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Abstract—This paper investigates the impact of the parameters
that affect the accuracy of the force estimation from sEMG
signals, including signal acquisition factors, pre-processing and
training ones. It offers a procedure for developing a reliable
estimation approach to deal with uncertainties, such as the
signal deviation while performing various daily tasks using the
hand. For doing this, the Taguchi design of experiments (DOE)
approach is used to determine appropriate levels of the factors
to decrease the regression error. Factors such as the number of
electrodes placed on the forearm and the arm, extracted features,
the cropping window length and the training regularization term
have been categorized as either controllable or uncontrollable in
the DOE table. The experiments are conducted on four subjects
who perform six different tasks. The L225 mixed-level orthogonal
array is used to specify the levels of factors in each experiment.
The orthogonal array drastically reduces the required number
of executions compared to a full-factorial analysis. Using the
Minitab software, the signal-to-noise ratios (SNR) are calculated
to determine the optimum levels and significance of the factors.
Results indicate that the number of forearm electrodes and
their placements are the most influential factors. Moreover, the
SNR delta for including the arm biceps muscle is about 0.66,
which considering its placement difficulties, it does not justify its
additional expense.

Keywords—Grasp force, Robust estimation, sEMG, DOE,
Taguchi.

I. INTRODUCTION

Hands have an essential role in human daily life tasks
and social communications. Hence, the lack of care for an
amputee can cause severe psychological issues [1]. Although
hand prostheses can improve life quality by recreating the
human hand functionality, natural motion and facile control
are required to increase the adoption of artificial hands [2].
To do so, controllable grasp force and adjustable mechanical
impedance of prostheses can improve dexterity and enable
more precise grasps [3]. Castellini’s study showed that, despite
the weakening of muscles in amputation, there is still adequate
information on the remaining muscles [4]. In addition, clinical
studies have indicated that regulating the co-activation of mus-
cles adjusts the stiffness of joints to damp the hand vibration
and deal with the external forces [5], [6]. Therefore, unlike

most commercial prostheses that use unfamiliar muscles as the
activation commands, decoding the sEMG signals of muscles
that intrinsically are activated and co-activated during a grasp
is a superior solution for determining the user’s intention.
Hence, many regression methods such as MLP, RBF, deep
neural networks, and SVM have been introduced, each of
which is practical in a compromise between the available
processing power and the required accuracy. Some of these
methods and their implementation working on classification
problems are reviewed in the Parajuli et al. paper [7].

Grasp type detection or grasp force estimation are two main
approaches in prosthetic hands sEMG based controlling. The
first method classifies signals into several predefined classes.
Hence, a limited number of grasp gestures will be available.
To do so, Sánchez-Velasco et al. used extended associative
memories (EMA) to classify the Myo armband data into
eight different grasp types. Considering time-domain features,
they also indicated that MAV and RMS present the best
performance and obtained 95.83% accuracy [8]. In the same
way, Jie Liu and Ping Zhou achieved an average accuracy of
over 97% on nine subjects using LDA and KNN for seven
classes [9]. Jiralerspong proposed an algorithm classifying 17
movements with an overall accuracy of up to 83% using six
EMG sensors. Furthermore, using this method, considering
nine classes improved accuracy up to 92% [10].

The other approach treats force estimation as a regression
problem that requires a proper data acquisition system for
synchronously recording sEMG signals and their correspond-
ing grasp force. For this purpose, Yang et al. adopted a 6-
dimensional force/torque sensor and six channels of EMG.
Their results showed that the SVM method performs better
than LWPR and ANN [11]. Tanausavaphol et al. proposed an
algorithm to approximate the human hand applied force using
the Myo armband employing a setup that simulates friction
force against the movement during rectilinear motion. This
research indicated that applying more resistance force reduces
the estimation performance [12].
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Fig. 1. Research procedure

In addition, some solutions instantly estimate the force or
angle of individual fingers rather than a specific class or grasp
force. By kinematics considerations, this solution provides
shape-adaptive grasps. Ngeo et al. used a 3D motion camera
system to extract the angle of phalanges during individual and
simultaneous multiple finger flexion and extension [13].

The presented research implements the Taguchi design of
experiments determining the optimum levels to achieve robust
force estimation. Then, it evaluates the impact of parameters
in force estimation from sEMG signals. Fig.1 depicts the
procedure and stages of the study.

The remaining of this article is organized as follows. The
dataset preparation and implementation are introduced in the
next section. Moreover, the third section explains the consid-
ered factors and the design of the experiments table used for
optimization and statistical analysis. The results are discussed
in the fourth section, and a forearm electrodes selection table
is suggested. Finally, conclusions and additional information
are provided.

II. MATERIALS AND METHOD

The sEMG signals can vary throughout the day for reasons
such as muscle fatigue or a nearby noise source. Even during
a constant grasp force, hand pronation and arm extension
can influence forearm signals. Therefore, accurately specifying
data acquisition procedures such that to include daily tasks in
the dataset is needed. So, different modalities that imitate daily
living tasks, as well as grasp aperture size and object weight,
have been defined to obtain a comprehensive dataset. The data
acquisition system, the data modalities, and the used regression
method are explained below.

A. Data Acquisition System

The utilized data acquisition system, providing synchronous
sEMG and FSR recording, is depicted in Fig.2. The gathered
dataset is suitable for force estimation by any regression
method. Since the thumb is fundamental in the majority of
grasp types [14], the FSR has been mounted on a plate such
that the thumb can press it. Moreover, as depicted in Fig.2.c,
this configuration can simulate the different object weights

and sizes by changing the number of plates. Due to available
electronics, there are a limited number of sEMG channels, as
summarized in table I. Therefore, the muscles which have the
most participation in the fingers movement have been selected
[15]. In addition, to observe hand movement and orientation,
the arm channels are included. The electrode placement and
corresponding channels are depicted in Fig.2.b.

B. Data Recording Modalities

The dataset has been collected from two male and two
female subjects performing six different tasks (data modali-
ties). Each mode has been repeated for various numbers of
plates, one to five, as well as five times replication. Hence,
25 data have been recorded for each data mode and 150 for
each subject. Data recording starts from the initial position and
ends at the same. The initial position is defined as the hand
placed beside the body and the palm facing inside, while the
elbow is bent about 90 degrees. Also, the FSR plate is located
about 15cm from the edge of the desk. Data modalities are as
follows:

1) Continuous Force: In this mode, the subjects had to
gently increase the applied force to their threshold and
release them after a while without moving the plates.

2) Discrete Force: This mode is similar to the continuous
except that the force is exerted sequentially as weak,
medium, and strong, according to the perception of each
subject.

3) Vertical Pick and Place: In this mode, subjects were
asked to elevate the plates to about 15cm height, put
them on a ledge, and return them after a period.

4) Horizontal Pick and Place: The horizontal mode is
similar to the vertical except that the subjects were
conveying the plates sideways about 15cm distance over
the desk and returning them.

5) Infinity Signature Circulation: In this mode, subjects
were asked to travel the plates over an infinity sign path
placed on the desk for one cycle that starts from the
center of it.

6) Hand Pronation: This recording mode includes the
effect of hand rotation in the dataset as subjects hover the
plates over the desk, pronate their palms, and eventually
reverse the process.

TABLE I
SELECTED MUSCLES AND THEIR FUNCTION

Num. Muscle Function

Ch.1 Flexor Digitorum Superficialis Flexes fingers of 2-5 and con-
tributes to fist

Ch.2 Flexor Carpi Ulnaris Flexes the wrist
Ch.3 Flexor Carpi Radialis Flexes the wrist
Ch.4 Extensor Digitorum Extends the fingers
Ch.5 Biceps brachii Flexes the elbow and is also a

powerful supinator when the limb
is pronated

Ch.6 Triceps brachii Accomplishes extension of the el-
bow



Fig. 2. (a) depicts utilized data acquisition electronics, (b) illustrates sEMG electrodes placement, (c) specifies grasp configuration and increasing plates in
each recording stage

TABLE II
THE DOE TABLE FACTORS AND CORRESPONDING LEVELS

Inner factors Outer factors
(Controllable) (Uncontrollable)

Forearm
C

h.

Features

A
rm

C
h.

W
indow

L
en.

R
eg.Term

Subject

M
odalities

1 RMS none 200 1 A Continuous
2 MAV 5 300 10 B Discrete
3 WL 6 400 100 C Vertical
4 LOG 5,6 500 1000 D Horizontal
1,2 RMS, MAV Infinity
1,3 RMS, WL Pronation
1,4 RMS, LOG
2,3 MAV, WL
2,4 MAV, LOG
3,4 WL, LOG
1,2,3 RMS, MAV, WL
1,2,4 RMS, MAV, LOG
1,3,4 RMS, WL, LOG
2,3,4 MAV, WL, LOG
1,2,3,4 RMS, MAV, WL, LOG

C. Force Estimation Method

Although there are different regression methods, SVM has
been used due to its simplicity and capability. Then the predic-
tion error can provide a comparable reference point for further
optimization. For this purpose, after applying the Notch and
Butterworth filters, the dataset was randomly separated into
training and testing portions. Dataset was initially normalized,
then the features extracted from randomly cropped windows.
Furthermore, training was performed five times by shuffling
training data into five folds.

III. DESIGN OF EXPERIMENTS

Various parameters affect the quality of the sEMG signal
and their accurate interpretation. Some of these parameters

can be optionally selected to achieve desired purposes. But,
parameters such as the subject’s gender, skin type, and muscle
fatigue can not be managed in practice. The Taguchi method
is concerned with finding the best values of the controllable
factors to make the problem less sensitive to the variations
of uncontrollable ones. [16]. Therefore, properly constructing
the Taguchi DOE table and determining influential factors are
required. These factors must appropriately be assigned in the
inner and outer arrays of the table for reliable analysis.

This study determined the main factors affecting force
estimation. The factors such as forearm electrode placement
arrangement, hand movement perception by considering arm
electrodes, extracted features of signals, cropping window
length, and the SVM regularization term all have been placed
in the inner array to specify their suitable values for robust
force estimation. Moreover, subjects and data modalities that
indicate the uncertainties have been assigned to the outer array
to protect force estimation from their changes. The levels of
each experiment have been defined by a full-factorial for the
outer array and the L225 mixed-level orthogonal array for
the inner one. The orthogonal array obtained according to the
Leung and Wang suggested algorithm [17] which significantly
reduces the required run time. Values of levels have been
defined in table II assuming all possible combinations of
electrode selection. The Minitab software has been used to
perform Taguchi analysis by manually importing the defined
orthogonal array and the output of the experiments.

IV. RESULTS AND DISCUSSION

The Taguchi analysis has been performed to minimize the
error of force prediction. The resulting SNR analysis diagram
is depicted in Fig.3. In this figure, the larger SNR means a bet-
ter level for error reduction. Accordingly, the presented levels
in table III can be a suitable selection for each factor. As a
result of the constructed statistical model, it is predicted that by



performing estimation with optimum levels, the RMSE would
be about 0.07. Hence, comparing the prediction of Taguchi
with obtained optimum RMSE of each subject, reported in
table III, verifies the statistical model. Despite these levels
acquiring various errors on different subjects and sometimes
not the minimum error, the statistical model is acceptable. The
key point is that using these levels, the regression is more
reliable due to statistically considering uncertainties such as
different daily tasks, diverse skin types, and various muscles.

Fig. 3. Output SN plot for minimizing the SVM force estimation RMSE

According to Fig.3, the significance of each factor can be
determined by defining the SNR delta, which is the difference
between the maximum and minimum of each factor’s SNR.
Hence, factors are ranked by importance in table III, which
shows that the placement of forearm electrodes considerably
has the most impact on the estimation error. Furthermore, the
arm channels can improve the estimation, but it is not as
great as the forearm. Window cropping length has the same
impact as arm channels. So that applying either a pair of
features of [MAV, LOG] or [RMS, MAV] with the 300ms crop
window length is acceptable. Eventually, the SVM training
regularization term of 1 or 10 is a good choice for normalized
data.

TABLE III
SIGNIFICANCE AND OPTIMUM LEVEL OF EACH FACTOR AND

CORRESPONDING RMSE OF SUBJECTS

Factors Output

Factor

SN
R

D
elta

R
ank

O
ptim

um
L

evel

V
alue

Subject

R
M

SE

Forearm Ch. 5.91 1 15 1,2,3,4 A 0.066
Features 0.89 2 9 MAV, LOG B 0.052
Reg. Term 0.77 3 1 1 C 0.048
Window Len. 0.70 4 2 300 D 0.075
Arm Ch. 0.66 5 2 5

Despite using entire forearm electrodes being beneficial,
several muscles are weakened or unavailable in amputees.

Accordingly, a suggestion table based on the SNR of forearm
electrodes is presented in table IV to help other researchers
select suitable electrodes for practical applications. This table
categorizes the selection based on the number of accessible
muscles and is ordered by the best choice.

TABLE IV
FOREARM ELECTRODE SELECTION GUIDELINE

Num. of Accessible Muscles

Ranking 4 Ch. 3 Ch. 2 Ch. 1 Ch.

1 [1,2,3,4] [1,3,4] [3,4] [1]
2 [1,2,4] [1,4] [4]
3 [2,3,4] [1,3] [3]
4 [1,2,3] [1,2] [2]
5 [2,4]
6 [2,3]

V. CONCLUSION

In this study, the Taguchi approach is utilized to investigate
the impact of the factors on the force estimation with the SVM
regression method. The DOE table was constructed by con-
sidering the mixed-level L225 orthogonal array and properly
assigning the parameters to controllable and uncontrollable
factors. Accordingly, the control factors consist of the arm
and forearm electrode combination, the extracted features of
signals, the cropping window length and the training regular-
ization term. Also, the uncontrollable ones contain different
subjects and data modalities to deal with the sEMG signal
variation across individuals and inconsistency whilst perform-
ing daily tasks. As a result, the Taguchi method indicated
that using the entire forearm and the biceps electrodes with
extracting any pairs of [MAV, LOG] or [RMS, MAV] features
can be a robust solution. Furthermore, results showed that
the forearm electrodes have the most significance over the
others, and the biceps channel is not essential. Finally, a
forearm electrode selection is proposed to help users with the
commercial prosthesis.
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