the map often 
prevents this process from being implemented on resource-
constrained platforms, such as aerial robots. Therefore, it is 
essential to adopt a simple triplet selection method to extract 
meaningful and discriminative triplets from mini-batches 
online and achieve promising results on datasets despite the 
challenges mentioned above.

Dilated Convolution Layers Dilated convolution layers were 
first introduced in 2016 [29]. Because of performing a sparse 
sampling of input feature maps to increase the spatial scale 
of output feature maps, they differ from regular convolution 
filters. Dilated convolutional layers have been applied to 
segmentation tasks and have achieved significant improve-
ments in accuracy without introducing additional param-
eters or computational costs [29]. The [29] study shows that 
dilated convolution is advantageous for dense prediction. 
Their model uses the general multi-scale context information 
of the dilated convolution system without losing its resolu-
tion. The usage of dilated convolution obtains more perti-
nent information with enlarging the receptive field. Chen 
proposes the DeepLab system that controls the resolution of 
feature maps computed within CNNs by dilated convolution 
[30]. This system has made significant progress in image 
recognition. The [31] research shows that dilated residual 
networks (DRN) improve image classification performance. 
In particular, without increasing the depth or complexity of 
the model, DRNs are more accurate in ImageNet classifica-
tion than their non-dilated counterparts [31]. DRN has the 
same number of parameters and layers as the original Resid-
ual Network (ResNet). The results of the present study indi-
cate that residual dilated networks can be helpful for image 
analysis and retrieval tasks since the output from dilated 
convolution includes information with more details. This 
is especially advantageous when there are complex natural 
images and accurate understanding of the scene is essential.

3  Network Architecture and Image 
Representation

The purpose of the CBIR is to retrieve images from the data-
set that contains the most visual content that is similar to 
the query image. The basic principles of CBIR are feature 
representation and similarity measurement. Therefore, the 
performance of the CBIR method strongly depends on how 
the features of the image are represented. The fundamental 
idea of the proposed model is to design a deep CNN for 
extracting high-level features with larger receptive fields 
and generating high-quality density maps without expanding 

network complexity (Fig. 2). Research has shown that resid-
ual networks reduce the semantic gap, especially when the 
network is trained with the ranking loss ResNets can learn 
a more invariant representation of the regions and mitigate 
the background effect [27]. The current study does not uti-
lize the original ResNet. Instead, a dilated residual network 
(DRN) has been employed that significantly expands the 
network’s vision and can also combine further contextual 
information with a lower computational cost. Section 3.1 
describes the DRN.

The proposed model discards fully connected layers of 
DRN and uses a Region of Interest (ROI) pooling layer that 
follows the last convolutional layer and performs GeM pool-
ing on the regions. Section 3.2 introduces the GeM layer. The 
usage of the pooling layer after the final convolutional layer 
improves robustness. The present work utilizes the Region 
Proposal Network (RPN) to localize candidate regions and 
center suggested regions on the objects of interest. After the 
pooling, a fully connected (FC) layer with learnable weights 
is placed. After crossing the FC layer, the pooled features 
of regions are independently L2-normalized (L2N). They 
are then sum-aggregated and L2-normalized once again and 
produce a compact vector. The sum-aggregation of different 
regions and the L2-normalization are differentiable.

The present research employs the idea of triplet net-
works that receive triplets of inputs and combine three input 
streams with a triplet loss. Research has shown that triplet 
loss is more effective for ranking problems. Section 3.3 
introduces this loss function, while Section 3.4 provides 
additional details on how to choose triplets and the similar-
ity measure is discussed in Section 3.5. Most works based 
on triplet networks comprise three separate streams, each 
of which is a copy of the feature extractor, with parame-
ters and weights shared among them. Utilizing three cop-
ies of the model with shared parameters is a satisfactory 
optimization approach. However, it is inefficient because 
of computing and memory constraints [41] due to training 
with large images and three streams simultaneously. With 
a more extensive network, such as ResNet101, there is not 
enough memory to process even one triplet, since the con-
dition becomes even more complex [27]. The current paper 
only uses only one stream and selects triplets online from 
within the mini-batches. This allows for training the model 
by using deep architectures and without reducing the size of 
the training images.

3.1  Dilated Residual Networks

Convolution networks gradually reduce image resolu-
tion and acquire compact feature maps in which the spa-
tial structure of the scene is less recognizable. This can 
limit image classification accuracy and make it difficult 
to transfer the model to other applications that require 
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accurate scene perception [29, 31]. Based on stationary 
wavelet transform idea, the dilation mechanism solves 
these problems. It is an effective technique for expanding 
the network receptive field without a loss of resolution or 
coverage. Dilated convolutions increase the spatial scale of 
output feature maps via the holes in their receptive fields 
[29] (Fig. 3). Equations 1 and 2 are a standard and dilated 
convolution, respectively. The expression, s + dt = p , sig-
nifies that some points during convolution will be skipped. 
In these equations, F is the filter associated with layer G 
and the domain of p is the feature map in G.

In 2017, Yu et al. proposed dilated residual networks 
(DRN) that improve not only semantic segmentation but 
also image classification without increasing depth or com-
plexity [31]. Recently, residual networks (ResNets) in vari-
ous computer vision tasks have achieved success, proving 
that ResNet has a better image representation capacity than 
other deep architectures. ResNets can extract conceptual 
features and more details to display image features. DRN’s 
result from applied dilated convolutions in the residual 
blocks and have both the properties of the residual network 
and the advantages of the dilation mechanism. The number 
of layers and parameters of DRN is the same as the origi-
nal ResNet. The fundamental difference is that the original 
ResNet samples the input image with a factor of 32 and the 
DRN with a factor of 8. In the original ResNet, the final 
two groups of convolutional layers use a 3 ∗ 3 standard con-
volution (dilation=1) and the output feature map is the size 
of 7 ∗ 7. In DRN, Group4 uses a dilation of 2 while Group5 

(1)(G ∗ F)(p) =
∑

s+ t= p

G(s)F(t)

(2)(G ∗ F)(p) =
∑

s+ dt= p

G(s)F(t)

continues with dilation of 2 for the first convolution and 4 
for the remaining convolution.

The output of Group5 in DRN is 28∗28, which is much 
larger than that of the original ResNet (Fig. 4). Table 1 
presents different models of DRN and the number of their 
parameters. The present research uses DRN-A-50 in its 
experiments. Despite having the same depth and capacity, 
each DRN-A outperforms its respective ResNet model. 
The results show that DRN networks can be used in image 
analysis tasks that involve complex natural images, espe-
cially when it is necessary to understand scenes accu-
rately [31].

a) b)

Figure  3  Dilated convolution supports larger receptive fields com-
pared to standard convolution. The filter size in (b) is only 3*3, but 
the receptive field of (b) is the same as (a).

Figure  4  Convert ResNet to DRN. In the original ResNet, the final 
two groups of convolutional layers use a 3*3 standard convolution 
(dilation=1), and the output feature map is size 7*7. In DRN, Group4 
uses a dilation of 2, while Group5 uses a dilation of 2 for the first 
convolution and 4 for the remaining convolution. The output of 
Group5 in DRN is 28×28, which is much larger than that of the origi-
nal ResNet (Fig. from [31]).

Table 1  Different models 
of DRN and ResNet and the 
number of their parameters.

Model Parameters

ResNet-18 11.7 M
DRN-A-18 11.7 M
DRN-B-26 21.1 M
DRN-C-26 21.1 M
ResNet-34 21.8 M
DRN-A-34 21.8 M
DRN-C-42 31.2 M
ResNet-50 25.6 M
DRN-A-50 25.6 M
ResNet-101 44.5 M
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3.2  Generalized‑Mean Pooling Layer (GeM)

Image retrieval methods often use average and max pool-
ing as the primary aggregation mechanism. However, these 
pooling layers pose drawbacks. Max-pooling only computes 
the maximum value of each feature map, so it may lose 
information on other activations. Sum-pooling or average 
pooling averages all activations of each feature map, which 
will also undermine the discrimination of the final repre-
sentation [16, 44]. Radenovic et al. suggest the generalized 
mean (GeM), a novel trainable pooling that generalizes max 
and average pooling [19]. GeM has had a significant perfor-
mance compared to non-trainable standard pooling layers. 
The corresponding GeM descriptor is given by:

In Eq. 3, max-pooling and sum-pooling are the specific 
cases of GeM pooling. When p ⟶ +∞ , GeM pooling turns 
into max-pooling and, if p equals 1, GeM pooling turns into 
average-pooling. Let X is a 3D tensor of W × H × M dimen-
sions, where M is the number of feature maps in the last 
layer. In this equation, Pm is a particular pooling parameter 
for each feature map, Xm , or a common parameter, p, can be 
used for all feature maps. Finally, the feature vector com-
prises a single value per feature map. The dimension of this 
vector is equal to M which is 256, 512, or 2048, on many 
popular networks, making it a compressed image representa-
tion. With the usage of ResNet-101, M is 2048, and so each 
descriptor is a 2048-D vector. The current paper employs 
GeM pooling in a regional pooling mechanism, such as the 
regional generalized-mean pooling used in [18].

3.3  Triplet Loss Function

The triplet loss is the most common loss function used in 
ranking problems. This function works with the triplets of 

(3)

f (GeM) =

[
f
(GeM)

1

f
(GeM)

2

f (GeM)

m
… f

(GeM)

M

]T

f (GeM)

m
=

(
1

|Xm|
∑

x�Xm

xPm

) 1

Pm

samples: anchor, positive (similar to the anchor sample), 
and negative (not similar to the anchor sample). This loss 
function minimizes the distance from the anchor to the posi-
tive image and maximizes it from the anchor to the negative 
image (Fig. 5). The distance between the representations 
of samples can be calculated (for example, the Euclidean 
distance) and the model can be optimized with this loss 
function. Thus, this model learns similar representations 
for samples defined as similar and distant representations 
for those not defined as similar. The triplet loss function is::

where margin is the max-margin and distance is the squared 
Euclidean distance (the negative dot product may also be 
used instead), and a, p, and n are representations of the 
anchor, positive, and negative image, respectively. Triplet 
loss optimizes the model so that the distance from the rep-
resentations of an anchor to a negative image is over one 
margin relative to the desired distance to a positive image. 
This loss has achieved significant success in instance-wise 
recognition tasks [45, 46].

3.4  Selection of Training Image Pairs

As typical architectures for metric learning, triplet networks 
require the input of ’triplets’ (anchor, positive, negative) for 
training with triplet loss. Choosing triplets is essential for 
efficient training. The usual way to generate triplets is to 
find them at the beginning of each epoch. This approach 
known as the offline method. This method calculates all the 
representations of the training set and then selects only the 
hard or semi-hard triplets. Based on its results, the offline 
method has not been effective, because producing triplets 
requires conducting a complete review of the training set. 
This method also entails regular updating of the extracted 
triplets offline. The method of the online mining of triplets 
proposed in [20] calculates the embedding of images in 
mini-batches (size B), from which a maximum of B3 triplets 
can be extracted, although not all of these triplets are valid. 
The online method is more efficient because it provides 
more triplets for one mini-batch and does not require offline 
extraction calculations.

Most image retrieval tasks that work on datasets con-
taining natural images, such as landmarks, use the offline 
method. These datasets present a large intra-class variability, 
with various views and a non-negligible number of unre-
lated images. Some works use a 3D reconstruction process 
to find appropriate triplets which are complex computational 
activities.

The current research employs an online triplet extraction 
method that yields promising results on datasets with these 

(4)
tripletloss(a, p, n) = max(distance(a, p) − distance(a, n) + margin, 0)

Figure 5  Illustration of the triplet loss. The triplet loss function mini-
mizes the anchor distance to the positive image and maximizes the 
anchor distance to the negative image.
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challenges. After the representation of the mini-batch images 
are obtained, the distance matrix of the image pairs is con-
structed based on the Euclidean distance. Then, 2D masks 
detect the valid pairs, namely (anchor, positive) and (anchor, 
negative). An (anchor, positive) pair is valid if the pair is 
separate and has the same label, while an (anchor, negative) 
pair is valid if the pair is separate and does not have the same 
label. For fast convergence of triplet-based networks, only 
beneficial triplets must be constructed, i.e., triplets with a 
positive loss. Depending on the distance between the triplet 
samples, there can be three triplets in the loss calculation: 
easy, hard, and semi-hard. Each of these definitions depends 
on the location of the negative sample relative to the anchor 
and positive sample. As a result, these three categories can 
be extended to easy negative, hard negative, and semi-hard 
negative.

Compared with the offline triplet-selection strategy, the 
online triplet mining method increases the potency of train-
ing by exploiting all the valid triplets online within a train-
ing mini-batch. Because the hard samples of each training 
batch are fully used to compute loss, the training process is 
easier to converge [26]. For the negatives, the present study 
chooses the hardest or the images that most closely resemble 
the anchor but belong to a class other than the anchor class. 
Many works have discussed the benefit of hard negative 
mining in creating triplets that deliver appropriate gradients 
and help triplet networks converge quickly [20, 43]. Never-
theless, this is not the case with hard positive examples. The 
[43] study empirically shows that hard positive mining is 
not commonly appropriate for all datasets. The considerable 
intra-class variations require accurate sampling of positive 
pairs. If the model is forced to learn hard positive, this may 
lead to overfitting [43]. In practice, the current work has 
also found that utilizing all the positive images speeds up the 
convergence. For this reason, instead of picking the hardest 
positive, the present research uses all (anchor, positive) pairs 
in a mini-batch while still selecting the hard negatives.

3.5  Similarity Measure

Different distance measures can be applied to feature vectors 
to compute the similarity among the query and images in 
the archive, e.g., the cosine distance or Euclidean distance 
[47]. In the present work, these two criteria were tested and 
the results were better with the cosine similarity criterion. 
The results in the present work are obtained with the cosine 
metric which is:

In Eq. 5, A and B are two n-dimensional vectors repre-
senting two images in the data space.

(5)

cosine_distance(A,B) = 1 − cosine_similarity(A,B) = 1 −
(A.B)

‖A‖.‖B‖

4  Experimental Evaluation

4.1  Dataset

The current study performs experiments on two stand-
ard datasets, namely the Revisited Paris (RPar) [48] and 
UKBench (UKB) [49] datasets. Recently, the original Paris 
dataset has been revisited to correct annotation mistakes, add 
new query images, and introduce new evaluation protocols 
[48]. The created dataset is referred to as RPar. This dataset 
is one of the biggest and most popular datasets featuring a 
great deal of in-class diversity, much noise, and unrelated 
images that complicate image retrieval tasks. The RPar data-
set contains 6,412 images collected from Flickr4 by a search 
for 11 specific landmarks in Paris. It has 70 challenging 
queries and three new evaluation protocols of varying dif-
ficulty (easy, medium, and hard). The present paper reports 
the results of the medium and hard setups. The UKB dataset 
comprises 10,200 images from 2,550 different groups. Each 
group has four images of a unique scene or object from vari-
ous viewpoints, under several lighting conditions, and with 
different scaling. The images are from diverse categories, 
such as animals, plants, and household objects.

4.2  Setting

For the RPar dataset, all the images for each query image 
are ranked according to the cosine distance. Then, the cur-
rent study selects the top K images from the ranked list as 
results, and reports the mean precision at K (mP@K) (K is 
usually 1, 5, 10) over the 70 queries [47]. In image retrieval, 
usually the accuracy of the top-retrieved images is impor-
tant because it is visually checked by a user (recommenda-
tion systems) and most times, such as in localization, image 
retrieval is an initial step followed by subsequent process-
ing steps [32, 33]. Therefore, it is important that the top 
retrieved images are correct. For UKB, the current research 
follows the standard evaluation protocol. For each group, 
one image is selected as the query and the goal is to retrieve 
the four nearest images to the query from the entire collec-
tion. Then, the recall is computed at four (recall@4) which 
is a number between 0 and 4.

4.3  Evaluation Result and Discussion

In its experiments, the present study implements the net-
works based on the PyTorch framework [50]. First, we 
employ the Region Proposal Network (RPN) to local-
ize regions of interest in images to produce candidate 
regions. The present research implements RPN with a fully 

4 https:// www. flickr. com/

https://www.flickr.com/
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convolutional network constructed on top of the convolu-
tional layers and trains it with bounding boxes estimated 
for the Landmark images [27]. For the convolutional part of 
our network, we consider a pre-trained DRN-A-50 without 
fully connected layers. Then, we aggregate features from 
different regions to produce a global image representation. 
The proposed model uses a Region of Interest (ROI) pooling 
layer that follows the last convolutional layer and performs 
GeM pooling on the regions. After the pooling, a fully con-
nected (FC) layer with learnable weights is placed. After 
crossing the FC layer, the pooled region features are inde-
pendently l2-normalized. They are then sum-aggregated and 
L2-normalized once again and produce a compact vector.

For training, we employ the idea of triplet networks 
with a triplet loss. After the embedding of the mini-batch 
images is obtained, the distance matrix of the image pairs 
is constructed based on the Euclidean distance. Then, 2D 

masks detect the valid pairs, each image in the mini-batch 
is considered as an anchor and for which, among others in 
the mini-batch, the hardest negative and all available posi-
tives are calculated. Thus, triplets are formed by combin-
ing the hardest negative image with all positive image pairs 
in a mini-batch. To train the network, a stochastic gradient 
descent (SGD) optimizer is used with a momentum of 0.9, a 
learning rate of 1e − 4 , a weight decay of 5e − 5 , and a batch 
size of 55. The margin of the triplet loss of 0.7 is empiri-
cally set. The training is performed for 20 epochs and all 
training images are resized to a maximum dimensionality of 
240∗240. During the training, the current research performs 
experiments on the central 228∗228 crop of images. At test 
time, five crops with a 228∗228 dimensionality are selected 
from each image, the center crop, and four corner crops. To 
extract their features, the crops are given to the model, and 
the average of the corresponding outputs is considered as the 
image representation. A dot-product is used to calculate the 
similarity between the query and images from the dataset 
and the results are ranked.

The present work initializes the parameters of the net-
works by the corresponding network weights pre-trained on 
ImageNet. As usual, in the RPar dataset, only the query area 
of interest is used and, for the UKB dataset, the whole query 
image is employed. Figures 6 and 7 provide examples from 
retrieval images.

Comparison with State‑of‑the‑art For the RPar dataset, the 
performance is measured using mP@K (K is 1, 5, and 10) 
over the 70 queries presented in Table 2. In Tables 3 and 4, 
the current paper thoroughly compares the proposed frame-
work with state-of-the-art methods in the image retrieval 
task. Performance is measured using mean precision at rank 
10 (mP@10) in the Medium and Hard protocols for RPar, 
and (recall@4) for UKB. From the results reported, the fol-
lowing observations are noted:

In Table 4, a comparison of the RPar results with other 
methods shows that the proposed method works better than 
the method presented in [19], based on the Alexnet archi-
tecture, and in [28], both in the Medium and Hard protocols. 

Figure 6  Retrieval examples of UKBench (top-four matches). In each 
row, the first image from the left is used as query (The green and red 
boxes indicate the correct and incorrect retrieved image, respectively).

Figure 7  Retrieval examples of 
RPar (top-ten matches). In each 
row, the first image from the left 
is used as query(The green and 
red boxes indicate the correct 
and incorrect retrieved image, 
respectively).
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Compared to the ResNet-based method presented in [19] and 
that introduced in [27], with a slight difference, the present 
study’s method shows an acceptable performance.

The primary emphasis in the current article is to offer a 
simple model with low training parameters and no added 
complexity that can provide acceptable accuracy in top-
retrieved images. To prove the simplicity of the proposed 
model, the accuracy density criterion is employed to calcu-
late the simplicity [53, 54]. Table 5 presents the results. The 
accuracy density criterion is obtained by dividing the model 
accuracy by the number of network parameters used. The 
higher the number obtained, the more desirable it is, and so 
the network achieves higher accuracy with fewer parameters 
[54]. Although the proposed method has a slightly lower 
accuracy than the other two, the results show it is more 
straightforward and much less complex.

The results obtained on the UKB in Table 3 indicate that 
the proposed method outperforms the others mentioned in 
the table in retrieving four similar images related to each 
query image. In the absence of sufficiently similar images 
from each class, this database can be a good benchmark for 
measuring the proposed architectural strength. It should be 

noted that the proposed method has achieved satisfactory 
accuracy, despite its simplicity and the usage of the online 
selection of triples in the triplet network.

Comparison of Different Scenarios of Triplet Sampling 
Methods For triplet networks to converge faster, they must 
produce only useful triplets, that is, triplets with a positive 
loss. Various works have utilized different triplet exploration 
methods. The usage of the hardest negative image is familiar 
and improves performance, but choosing the hardest posi-
tive image does not work well for many datasets and leads 
to overfitting. To construct triplets, the current work obtains 
the representation of a mini-batch of images that has entered, 
each image of which is then considered as an anchor and for 
which, among others in the mini-batch, the hardest negative 
and all available positives are calculated. Thus triplets are 
formed by combining the hardest negative image with all 
positive image pairs in a mini-batch. To compare the results 
of its experiments, the current research also considers sev-
eral proposed methods, such as the easiest positive, the easi-
est negative, the hardest positive, etc. The comparison shows 
that a continuous rise in performance is achieved by the use 
of increasingly diverse positive samples, which produce a 
greater diversity of viewpoints, and negative samples, with 
content closer to the anchor (Table 6).

Details of Time Cost The effectiveness of a CBIR system 
depends on the accuracy and the retrieval time in which it 
can produce the results. Retrieval time is a crucial attrib-
ute of CBIR techniques, especially in evaluating real-time 
applications. We can discuss it in terms of feature extraction 
time and total search time. In this work, with the effective 
image representation, we establish a search method for the 
CBIR system that explores the feature vectors via a similar-
ity measure. The proposed CBIR is based on dilated residual 

Table 2  Results of proposed method on RPar. Using mean precision 
at rank 10 (mP@10).

medium hard

mp@1 mp@5 mp@10 mp@1 mp@5 mp@10

100 96.114 94.54 95.714 85.12 80.23

Table 3  Results on UKB. Using 
recall at rank 4 (recall@4).

Method recal@4

SPoC [10] 3.65
Neural Codes [35] 3.55
Gordo et al. [27] 3.84
Multi-layer CNN [51] 3.68
[52] 3.85
R-mac [11] 3.74
Proposed Method 3.86

Table 4  Comparison results of state-of-the-art methods on RPar. 
Using mean precision at rank 10 (mP@10) in the Medium and Hard 
protocols.

method medium hard

AlexNet-GeM [19] 91.6 67.6
ResNet101-GeM [19] 98.1 89.1
ResNet101-R-MAC [27] 96.9 86.1
AlexNet-MAC [28] 92.9 69.3
Proposed Method 94.54 80.23

Table 5  Comparison of Accuracy density criterion of methods on 
RPar dataset.

method medium hard

ResNet101-GeM [19] 2.308e−6 2.096e−6
ResNet101-R-MAC [27] 2.075e−6 1.843e−6
Proposed Method 3.412e−6 2.895e−6

Table 6  Comparison of accuracy (mp@10) gained on PRar with dif-
ferent scenarios of triplet sampling methods.

medium hard

Easiest-negative Mean-positive 92.63 78.84
Hardest-negative Hardest-positive 90.34 77.41
Hardest-negative Easiest-positive 91.68 78.21
Hardest-negative Mean-positive 94.54 80.23
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networks that represented images with better efficiency 
because despite having the same depth and capacity, each 
DRN outperforms its respective ResNet model. The details 
of the time cost (feature extraction time and search time) of 
the proposed method on a single GPU (GeForce RTX 3090) 
are presented in Table 7.

The main limitation of some image retrieval methods is that 
offline learning and training are extremely time-consuming. 
The Landmarks dataset presents a non-negligible amount of 
unrelated images. Some works preprocess the Landmarks 
dataset and clean the dataset to get the characteristics that 
need for training their models [21, 27]. This heavy cleaning 
procedure is performed at training time and is considered a 
major limitation of these algorithms. In [19, 28] is used a 
3D reconstruction process to find appropriate triplets which 
takes higher training time and sometimes it goes memory is 
insufficient because of the complex computational activities. 
Especially for large datasets, the cost of construction of a 3d 
map and computational cost is large.

So the focus of the current work would be is to offer a 
simple and efficient model that despite having a low query 
time, reduce the computational and training time, and no 
need for the offline learning stage. Since the proposed tri-
plet-loss dilated residual network selects the triplets online 
during the training, it does not require any offline preproc-
essing and computational steps, and as a result, it has so 
faster training than other methods.

5  Conclusion and Future Work

The current paper introduced a simple yet efficient method 
with no added complexity to achieve acceptable accuracy in 
top-retrieved image tasks. Because the performance of any 
content-based image retrieval (CBIR) method depends on 
the representation of the image feature descriptor, the pre-
sent study uses a deep dilated residual convolutional neural 
network to capture high-level features with larger receptive 
fields and produce high-resolution density maps without 
expanding network complexity. The current research employs 
the triplet loss function to generate more discriminative rep-
resentations. To select a set of informative and representative 
triplets from the training images, an online triplet mining 
module is used that extracts valid triplets from within each 

mini-batch. The proposed model obtains promising results in 
its evaluation of datasets that pose the challenges of changes 
in appearance, viewpoints, the incomplete view of the object, 
the lack of sufficiently similar images, and unrelated images. 
Finally, it is worth noting that the proposed approach cur-
rently depends on class labels to choose positive and negative 
images for each anchor. For future work, the authors intend 
to create an unsupervised method that can select informative 
positive and negative with no class label.
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