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Abstract—This paper presents an algorithm to generate the 

single support phase trajectory in each step for exoskeleton 

users with low strength in their lower body. This method 

generates the trajectory of the single support phase according to 

the patient's body parameters and enables the patients to 

voluntarily change their walking speed. In this method, the body 

parameters of the exoskeleton user and the information of the 

double support phase are taken as input. A multi-layer 

perceptron neural network, human kinematic model, and cubic 

spline interpolation are used to generate the single support 

phase trajectory for the hip and knee joints. To evaluate the 

performance of this algorithm, a healthy person walked on the 

ground at three different speeds, and the walking data was 

recorded. Then the knee and hip joints trajectory of the single 

support phase for one step was generated by the proposed 

algorithm. Then the generated Trajectories were compared with 

the actual trajectories. The experimental results reveal that the 

proposed algorithm is able to generate a smooth personalized 

trajectory according to the preferred walking speed. 

Keywords— Exoskeleton trajectory, Personalized trajectory 

generation, Body parameters, Neural network 

I. INTRODUCTION 

Nowadays, the number of people with movement 
disorders in the lower body, due to spinal cord injury, stroke, 
etc. is increasing. There are about 250,000 to 500,000 people 
worldwide who suffer from a spinal cord injury each year [1]. 
Surveys of patients with stroke or spinal cord injury show that 
their most common concern is the full or partial disability in 
some activities like walking and standing [2]. Moreover, such 
individuals are at risk of decreased motivation to adhere to a 
long-term exercise program. Exoskeleton robots have shown 
promising results in motivating people with spinal cord 
injuries to follow long-term exercises and improve their 
physical activity level [3]. Furthermore, traditional 
rehabilitation that helps patients to stand and walk is based on 
manual work. Exoskeleton robots can help with this repetitive 
and exhausting treatment [2]. When a patient with movement 
disorders in the lower body walks with the help of an 
exoskeleton robot, the ground reaction forces stimulate the 
sensory and musculoskeletal system [4]. Until now, various 
lower body exoskeletons have been made and developed to 
assist or rehabilitate the walking ability of patients with spinal 
cord injury, stroke, etc. Among the well-known examples of 

these exoskeleton robots, can refer to Rewalk [5], HAL [4], 
and EksoNR [6]. 

A key requirement for exoskeleton robots to work 
efficiently is to generate suitable gait patterns and joint 
trajectories. It is important that the trajectory is generated in 
such a way that the user feels comfortable during the walking. 
Chen et al. [1] presented an offline design and online 
optimization algorithm for the CUHK-EXO exoskeleton. 
First, they generated an offline reference trajectory by 
recording motion data. Then, with an online correction 
method, the angle of the hip joint was adjusted based on the 
center of pressure position to maintain the balance of the 
person while walking. Tsukahara et al. [4] proposed an 
algorithm to estimate the gait intention for the HAL robot. In 
this algorithm, the center of ground reaction force is used to 
discover the patient's intention to start the swing. This method 
also allows the user to adjust the swing speed by getting 
feedback from the double support phase. Huang et al. [7] 
presented an algorithm to generate a reference gait trajectory 
based on the kinematic model of human gait. In their 
proposed algorithm, the trajectory of the knee joint is 
obtained using the trajectory of the hip joint. He et al. [2] 
proposed an algorithm to generate a walking trajectory 
corresponding to the body features of the exoskeleton user. 
For this purpose, they designed a neural network and trained 
it using the walking trajectories of healthy people. The inputs 
of this neural network are body features and walking speed. 
The outputs of this neural network are the trajectories of hip 
and knee joints. Wu et al. [8] presented an algorithm for 
generating personalized gait patterns for the SLEX robot. In 
their proposed algorithm, 21 body parameters and walking 
speed are considered as input, and the sagittal joint 
trajectories are the output of the algorithm. Kagawa et al. [9] 
used an inverted pendulum model to develop a joint space 
motion planning algorithm with adjustable step length and 
walking speed for an exoskeleton robot. Lim et al. [10] 
presented an algorithm to estimate natural gait parameters for 
a specific subject using a neural network. The inputs of this 
neural network are body height, body weight, age, and 
gender. The outputs of this neural network are the gait 
parameters, including cadence, stride length, and walking 
speed. Li et al. [11] presented an algorithm that can generate 
dynamically stable and tunable gait patterns. Ren et al. [12] 
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presented an individualized gait generation method based on 
anthropometric data. In this way, 14 body parameters are 
used to generate the individualized gait trajectory. 

Generating the trajectory in a way that is individualized 
for each person and making it possible for the exoskeleton 
user to change the speed while walking, makes the user 
comfortable. 

In all the aforementioned works, except [4], the patients 
are not able to voluntarily change their walking speed. On the 
other hand, in the research [4], the generated swing trajectory 
has not been personalized for each patient.

This paper presents a method for generating the single 
support phase trajectory with both features of being 
personalized according to the patient's body parameters and 
enabling the patients to change their walking speed 
voluntarily.  

The outline of the paper is as follows; Section II 
introduces the proposed algorithm by describing the structure 
of the neural network, the kinematic model, and the 
interpolation method. This section also discusses the 
parameters that affect the gait pattern. Analysis and 
discussion of the experimental results are presented in 
Section III and the summary and conclusion of the paper are 
provided in Section IV. 

II. PROPOSED ALGORITHM

A complete gait cycle is the sequence of the swing and 
stance phases. In this definition, one gait cycle is considered 
for one leg. The swing phase begins when the foot lifts off 
the ground and ends when the heel hits the ground. In the 
stance phase, the foot is in contact with the ground. The swing 
phase comprises around 40% of a gait cycle and the stance 
phase includes around 60% of the cycle [13]. 

In another definition, a gait cycle includes the sequences 
of single and double support phases. In this definition, one 
gait cycle is considered for both legs. If one leg is in contact 
with the ground and the other leg is swinging, the gait is in 
the single support phase. If both feet are in contact with the 
ground, the gait is in the double support phase. In a complete 
gait cycle, each of these phases occurs twice. 

In the proposed method, the joint angles and their angular 
velocities, at the end of the double support phase, and the 
body parameters are used to generate the single support 
trajectory at each step. 

For this purpose, we need to have the following trajectory 
parameters: 1) step length, 2) foot clearance at the relay point, 

3) single support duration, and 4) duration of the ankle
reaching the relay point. These parameters are obtained by a
neural network. The input of this neural network is the body
parameters and double support duration, and the output is the
trajectory parameters. This neural network is trained using
walking data of healthy people. Finally, we calculate the
angle of the joints and time at the end and relay points of the
single support phase, using the trajectory parameters. Then
we obtain the trajectory equation of each joint with a cubic
spline interpolation on the initial, relay, and end points of the
single support phase. Fig. 1 illustrates the overall architecture
of the proposed algorithm.

A. Neural Network and Data Collection

An MLP neural network with a single hidden layer is
applied to estimate the trajectory parameters for a specific 
exoskeleton wearer. This neural network has four inputs and 
outputs. The hidden layer of this neural network has four 
neurons. The activation functions for hidden and output 
layers are sigmoid and identity, respectively. The gradient 
descent algorithm is used to train this neural network. 
According to [8], the gait pattern depends on body parameters 
and walking speed. From [4], it can be concluded that the 
walking speed has a direct relationship with the double 
support duration. 

Therefore, the inputs to this neural network are the double 
support duration and body parameters. First, we selected the 
six most important body parameters related to human gait 
according to [8], and we encountered a high error in the 
neural network. After different tests on the neural network, 
out of the six body parameters mentioned, three body 
parameters that have the most impact on gait pattern were 
selected. These three parameters are body weight, waist 
circumference, and body height. The outputs of this neural 
network are the trajectory parameters. 

To get training set for training this neural network, six 
healthy male subjects (70.71 ± 15.31 kg body weight, 84.86 
± 10.11 waist circumference, 175.86 ± 6.82 body height) 
walked on the ground at three different speeds: very slow 
(19.8 ± 5.19 cm/s), medium (36.80 ± 4.95 cm/s) and normal 
(81.43 ± 15.22 cm/s), while their walking data were recorded 
by two cameras located on both sides of the subjects. Then, 
three one-step normal gait trajectories were selected for each 
speed of each subject for training the neural network. A 
schematic of this neural network is shown in Fig. 2. 

Fig. 1. Overall architecture of the proposed algorithm 
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Fig. 2. Structure of the proposed neural network. Input 1: weight, Input 2: 
waist circumference, Input 3: body height, Input 4: double support duration, 
Output 1: step length, Output 2: foot clearance at the relay point, Output 3: 
single support duration, Output 4: duration of the ankle reaching the relay 
point 

B. Kinematic Model

As shown in Fig. 3, three specific points of the single
support phase are considered to generate the trajectory. These 
points are: 

1) Initial point: This is the initial point of the single

support phase and it is coincident with the end point of the 

double support phase. Therefore, we have the hip and knee 

angles at this point for both legs. 

2) Relay point: This is the moment when the ankle that is

doing the swing motion is raised up to the height of ℎ and
passes by the other ankle that is on the ground and doing the 
stance motion. At this point, the angle of the hip and knee 
joints, for the leg that performs stance motion, is assumed to 
be zero. The angles of the hip and knee joints, for the leg that 
performs the swing motion, are obtained by inverse 
kinematics. 

Fig. 3. Schematic of the single support

Fig. 4 shows the kinematic model of the body. The 
reference coordinate O is placed on the hip joint. The inverse 
kinematics equations for the swing leg is as follows: 

����� � �	�
2�sin������, cos ����������� � ���� � ������ � �	�
2����� , ����� � �	�
2���, � � (1) 

⎩⎪⎪
⎨⎪
⎪⎧%&'������ � ()��*+,)��*-�./+.*� ./.*'0
������ � 121 � %&'�������� � 4� 5 4 cos������� � 4 sin������

(2) 

where 4� and 4  are thigh length and shank length, ����  and����  are the angles of the hip and knee joints of the swing leg,���� is the angle of the thigh of the swing leg,  �� is the angle

of the upper body, and ����� , �����  is the position of the

ankle of the swing leg. In the relay point, the swing leg is 
raised up to the height of h and is placed next to the ankle of 
the stance leg. Moreover, for simplicity, the angle of the 
upper body (��) is assumed to be zero. Therefore we have:

⎩⎨
⎧���� � ���6 � 7���� � 07 � ℎ�� � 0 (3) 

The �  position of the ankle of the stance leg (���6 ) is

calculated as: 

 9���6 � 4�cos ����6� 5 4 cos ����6 5 ���6����6 � ���6 5 �� (4) 

where ���6  is the angle of the thigh of the stance leg.

According to the assumption, the angle of the hip and knee 
joints for the stance leg and the angle of the upper body is 
zero. 

Fig. 4. Kinematics parameters of the human body 

Therefore, by substituting equation (4) in (3) and 
considering the assumptions, equation (3) is rewritten as 
follows: 

:���� � 4� 5 4 � ℎ���� � 0 (5) 

385

Authorized licensed use limited to: ULAKBIM UASL - KARADENIZ TECHNICAL UNIVERSITY. Downloaded on February 13,2023 at 21:31:34 UTC from IEEE Xplore.  Restrictions apply. 



Substitution of equation (5) in equation (2) and then in 
equation (1) gives the knee and hip angles of the swing leg 

(���� and ����)  at the relay point. There are two solutions

for ����  in equation (1) that the minus solution is acceptable.

3) End point: This point is the end of the single support

phase. At this point we consider three assumptions as shown 

in Fig. 5. These assumptions are: 1) The angle of the knee 

joint of both legs is zero (���� � ���6 � 0). 2) The hip and

ankle joints constitute an equilateral triangle. 3) For 

simplicity, the angle of the upper body ( �� ) is zero.

Therefore, by having the step length, the angle of the hip joint 

for both legs is calculated as follows: 

���� � ����6 � '0
-� = >.@.�./+.*A (6) 

In which 4B is the step length.

Fig. 5. Human posture at the end of the single support phase 

Cubic Spline Interpolation 

To obtain the single support phase trajectory equation for 
each joint, a cubic spline interpolation is performed between 
the initial, relay, and end points of this phase. Therefore, the 
generated trajectory equation is obtained by the interpolation 
method as follows: 

⎩⎪⎨
⎪⎧�C � ��C 5 D�C�	 � 	>� 5 %�C�	 � 	>�  5 E�C�	 � 	>�F	> ≤ 	 ≤ 	H�C � � C 5 D C�	 � 	H� 5 % C�	 � 	H� 5 E C�	 � 	H�F	H < 	 ≤ 	J

 (7) 

where 0 � 1,2,3,4 with 0 � 1 for the hip joint of the swing
leg, 0 � 2 for the knee joint of the swing leg, 0 � 3  for the
hip joint of the stance leg, and 0 � 4 for the knee joint of the
stance leg. 	>, 	H and 	J are the times at the initial, relay, and

end points.  

Cubic spline coefficients ���C, � C, D�C, D C, %�C, % C, E�C,
and E C� in equation (7) are obtained according to [14] by

applying angles at initial, relay, and end points and boundary 
conditions including angular velocity at the initial and end 
points. 

The angular velocity of all joints at the initial point comes 
from double support data. Therefore, the trajectories are 
continuous with respect to the velocity at the initial point. The 
angular velocity of all joints at the end point is assumed to be 
zero. 

III. RESULT AND DISCUSSION

To evaluate the performance of the proposed algorithm, a 
healthy person walked on the ground at three different 
speeds: slow (34.09 cm/s), medium (64.71 cm/s), and normal 
(92.26 cm/s), and the trajectory of the knee and hip joints was 
recorded by two simple cameras located on both sides of the 
subject. Then, one step was selected from each speed and the 
trajectory of the single support phase was generated for each 
step using the proposed algorithm corresponding to the 
duration of the double support and body parameters of the 
person.  

For this purpose, first, the values of the trajectory 
parameters were obtained by the neural network and 
compared with the actual which is shown in Table 1. Then 
the trajectory of the hip and knee joints for the swing and 
stance of the single support phase was generated and 
compared with the actual trajectories, which are shown in 
Fig. 6.  

The actual data in Table 1 show that with the increase in 
the walking speed, the double support duration decreases. 

On the other hand, the actual trajectory parameters show 
that with the increase in walking speed, the single support 
duration decreases, and the step length increases. The 
trajectory parameters predicted by the neural network also 
show the same thing.  

Table 1: Comparison of the trajectory parameters obtained from the proposed method with the actual values of the experimental test 

Trajectory Parameters 

Speed 

Slow (34.09 cm/s) Medium (64.71  cm/s) Normal (92.26  cm/s) 

actual predicted actual predicted actual predicted 

double support duration (sec) 0.5000 - 0.3333 - 0.2000 - 

single support duration (sec) 0.7667 0.7146 0.5667 0.5831 0.4667 0.4750 

duration of the ankle reaching the relay point (sec) 0.3000 0.2773 0.2000 0.2306 0.2000 0.1922 

foot clearance at the relay point (cm) 11.7200 14.9988 19.0440 14.8541 18.6150 14.7324 

step length (cm) 35.1760 38.0658 44.5600 44.1560 53.8710 49.1555 
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(a) 
 

 
(b) 
 

 
                                                                                                                            (c) 

Fig. 6. Comparison of the trajectory designed using the proposed algorithm with the actual data for the swing and stance phase of one step of experimental 
tests at three different speeds. (a): Slow speed, (b): Medium speed, (c): Normal speed 

Therefore, if an exoskeleton robot wearer who walks 
using the proposed algorithm wants to walk more slowly, just 
needs to perform the double support phase in a longer time. 
In this case, the speed of the generated trajectory for the 
single support phase will decrease corresponding to the 

double support duration. On the other hand, If the wearer 
wants to walk faster, just needs to perform the double support 
phase in a shorter time. In this case, the speed of the generated 
trajectory for the single support phase will increase 
corresponding to the double support duration. The results in 
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Fig. 6 reveal that the generated trajectory using the proposed 
algorithm is smooth. 

IV. CONCLUSION

This paper proposed a trajectory generation method for 
the single support phase, which is personalized according to 
the patient's body parameters and enables the patient to 
change the walking speed voluntarily. First, we created a 
neural network to obtain trajectory parameters. Then, we 
derived the trajectory equations of the hip and knee joints 
using the kinematic model of human gait and cubic spline 
interpolation. 

Finally, the single support trajectory for a healthy person 
who walked on the ground at three different speeds was 
generated using the proposed algorithm and compared with 
the actual trajectory. The results indicate that the proposed 
method successfully detects the preferred walking speed of 
the exoskeleton user and generates a smooth single support 
trajectory according to the detected walking speed and the 
body parameters of the user. 
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