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Abstract
To increase competition, control price, and decrease inefficiency in the carbon allowance
auction market, limitations on bidding price and volume can be set. With limitations, partici-
pants have the same cap bidding price and volume.While without the limitations, participants
have different values per unit of carbon allowance; therefore, some participants may be strong
and the other week. Due to the impact of these limitations on the auction, this paper tries
to compare the uniform and discriminatory pricing in a carbon allowance auction with and
without the limitations utilizing a multi-agent-based model consisting of the government and
supply chains. The government determines the supply chains’ initial allowances. The supply
chains compete in the carbon auction market and determine their bidding strategies based on
the Q-learning algorithm. Then they optimize their tactical and operational decisions. They
can also trade their carbon allowances in a carbon trading market in which price is free deter-
mined according to carbon supply and demand. Results show that without the limitations, the
carbon price in the uniform pricing is less than or equal to the discriminatory pricing method.
At the same time, there are no differences between them in the case with limitations. Overall,
the auction reduces the profit of the supply chains. This negative effect is less in uniform than
discriminatory pricing in the case without the limitations. Nevertheless, the strong supply
chains make huge profits from the auction when mitigation rate is high.
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1 Introduction

Carbon emission has been a great challenge in recent years. The governments have devel-
oped some environmental policies to reduce carbon emissions, including carbon cap, carbon
emission tax, carbon offset, and cap-and-trade (Mohammed et al., 2017; Moradinasab et al.,
2018; Xu et al., 2018). A significant carbon emissions source is supply chains activities.
Since the early 1990s, manufacturers have been forced to consider environmental issues in
their supply chains (Haw-Jan and Dunn, 1995). The studies conducted by Dehghanian and
Mansour (2008), Hua et al. (2011), Benjaafar et al. (2012), Palak et al. (2014), and Du et al.
(2016) show the importance of developing quantitative models and decision support systems
that consider issues related to reducing carbon emissions in the supply chain. Most studies
in this field indicate that among the existing policies, the cap-and-trade is one of the most
effective regulations that has been implemented in many countries (Wu et al., 2016; Xu et al.,
2016). Under the cap-and-trade scheme, the firms are allocated a limited tradable carbon
allowances quota (cap) from the government. The firms that generate emissions more than
their cap should either reduce their emissions using greener technology or buy their required
allowances from the carbon trading market, and those that have surplus carbon allowances
can sell them on the same market (Matsumoto, 2008; Hua et al., 2011; Xu et al., 2017; Zakeri
et al., 2015).

There are generally two approaches for allocating the initial carbon allowances, i.e., free
allocation (history-based methods like grandfathering and benchmarking approaches) and
auctioning (Khezr and MacKenzie, 2018). Between these two approaches, auctioning is
preferred. Because it is more flexible in the distribution of costs, it decreases tax distortions
and windfall and encourages using green technology (Cramton and Kerr, 2002). Two large
emission trading systems, California and Europe, have engaged in auctioning (Haita, 2014).
It is predicted that the proportion for the auction will be 90% by 2021–2030 (Jiang et al.,
2016).

There are several types of auctions that are mainly divided into two groups: static (sealed)
and dynamic (clock) (Tang et al., 2017). Many studies have represented the superiority of
static auction over dynamic auction in terms of revenue, efficiency, and transaction cost
(Cramton, 1998; Klemperer, 2002; Mandell, 2005; Burtraw et al., 2009; Goeree et al., 2013).
However, the answer to which auction method is more appropriate between static methods,
i.e., the uniform and discriminatory pricing, is still one of the challenges of the carbon auction
market.

A carbon allowance auction may involve heterogeneous bidders; therefore, some bidders
will be stronger than others. Those bidders for which allowances are more valuable are
strong, and the rest are weak (Güth et al., 2005). The strong bidders may outbid the weak
bidders, gain a significant fraction of carbon allowances in the auction, and cause inefficiency
(Maskin and Riley, 2000). To maximize competition between bidders, the government can
limit the maximum volume and price each participant can bid (Cramton, 2008). A similar
volume limitation can be extended to the carbon allowance auction market based on the
United Kingdom bond auction rule, allowing bidders to bid up to 25% of the total supply
(Klingenfeld, 2007). The government can also set a cap for the bidding prices to prevent the
carbon allowance price from rising by strong bidders. Price control has been used on other
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auctions like stock markets to decrease inflation or deflation. The question then arises: what
is the effect of the bid limitation on bidders’ behavior in the auction?

Another challenge with carbon auction is determining the carbon price in the carbon
trading market. Authors such as Chang et al. (2015), Jin et al. (2014), and Sabzevar et al.
(2017) have emphasized that carbon trading price has a significant impact on maximizing
firms’ profit. Zhang and Xu (2013) have highlighted that carbon trading price can change the
supply chain’s network design. The next question is how the carbon trading price should be
determined?

Various techniques have been used to analyze bidders’ behavior in the carbon auction
market, and the most famous of them are optimization models, experimental methods, and
simulation methods. Optimization models require deriving and simplifying assumptions.
There is some hurdle in experimental techniques, like time limit, to avoid boredom and
budget constraints (Tesfatsion, 2002). Among simulation approaches, the multi-agent-based
model is a kind of computational modeling that can simulate individuals or objects and
their interactions in terms of agents (Wilensky and Rand, 2015). The lack of data on carbon
auctioning, on the one hand, and the nature of its gameplay, on the other, havemade the auction
system a complex system (Cong andWei, 2012). Using the multi-agent-based model, we can
simulate complex systems and better understand system elements’ interactions (Wilensky
and Rand, 2015).

Motivated by the above facts, this paper proposes a multi-agent-based model to design a
cap-and-trade auction market and compare the performance of the auction and the agents’
behavior under the uniform pricing and discriminatory pricing with and without price and
volume cap limitations. The multi-agent-based model comprises two main agents, i.e., the
government as auctioneer and supply chains as bidders. The government allocates initial
carbon allowances using the auction and sets limitations on price and volume. According
to limitations, supply chains determine their volume (their required carbon allowances) and
bid prices (the price they want to pay for an allowance unit). In reality, supply chains are
the firms that have production facilities and warehouses and deliver manufactured products
to customers. They optimize their operational and tactical decisions based on their carbon
allowances and trade them with each other in the carbon trading market. The supply chains
have two methods for production and transportation, namely green and regular. The green
methods produce fewer emissions but cost more than regular ones. Therefore, supply chains
can change their methods and affect their costs and emissions. Without government inter-
vention, the carbon trading price is freely determined based on supply and demand.

In the proposed multi-agent-based model, the Q-learning algorithm develops the agents’
bidding behaviors. This algorithm is a reinforcement learning offered by Watkins (Andrew,
1999) for the Markovian decision problems with incomplete information. The existing stud-
ies in the field of multi-agent-based carbon auction, like Cong andWei (2010) and Tang et al.
(2017), used the Roth-Erev reinforcement learning algorithm. This algorithm determines the
bidding strategy by information obtained from the previous period. If agents can anticipate
their current bidding strategy’s long-term consequences rather than optimizing their immedi-
ate rewards, theywill improve their profitability (Tesauro andKephart, 2002). TheQ-learning
algorithm tackles this problem because an agent can predict the long-term consequences of
its actions and other agents’ actions. Therefore, it can correctly model the other agents and
achieve the optimal bidding strategy (Tesauro and Kephart, 2002). The Q-learning algorithm
has been widely used in the electricity auction market (Xiong et al., 2002, 2004; Rahimiyan
and Rajabi Mashhadi, 2008; Rahimiyan and Mashhadi, 2010).
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2 Literature review

An increasing body of literature has examined the cap-and-trade scheme on different supply
chains. Those related to this work can be divided into four categories: (1) the cap-and-
trade scheme in supply chains; (2) comparing the pricing methods in the static auction; (3)
limitation on bidding volume and price; (4) techniques for analyzing bidders’ behavior in the
auction market.

2.1 The cap-and-trade scheme in supply chains

As carbon cap-and-trade regulation has received increasing attention in supply chain man-
agement, there is extensive research on designing efficient supply chains under cap-and
trade regulation. For example, Abdallah et al. (2012) presented a model to design a supply
chain network for a company that assembles and distributes personal computers under the
cap-and-trade scheme. Giarola et al. (2012) developed an ethanol supply chain considering
the cap-and-trade scheme. Furthermore, Zakeri et al. (2015), Mohammed et al. (2017), and
Rezaee et al. (2017) proposed optimization models to design different supply chain networks
under the cap-and-trade scheme. In these types of researches, initial carbon allowances are
allocated by free methods, and the auction is not considered. Furthermore, determining the
carbon trading price is a significant challenge in the cap-and-trade scheme which has been
ignored in these researches. Some studies, like Du et al. (2015), Sabzevar et al. (2017), and
Hong et al. (2017), tried to determine the optimal carbon trading price. However, they do not
consider auction methods for allocating carbon allowances.

2.2 Comparing the pricingmethods in the static auction

In the carbon auction market, Cong and Wei (2010) indicated that when carbon allowances
are nearly low, the discriminatory pricing method is more efficient than the uniform pricing,
while small participants benefit more than the other method. Nanduri and Otieno (2011)
demonstrated that uniform pricing favors small generators in electricity and cap-and-trade
markets. Cong andWei (2012) showed that when the number of bidders is relatively low in the
carbon allowance auction market, and there is communication between them, discriminatory
pricing is better than uniform pricing and prevents collusion. Tang et al. (2017) demonstrated
that uniform pricing has a smaller effect on economic damage and emission reduction than
discriminatory pricing. Esmaeili Avval et al. (2021) showed that the bidders behave dif-
ferently under different amounts of carbon allowances. In other markets, Back and Zender
(1993) compared the uniform and discriminatory pricing in treasury auctions. They showed
that the auctioneer’s revenue in the former method is lower than that in the other method.
Hudson (2000) showed that high benefits could be earned under the uniform pricing in an
electricity market in the presence of market power. Bower and Bunn (2001) indicated that the
discriminatory pricing results in a greater market-clearing price than the uniform pricing in
England and Wales electricity market. Rassenti et al. (2003) showed that the discriminatory
pricing method results in higher prices than the uniform pricing in the absence of market
power. Xiong et al. (2004) compared uniform and discriminatory pricing in an electricity
market. Their findings demonstrated that discriminatory pricing results in a lower market-
clearing price. Goldreich (2007) compared two methods in U.S treasury auction and found
that in the uniform pricing, the treasury receives the average price less than the discriminatory
pricing. Schwalbe (2008) demonstrated that uniform pricing smooths the way for collusion
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more than discriminatory pricing. Brenner et al. (2009) found that most countries use dis-
criminatory pricing in auctioning financial assets of governments. Hortaçsu and McAdams
(2010) investigated switching from discriminatory pricing to uniform pricing, or Vickrey
auction, would not significantly increase revenue for an auctioneer in a Turkish Treasury
auction market. Damianov and Becker (2010) demonstrated that uniform pricing generates
higher revenue for an auctioneer, in an auction with variable supply. Duke et al. (2017) com-
pared two pricing methods in purchasing ecosystem services under different information
structures. They showed that information affects auction efficiency. Hattori and Takahashi
(2020) compared two methods in the Japanese government bonds market and showed dis-
criminatory pricing lowered borrowing costs. Sugiyarto (2020) examined the performance
of two pricing methods in the Indonesian treasuries market and demonstrated that discrim-
inatory pricing improved auction revenue and efficiency. Matthäus (2020) showed that the
choice of pricing method does not play a significant role in designing effective renewable
energy auctions. There are many studies that compared these two pricing methods in dif-
ferent areas, but their results are not consistent. However, studies that have compared these
methods in the carbon auction market are rare in which they did not consider the effect of
bid limitation on the carbon auction market. These studies are limited to decisions related to
the bidding strategy and the production plan, and decisions on issues such as the use of green
technology, transportation plan, inventory, etc., have been ignored. In the real world, these
decisions are essential factors in supply chains planning that can affect the cost, emissions,
and consequently, their strategies in the carbon auction market.

2.3 Limitation on bidding volume and price

Isaac and Plott (1981) investigated the effect of the price limitation in the auction market and
demonstrated the prices converge to cap price. Ausubel and Schwartz (1999) compared the
uniform price auction and a multi-period auction considering volume limitation and showed
that the former could do better than the latter. Chakraborty (2002) and Forster et al. (2013)
studied the impact of limit price on a sealed and dynamic auction, respectively. Gode and
Sunder (2004) and Smith and Williams (2008) examined the effect of limit price on a double
auction. They showed that it could limit the strategy of bidders. Talman and Yang (2008)
examined the effect of limit price and volume in a dynamic auction. Vossler et al. (2009)
investigated the effect of a price cap in an electricity market under uniform pricing. Olivares
et al. (2012) presented an auction for a procurement school meal. Their findings showed that
limitation on bidding volume could promote competition in the long run. However, they did
not investigate these limitations in the carbon allowance auction.

2.4 Techniques for analyzing bidders’behavior in the auctionmarket

As mentioned earlier, the most critical tools for studying bidders’ behavior in the auction
market are optimization models, experimental methods, and simulation methods. As for
optimization models in the carbon auction market, Haita (2014) investigated market power’s
effect on carbon auction and the carbon trading market by an optimization model based on
game theory with complete information. Jiang et al. (2016) presented an optimization model
based on game theory to investigate market power manipulating carbon prices in the carbon
auctionmarket. For the experimental methods, Cong andWei (2012) compared three types of
carbon auctionmethods, i.e., uniform price auction, discriminatory price auction, and English
auction, in terms of the carbon price, auction efficiency, demandwithholding, and fluctuations
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in power supplies. Dormady (2014) provided experiments to investigate a carbon and energy
market simultaneously under real-world market characteristics. For the simulation methods,
Li et al. (2018) explored the impact of the cap-and-trade scheme on China’s electricity
industry using a dynamic computable general equilibrium (CGE) model. Li et al. (2019)
also evaluated the effect of different scenarios of allocating auction revenues on economic
growth, mitigation, and welfare improvement by this method. Cong and Wei (2010) used
a multi-agent-based model to compare uniform pricing and discriminatory pricing auction.
They considered the government as the auctioneer and two agents as the bidders (gas-fired
power plants and coal-fired power). Tang et al. (2017) proposed amulti-agent-basedmodel for
carbon allowance auction. They considered two agents, i.e., the government as the regulator
of emission trading scheme, and different firms in all parts of China. Yu et al. (2020) utilized
a multi-agent-based model to simulate the emission trading market based on the auction.
Esmaeili Avval et al. (2021) also used a multi-agent-based model for comparing uniform
and discriminatory pricing methods. In other markets, for optimization models, Sofia and
Edward (2020) presented an auction in cognitive radio networks. Kang et al. (2007) and Liu
et al. (2010) modeled an electricity auction market. Na et al. (2010) modeled the carbon
trading market as a double auction. For experimental methods, Eliaz et al. (2008) studied
an auction for selling products using these methods. Sturm (2008) investigated the effect of
market power in a double auction using experimental methods. Also, Rassenti et al. (2003)
compared uniform and discriminatory pricing based on experimental methods. Xiong et al.
(2004), Liu et al. (2012), Jaghargh andMashhadi (2020), Poursalimi Jaghargh andMashhadi
(2021), Rahimiyan and Mashhadi (2010), and Rahimiyan and Rajabi Mashhadi (2008) used
a multi-agent-based model in an electricity market.

Table 1 summarizes the abovementioned studies and compares this paper’s features with
them. This table reveals that a study that designs a carbon allowance auctionmarket consisting
of government and supply chains and compares the uniform pricing and discriminatory
pricing under price and volume cap limitations does not exist. This paper seeks to fill this
gap. Furthermore, in this paper, for the first time, supply chains are considered bidders in the
carbon auction market to trace the carbon footprint better. The findings of this study provide
some managerial insights for policymakers to design a more efficient carbon auction market.

3 Themulti-agent-basedmodel

In this section, a carbon auction market consisting of the government and supply chains is
designed utilizing multi-agent-based modeling. The government, as auctioneer, determines
the initial carbon allowances and maximum price and volume each supply chain can bid.
According to limitations, the supply chains as bidders simultaneously submit their bid price
and volume (the quantity they are willing to buy at that price). Then the government builds
the aggregate demand curve by adding the supply chains’ demand curves. The point at which
the demand and supply curves intersect each other is called the clearing price. According to
the clearing price, the government specifies the carbon allowances allocated to each supply
chain and the actual price it has to pay. The demands above the clearing price will be fulfilled.
The ones at the clearing price will be rationed, and those below the clearing price will be
rejected. The supply chains adapt their operational and tactical decisions by optimizing a
mixed-integer linear programming model to comply with the carbon allowances allocated by
the government in carbon auction. The carbon allowances are tradable among supply chains,
and the carbon trading price is obtained based on the demand and supply in a carbon trading
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market. It should be noted that this paper assumes that all carbon allowances are allocated
through the auction, and free allocation is not considered.

Thismodel compares the uniform and discriminatory pricingmethods in different settings.
The model simulates the carbon allowance auction in the presence and absence of price
and volume cap limitations and explores how these limitations affect the auction and supply
chains’ decisions.Wemake different policies about the initial carbon allowances and compare
two pricing methods under these policies and the presence and absence of limitations. The
results help to know which pricing method is proper in carbon allowance auction under
different situations.

3.1 Government agent

As auctioneer, the government administrates carbon auction and determines the initial carbon
allowances Tot_Allowance. Assume Totalemission shows the total carbon allowances
required to cover the total emissions of the supply chains when there is no carbon regulation.
To decrease the total emissions, the government considers a mitigation rate λ. Therefore
Tot_Allowance is calculated based on Eq. (1):

Tot_Allowance � Totalemission ∗ (1 − λ) (1)

3.2 Supply chains agents

As bidders, the supply chains decide about bidding strategy (price and bidding volume). They
determine production and transportation planning to maximize their profits according to the
carbon allowances obtained through the auction and trade their allowances in the carbon
trading market.

3.2.1 Supply chains’ decisions

Each supply chain s participating in the auction is the single firm that produces i types of
products in m manufacturing centers on j sets of machines in T periods. The products are
shipped to c customer zones through w warehouses by v transportation modes. There are
two types of machines and transportation modes: green and regular. The green type generates
fewer emissions but costs more than the regular one. Each supply chain attempts to balance
its costs and emissions by applying the right technology for production and transportation.
The following assumptions are considered for each supply chain’s mathematical model.

• The number, location, and capacity of manufacturing centers and warehouses are known.
• The number, location, and demand of each customer zone are known.
• The demand for each product should be satisfied during each period.
• The capacity hours of each machine, the capacity of total raw material, the inventory
holding capacity of warehouses and manufacturing centers, and transportation capacities
are known.

• The carbon emission is considered for production, transportation, and inventory holding.
• A unit of raw material is required to produce a unit of the final product.

Definitions of parameters, sets, variables, and mathematical modeling of each chain are
provided in appendix A.
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3.2.2 Supply chains’ bidding strategy

The amount of carbon allowances that each supply chain s requires to support its production
plan (without carbon regulation) is equal to T ECs at the cost of C_T ECs . If the selling
price per unit product i , in supply chain s is Spsi , then its total sales revenue over the entire
planning horizon Sales will be

∑
i
∑

c
∑

t desict Spsi . desict show the forecasted demand
for product i in customer zone c in period t in supply chain s Therefore, the value of an
allowance to supply chain s can be calculated as Eq. (2):

vs � Sales − C_T ECs

T ECs
(2)

vs is the private value, i.e., the maximum price that each supply chain tends to pay for
an allowance unit. The price and volume that each supply chain can offer vary according to
price and volume cap limitations.

3.2.3 The bidding behavior without price and volume cap limitations

The supply chains’ bidding price bps is between reserve price rp (the price floor that the
government considers for a unit of allowance) and vs , i.e., bps ∈ [rp, vs]. The bidding
volume for each supply chainbvs is equal to or greater than T ECs , i.e., bvs ∈ [T ECs,∞].
Given that the supply chains’ private values are not the same; therefore, some supply chains
may be stronger than others. Those supply chains for which allowances are more valuable
are strong bidders, and the rest are weak.

3.2.4 The bidding behavior with price and volume limitations

In this case, the government presents a price cap BP and a volume cap BV for all supply
chains. Therefore, the supply chains’ bidding prices are between rp and BP , i.e., bps ∈[
rp, BP

]
. The supply chains’ bidding volumes are between T ECs and BV , i.e., bvs ∈

[
T ECs, BV

]
. Because the price and volume cap is the same for all supply chains; therefore,

there are no strong or weak supply chains, and the competition between supply chains will
increase.

After the supply chains submitted their bidding, the government ranks supply chains in
descending order in terms of their bidding prices to form the aggregate demand curve. The
equilibrium price is equal to the bidding price generated by supply chain k that satisfies the
following inequalities:

k−1∑

s�1

bvs < Tot_Allowance (3)

k∑

s�1

bvs ≥ Tot_Allowance (4)

Therefore the equilibrium price ep is equal to bpk , i.e., ep � bpk . The carbon allowances
gained by supply chain s (gvs) in the carbon auction market for two pricing methods is
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calculated according to Eq. (5):

gvs �

⎧
⎪⎪⎨

⎪⎪⎩

bvsbps > bpk
bvs

(
Tot_Allowance−∑ j−1

s�1bvs
)

∑k
s� j bvs

bp j � . . . bps � · · · � bpk, j ≤ s ≤ k

0bps < bpk

(5)

In the uniform pricingmethod, everywinner pays themarket-clearing price cp that is equal
to the equilibrium price ep. Therefore, the actual carbon price aps (the price that supply chain
s must pay) in the uniform pricing method is calculated according to Eq. (6):

aps �
{
cps ≤ k
∞s > k

(6)

In the discriminatory pricing method, the winners pay their bidding price. So, the actual
carbon price aps in the discriminatory pricing rule is calculated according to Eq. (7):

aps �
{
bpss ≤ k
∞s > k

(7)

3.2.5 Determining the carbon trading price

The amount of carbon allowances allocated to each supply chain is determined when the auc-
tion process is completed. Then, supply chains make their tactical and operational decisions
to minimize their costs. If supply chains have surplus carbon allowance, they can sell them,
and if they have insufficient carbon allowances, they have to buy them in the carbon trading
market. In this market, the carbon price is assumed to be freely determined based on supply
(surplus carbon allowance) and demand (insufficient carbon allowances) without government
intervention. Supply chains determine which technology (green or regular) to utilize based
on carbon allowances gained at auction and carbon price in the carbon trading market. If
the carbon trading price is high, the supply chains increase the usage of green technology
to increase their surplus allowances and obtain more profit in the carbon trading market.
With the increase in the surplus carbon allowances, the carbon trading price decreases, so
the supply chains’ profitability with green technology decreases. As a result, they reduce the
utilization of green technology. Consequently, the surplus carbon allowances drop along with
the increase in the carbon trading price. This process continues until the carbon trading price
reaches the equilibrium point. In this market, the equilibrium price is achieved when supply
and demand are equal (Greaves, 1982). Therefore in this market, when the amount of total
emissions (T EP) is equal to the total initial allowances (Tot_Allowance), the equilibrium
carbon trading price is obtained.

4 Solutionmethodology

This section proposes a hybrid algorithm including the Q-learning algorithm, bisection,
and CPLEX solver. The first two methods have been used for determining optimal bidding
strategy and optimal carbon trading price (ψ∗). CPLEX is one of the most advanced and
accepted optimization solvers commercialized by IBM ILOG (Anand et al., 2017). It can
solve linear programming, mixed integer programming, quadratic programming, and mixed-
integer quadratic constrained programmingwithmillions of constraints and variables (Anand
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et al., 2017; Shinano and Fujie, 2007; Zakaria et al., 2015). It uses techniques like a branch
and bound and benders’ decomposition (Anand et al., 2017). For use, the problem, including
the objective function and constraints, should be written in a specific standard format to
CPLEX solver (ILOG, 1987). After determining the carbon trading price, the optimal supply
chains’ tactical and operational decisions (Eq. 13 subjected to constraints 15–31 in appendix
A) are solved by CPLEX.

4.1 Q-learning algorithm

Suppose an agent that can select activities A � {a1, a2, . . . , am}, is interacted with its envi-
ronment that can take the states S � {s1, s2, . . . , sn} at discrete time steps, t � {0, 1, 2, . . . }.
At each time step t , the agent selects the action at � a ∈ A with observing the present state
of the environment st � s ∈ S. Consequently, the agent achieves an immediate reward rt+1
and the environment alters its state to a new state st+1 � s

′ ∈ S.
In the Q-Learning algorithm, there is a lookup table containing Q-value for each permis-

sible pair(s, a). That shows a discounted long-term expected reward for choosing action a in
state s and is initialized with arbitrary values. Then, Q-values are updated in each iteration
of the algorithm, followed by updating rules and data,st ,at , st+1 and rt+1:

Qt+1(st , at ) � Qt (st , at ) + α�Qt (st , at ) (8)

�Qt (st , at ) �
{

rt+1 + γmax
a′ [Qt (st+1, a

′
)]

}

− Qt (st , at ) (9)

γ (0 ≤ γ ≤ 1) is the discounted factor, and α (0 < α < 1) is the learning rate that
represents the degree of new data impact on Q-values. If each admissible pair (s, a) is visited
infinitely and α decreases appropriately, the Q-values converge to their optimal values with
probability 1 (Watkins, 1989). The algorithm’s convergence conditions are a stationary and
Markovian environment, but they do not hold with increasing the number of agents to more
than one. As well as the environment, in multi-agents, the behavior of each agent depends on
the behavior of other agents. Therefore, the new environment is not stationary andMarkovian,
and convergence is not guaranteed. However, this algorithm has been used inmany studies for
learning because of its simple application and low computation cost and efficiency (Huynh
et al., 2021; Rahimiyan and Mashhadi, 2010).

4.2 Bidding strategy based on Q-learning

This section intends to use theQ-learning algorithm to determine the optimal bidding strategy.
As mentioned before, the Q-learning algorithm requires data related to the state, action, and
reward to calculate Q values.

The equilibrium price is considered as the state of the environment st and can change
between reserve price rp and the maximum price that the supply chains can pay per unit of
allowance. The action for an agent is bidding price and bidding volume that is determined
according to Sect. 3.2.3 and 3.2.4. The reward of each supply chain is calculated as Eq. (10).

Prof i ts � Sales − Cost_ECs − aps ∗ gvs (10)

Cost_ECs indicates total costs of supply chain s in the cap-and-trade system.
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4.3 Q-learning implementation

The steps of the supply chains’ bidding based on the Q-learning algorithm are as follows.
These steps also are presented in Fig. 1.

1. Initialization: the parameters of the algorithm and lookup tables for each agent are ini-
tialized. Small random numbers or zero are assigned to all Q values in lookup tables.
Suppose the maximum iteration, i.e., Maxiter is the termination condition. Therefore,
the steps below are repeated Maxiter times:

2. State identification: the previous iteration’s equilibrium price (ep) is utilized as the envi-
ronment’s current state. In the first step, the reserve price (rp) is considered as the state
of the environment.

3. Action selection: after identifying the environment’s state, the agents select their action
based on Q-values and using ε-greedy method to balance exploitation and exploration.
In this method, the agent selects the actions with a maximum Q-value in the state s with
a high probability 1 − ε and a random action from all admissible actions with a small
probability ε.

4. Q-value update: After the equilibrium price and the dedicated carbon allowances of all
supply chains are notified, the supply chains determine their tactical and operational deci-
sions using CPLEX. The optimal value of carbon trading price, i.e., ψ∗ is calculated by
the bisection method (Sect. 4.4). Finally, supply chains compute their rewards according
to Eq. (10) and then update their Q values based on Eqs. (8) and (9).

4.4 Determining the optimal carbon trading price and supply chain decisions

The green technology costs more than the regular technology; therefore, with a decrease
in the carbon trading price, the total emissions either increase or do not change; since the
carbon trading price is a continuous variable, the bisection method is applied to obtain an ε-
approximate optimal solution. Therefore, after determining the amount of carbon allowances
allocated to each supply chain in each iteration of the Q-learning algorithm (see Fig. 1),
the carbon trading price is determined using the bisection method. For each carbon trading
price (ψ), the optimal tactical and operational decisions of supply chains are obtained using
CPLEX solver.

The steps of the bisection method are as follows. These steps also are illustrated in Fig. 2.
Step 1: initialize the lower and upper bounds of ψ : (ψLB , ψUB ).
Step 2: compare the gap between ψLB and ψUB with ε, a given small value, if the gap is

less than ε, the interval containing the optimal carbon trading price is small, then go to step
6. Else, go to the next step.

Step 3: calculate themean value of the interval (ψLB , ψUB ),ψmid , then obtain the emission
of each supply chain (ECs) based on ψmid by optimizing Cost_ECs for each supply chain
using CPLEX. According to ECs , compute the total carbon emission produced by all supply
chains (T EP).

Step 4: compare T EP to the total initial allowances (Tot_Allowance). If they are equal,
the second termination condition is satisfied, then go to step 6, otherwise go to step 5.

Step 5: update the lower and upper bounds of ψ : (ψLB , ψUB ) (as shown in Fig. 2). Then
go back to step 2.

Step 6: calculate the optimal carbon trading price ψ∗ � (ψUB + ψLB )/2.
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Fig. 1 Flowchart of supply chains’ bidding based on Q-learning algorithm
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Fig. 2 Procedure for obtaining the carbon trading price

5 Computational results

In this section, some instances are presented to test the performance of the proposed algorithm.
All the algorithms are coded in C + + , and the tactical and operational decisions of supply
chains are obtained using ILOG CPLEX 12.3. All experiments have been done on a 64-bit
computer benefits from a 2.30 GHz processor and 4 GB of RAM.

5.1 Data description

To analyze the solutionmethodology, two sets of problems are generated, details of which are
given in Table 2. To simulate an approximate actual situation, we take our data from Zakeri
et al. (2015) and generate similar supply chains around their data set. The details are presented
in Appendix B. To ensure the convergence of the algorithm and not have an unlimited number
of actions for each supply chain, it is assumed that the maximum bidding volume for each
supply chain will be ten percent more than T ECs . The value of the mitigation rate for all
problems is 85%. It should be noted that rp, ψUB , and ψLB in all of the problem are set to
100, 0, and 10,000, respectively.
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Table 2 Specifications of the problem sets

Problem set Number of production
centers

Number of
warehouses

Number of Customer
zones

Number of
periods

s1 2 3 4 6

s2 2 4 5 6

Table 3 The parameters of the
Q-learning algorithm Iteration 1–600,000 600,000–800,000 800,000–1,000,000

α 0.9 0.8 0.7

γ 0.3 0.2 0.1

ε 0.5 0.005 0.0005

5.2 Q-learning algorithm setting

The parameters of the Q-learning algorithm, i.e., α, γ , and ε, are set according to Table 3.
These parameters are determined based on the previous studies conducted in this context
(Poursalimi Jaghargh and Mashhadi, 2021; Sadr et al., 2016). They are reduced during iter-
ations to balance exploitation and exploration. The value of Maxiter is assumed to be the
large number 1,000,000 to guarantee the convergence of the Q-learning algorithm.

To prevent the curse of dimensionality, the state space, price space, and volume space
should be discretized. Therefore, we equally discretize them into 81 states, 41 prices, and 16
volumes, respectively, for all problem sets. Therefore, the action space is 41 ∗ 16.

5.3 Computational experiments of the solutionmethodology

This section analyzes the proposed algorithm’s performance in terms of execution time (CPU
seconds) and average profit for the supply chains (million dollars) and compares it with Roth-
Erev reinforcement learning (Cong and Wei, 2010; Tang et al., 2017) which has been used
in the carbon auction market to determine a bidding strategy. Given the algorithm’s random
nature, the numerical example is run 20 times with different random seeds. For each problem
set, the number of supply chains participating in the auction varies from 3 to 7. Totally, ten
instances have been generated. The results are shown in Table 4. Compared to Roth-Erev
reinforcement learning, although our proposed algorithm increases the execution time by an
average of 4%, it leads to more profit by an average of 60% and 76% for supply chains in
uniform and discriminatory pricing, respectively. For the problem with seven supply chains,
Roth-Erev reinforcement learning cannot solve the problem because it takes up more running
memory than is available.
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Table 5 Parameters related to bidding price and volume in case 1

Supply chains 1 2 3 4 5

T ECs 2511 2774 2111 2705 2572

Maximum bidding volume 2761 3052 2322 2976 2830

Private value vs 140 150 225 160 220

6 Auction simulation in the presence and absence of limitations

This section compares the uniform and discriminatory pricing with and without price and
volume cap limitations for the different carbon policies for appropriate auction design. First,
different policies are set in Sect. 6.1. Second, the results are described in detail in Sect. 6.2.

6.1 Scenario setting

We present different carbon auction policies to compare the uniform and discriminatory
pricing in the two cases. In case 1, there are no limitations on bidding price and volume while
in case 2 the government set limitations on bidding price and volume. For designing different
policies, fivemitigation rates are considered, i.e., λ � 0%, 10%, 20%, 30%, 40%.According
to Eq. (1), when λ is small, the carbon supply quantity is high and vice versa. Five supply
chains are supposed to compete in the carbon auction market and trade their allowances
in the carbon trading market. Each supply chain includes two manufacturing centers, three
warehouses, four customer zones, and produces three product types. The details are similar to
Sect. 5.1. According to the generated data, the values of T ECs , private value vs are according
to Table 5, for case 1. According to the private values, supply chains 3, 4, and 5 are stronger
than supply chains 1 and 2.

In case 2, the price and volume cap limitations are set as BV � 3, 000 and BP � 140.

6.2 Simulation results

The results are presented based on the market share for each supply chain, the bidding price,
the price that the supply chains have to pay at the auction, the carbon trading price, and the
average profit of the supply chains.

6.2.1 The market share of supply chains in carbon allowance auction

In this section, themarket share of each supply chain is calculated in the carbon auctionmarket
for different policies in two cases. The results are presented in Table 6, 7, 8 and 9. In these
tables, bidding volume (bvi ), the carbon allowances gained (gvi ), and the market share of
each supply chain in the carbon auction market are presented for uniform and discriminatory
pricing in two cases.

Table 6 and Table 7 show that when there are strong supply chains, the supply chains
bid their maximum bidding volumes, but the market share for strong supply chains, i.e.,
supply chains 3,4, and 5, is larger than the others for λ � 30% and 40%. As the mitigation
rate decreases, the market shares of weak bidders increase, and they are equal or greater
in the uniform pricing than the ones in the discriminatory pricing method. Because in the
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Table 6 The market share of each supply chain for the uniform pricing method in case 1

λ

Supply chains
0% 10% 20% 30% 40%

1 bv1 2511 2637 2761 2762 2761

gv1 2511 873 0 0 0

Market share 20 8 0 0 0

2 bv2 2774 2887 2915 3,052 3,052

gv2 2774 2887 2061 744 0

Market share 22 25 20 8 0

3 bv3 2111 2179 2312 2322 2322

gv3 2111 2179 2312 2322 2322

Market share 17 19 23 26 31

4 bv4 2705 2801 2976 2975

gv4 2705 2801 2957 2976 2452

Market share 21 25 29 34 32

5 bv5 2572 2661 2809 2829 2830

gv5 2572 2661 2809 2829 2830

Market share 20 23 28 32 37

Table 7 The market share of each supply chain for the discriminatory pricing method in case 1

λ

Supply chains
0% 10% 20% 30% 40%

1 bv1 2511 2642 2761 2762 2761

gv1 2511 542 0 0 0

Market share 20 5 0 0 0

2 bv2 2774 2947 3051 3052 3052

gv2 2774 2947 2013 744 0

Market share 22 26 20 8 0

3 bv3 2111 2279 2321 2322 2322

gv3 2111 2279 2321 2322 2322

Market share 17 20 23 26 31

4 bv4 2705 2883 2975 2976 2975

gv4 2705 2883 2975 2976 2452

Market share 21 25 29 34 32

5 bv5 2572 2755 2829 2829 2830

gv5 2572 2755 2829 2829 2830

Market share 20 24 28 32 37
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Table 8 The market share of each supply chain for the uniform pricing method in case 2

λ

Supply chains
0% 10% 20% 30% 40%

1 bv1 2511 3000 3000 3000 3000

gv1 2511 2281 2028 1774 1521

Market share 20 20 20 20 20

2 bv2 2774 3000 3000 3000 3000

gv2 2774 2281 2028 1774 1521

Market share 22 20 20 20 20

3 bv3 2111 3000 3000 3000 3000

gv3 2111 2281 2028 1774 1521

Market share 17 20 20 20 20

4 bv4 2705 3000 3000 3000 3000

gv4 2705 2281 2028 1774 1521

Market share 21 20 20 20 20

5 bv5 2572 3000 3000 3000 3000

gv5 2572 2281 2028 1774 1521

Market share 20 20 20 20 20

Table 9 The market share of each supply chain for the discriminatory pricing method in case 2

λ

Supply chains
0% 10% 20% 30% 40%

1 bv1 2511 3000 3000 3000 3000

gv1 2511 2281 2028 1774 1521

Market share 20 20 20 20 20

2 bv2 2774 3000 3000 3000 3000

gv2 2774 2281 2028 1774 1521

Market share 22 20 20 20 20

3 bv3 2111 3000 3000 3000 3000

gv3 2111 2281 2028 1774 1521

Market share 17 20 20 20 20

4 bv4 2705 3000 3000 3000 3000

gv4 2705 2281 2028 1774 1521

Market share 21 20 20 20 20

5 bv5 2572 3000 3000 3000 3000

gv5 2572 2281 2028 1774 1521

Market share 20 20 20 20 20
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uniform pricing, supply chains shade their bidding volume further than the discriminatory
pricing ones. When the government provides the carbon allowances that supply chains need
to support their productions, i.e., λ � 0%, the supply chains bid their minimum volume,
i.e., T ECs and the amount of carbon allowance gained by all supply chains is equal to the
volume they bid in two pricing methods.

Table 8 and Table 9 show that when there are no strong supply chains, they bid the volume
cap BV for λ � 10%, 20%,30%, and 40%, and they win the same share from the carbon
auction market. However, for λ � 0%, the supply chains bid T ECs and win T ECs , like
case 1.

6.2.2 The bidding prices

The bidding prices in two pricing methods under different mitigation rates are shown for two
cases in Fig. 3. Two important conclusions can be drawn from this figure. First, in case 1, the
strong bidders do not bid their private values or maximum bidding prices because they try to
manipulate the auction’s carbon price and reduce it in two pricing methods. Nevertheless, in
case 2, when λ � 10%, 20%, 30%, and 40%, the bidding prices are the same and equal to
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Fig. 3 The bidding prices of the supply chains (SC) under different policies (a) uniform pricing-case 1, (b)
discriminatory pricing-case 1, (c) uniform pricing-case 2, and (d) discriminatory pricing-case 2
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the price cap BP for two methods. As previously concluded, supply chains bid volume cap
in this case (see Table 8 and Table 9). Therefore, when there are no strong supply chains,
increasing the mitigation rate intensifies competition. With the decrease in the mitigation
rate, the competition decreases. They can reduce the carbon allowance prices in the carbon
auction so that when λ � 0%, the equilibrium price falls to 100, i.e., the reserve price under
twomethods for two cases. Second, generally, the uniformmethod’s bidding prices are higher
than those in the discriminatory pricing, and they have higher dispersion. This fact is because,
in discriminatory pricing, bidders pay their bidding prices; therefore, they try to predict the
equilibrium price and bid close to it. Nevertheless, in the other method, every winner pays the
equilibrium price; therefore, forecasting the equilibrium is less critical (Cramton and Kerr,
2002).

6.2.3 The carbon price in the carbon auction and carbon trading market

Figure 4 illustrates that for λ � 10% to 40%, the average paid prices in the discriminatory
pricing are larger than the ones in the uniform pricing for case 1 because, in the former, the
supply chains pay their bidding prices while in the latter method, they pay the equilibrium
price. However, in case 2, they pay the same price, i.e., BP in two pricing methods and win
the same share of the auction market (see Table 8 and Table 9). Because for these values of
λ the carbon trading price are greater than BP , therefore supply chains bid and pay the price
cap to gain the maximum market share.

With the increase in mitigation rate, the carbon trading price rises too. For example, when
λ is 40%, in case 1, strong supply chains try to buy a significant fraction of carbon allowances
to make scarcity in the carbon market (see Table 6 and Table 7). Strong supply chains then
sell them at a high price to losers, weak supply chains in the carbon trading market. Therefore
with the decrease in carbon supply, the carbon prices increase in the carbon auction market.
For high carbon allowance supply quantity, for example, when λ is 0%, the carbon trading
price is zero. Therefore, supply chains should bid as much as they require. Otherwise, they
have to sell their surplus allowances at zero price in the carbon trading market in two cases.
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Fig. 5 The average profit of supply chains under different policies relative to the case without the policy in (a)
case 1 and (b) case 2

6.2.4 The supply chains’ profit

In this section, the average profits of the supply chains (ave_prof pw policy) are compared
in the presence and absence of auction policies under the uniform and discriminatory pricing
for the two cases. These values are calculated using the following equations:

prof pwspolicy � prof pspolicy − prof ws

pro f ws
∀s, policy (11)

ave_prof wpolicy �
∑

s pro f pwspolicy

S
∀policy (12)

prof pspolicy and prof ws represent the profit of supply chain s for each policy and
the profit of supply chain s without policies, respectively. Figure 5 shows that the carbon
allowances auction hurts the average profit of supply chains for all policies in two cases. In
case 1, the reduction in the average profit of supply chains in the uniform pricing is almost
less than the discriminatory pricing because, in the former method, supply chains pay less
for a unit of carbon allowances while they are equal in case 2 because the supply chains
pay the same price in two pricing methods (see Fig. 4). With the increase in the mitigation
rate, although the carbon emission decreases, the costs of supply chains increase sharply. For
example, For λ � 40%, the emission is reduced by 40%, but the average profit of supply
chains is reduced by 543% in case 1 and 426% in case 2. This is because, firstly, by increasing
the mitigation rate, as shown in Fig. 5, the use of green technology increases. Secondly, as the
mitigation rate increases, the price of carbon in the carbon trading market increases. Suppose
the government wants to support supply chains and not allow their average profit to reduce
more than half, and the most considerable reduction in emissions occurs. In that case, the
mitigation rate must be 20% in case 1 and 30% in case 2.

To examine the policy with λ � 40% in detail, the supply chains’ profits are compared
in two cases. Figure 6a illustrates that profits for strong bidders (supply chains 3, 4, and 5)
are positive and negative for weak bidders (supply chains 1 and 2). Strong bidders can buy
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Fig. 6 The supply chains’ profits for λ � 40% for (a) case 1 and (b) case 2

a large share of allowances, make scarcity in the carbon market, and then sell their surplus
allowances at a high price in the carbon trading market (see Sect. 6.2.3). Nevertheless, small
bidders lose the carbon auction and have to buy their required allowances at a high price
in the carbon trading market. However, as shown in Fig. 6b, the profits of all supply chains
are negative, unlike case 1. This is because there are no strong supply chains; therefore, all
supply chains are hurt by this policy.

7 Conclusions and future research

In this paper, we studied the uniform and discriminatory pricing in the carbon allowance
auction in two cases. In case 1, there are no limitations on bidding price and volume while
in case 2 the government set limitations on bidding price and volume. When there are no
limitations on price and volume, the carbon allowance will be more valuable for some supply
chains; therefore, some supply chains will be strong in the market, and others will be weak.
Whereas, if there are limitations on price and volume, supply chains have the same condition
in the market. We simulated the carbon auction market, including the government and supply
chains, utilizing multi-agent-based modeling. The government allocates the initial carbon
allowances via auction, and the supply chains as participants in the auction determine their
bidding so that their profits are maximized. They can trade their allowances with each other
in the carbon trading market. The Q-learning algorithm, the bisection, and CPLEX solver
were used to analyze and develop bidding strategies, determine the equilibrium price in the
carbon trading market, and optimal supply chain’s decision, respectively.

The simulation results demonstrated that supply chains’ behavior in two cases depends on
mitigation rate and type of pricing method. When the mitigation rate is high or initial carbon
allowances are low, the supply chains attempt to gain more market share. In case 1, strong
supply chains obtain the carbon allowance more than other supply chains. They try to reduce
the auction’s carbon price; therefore, they bid less than their private value. However, in case
2, because there are no strong supply chains, they bid the price cap and gain the same market
shares. Otherwise, if all the carbon allowances required by the supply chains are auctioned
off, the supply chain bid the lowest possible price, i.e., the reserve price.
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In general, the supply chains in the uniform pricing method pay less than or equal to
the discriminatory pricing in two cases. The carbon auction lessens supply chains’ profits,
and the higher the mitigation rate, the greater the negative effect. Between the two pricing
methods, uniform pricing has a less negative impact than the other in case 1. In case 2, both
pricing methods have the same impact on the supply chain’s profit. But on average, supply
chain’s profits are reduced less in the presence of limitations. Therefore, if the government
is looking for a method that has the maximum profit for the supply chains, uniform pric-
ing is more appropriate in case 1, but in case 2, two pricing methods are the same in this
respect. Furthermore, the government should determine a reasonable mitigation rate so that
the supply chains’ profits are not harmed, and at the same time emissions are decreased. If
the mitigation rate is very high, emissions will be significantly reduced, but strong bidders
will take advantage of this situation and make much profits in case 1. On the other hand,
weak bidders’ profits will be seriously reduced. Therefore, the government should balance
economic and environmental goals by selecting an appropriate mitigation rate.

In this paper, we focused on uniform and discriminatory pricing methods for analyzing
the carbon auction market. For a future research, the performance of supply chains can
be investigated under the other carbon auction methods. Furthermore, the government can
consider green subsidy for using green technologies to aid supply chains.

Appendices

Appendix A

The following indices are applied for each supply chain’s mathematical modeling:

Supply chain index s � {1, 2, . . . , S}
Product index i � {1, 2, . . . , I }
Machine index j � {1, 2, . . . , J }
Manufacturing center index m � {1, 2, . . . , M}
Warehouse index w � {1, 2, . . . ,W }
Customer zone index c � {1, 2, . . . ,C}
Transportation mode index v � {1, 2, . . . , V }
Period index t � {1, 2, . . . , T }

The input parameters include the followings:

desict Forecasted demand for product i in customer zone c in period t in supply chain s

Fcsm Fixed costs for manufacturing center m to operate in each period in supply chain s

Fc
′
sw Fixed costs for warehouse w to operate in each period in supply chain s

Ucsim Unit holding cost per period for product i in manufacturing center m in supply chain s

Uc
′
siw Unit holding cost per period for product i in warehouse w in supply chain s

Hcsm Holding capacity in manufacturing center m in each period in supply chain s

Hc
′
sw Holding capacity in warehouse w in each period in supply chain s
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Voi The volume of product i

Psi j Processing time (hours) to produce a unit of product i on machine j in supply chain s

Lsi j Labor/hour cost to produce a unit of product i on machine j in supply chain s

Cmsi Cost of raw material for producing a unit of product i in supply chain s

Ocsim Variable overhead cost for producing a unit of product i in manufacturing center m in supply
chain s

Cps jm Capacity hours for the production in manufacturing center m on machine j in each period in
supply chain s

Crsim Capacity units of raw material supply for product i in manufacturing center m in each period
in supply chain s

tcsimwv Unit transportation cost of product i from manufacturing center m to warehouse w through
mode v in supply chain s

tc
′
siwcv Unit transportation cost of product i from warehouse w to customer zone c through mode v

in supply chain s

t1
max

smwv

Maximum transportation capacity from manufacturing center m to warehouse w through
mode v in each period in supply chain s

t2
max

swcv

Maximum transportation capacity from warehouse w to customer zone c through mode v in
each period in supply chain s

I1sim Inventory level of product i in manufacturing center m at the start of the planning horizon

I
′
1sim Inventory level of product i in manufacturing center m at the end of the planning horizon

I2siw Inventory level of product i in warehouse w at the start of the planning horizon

I
′
2siw Inventory level of product i in warehouse w at the end of the planning horizon

epsi j Estimated carbon emissions to produce a unit of product i on machine j in any period per
unit time in supply chain s

etsimwv Estimated carbon emissions for the shipment a unit of product i from manufacturing center
m to warehouse w through mode v in supply chain s

et
′
siwcv Estimated carbon emissions for the shipment a unit of product i from warehouse w to

customer zone c through mode v in supply chain s

ehsim Estimated carbon emissions for holding a unit of product i in manufacturing center m in each
period in supply chain s

eh
′
siw Estimated carbon emissions for holding a unit of product i in warehouse w in each period in

supply chain s

G A large number

The decision variables include the followings:

Qpsi jmt Quantity of product i produced in manufacturing center m on machine j at period t in
supply chain s

Xsimwvt Quantity of product i shipped from manufacturing center m to warehouse w through
mode v at period t in supply chain s

X
′
siwcvt Quantity of product i shipped from warehouse w to customer zone c through mode v

at period t in supply chain s

Ysimt Inventory amount of product i in manufacturing center m at the end of period t in the
supply chain s
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Y
′
siwt Inventory amount of product i in warehouse w at the end of period t in the supply

chain s

Fsmt �
{
1,

0,

If the manufacturing center m operates in period t in the supply chain s

Otherwise

F
′
swt �

{
1,

0,

If warehouse w operates in period t in the supply chain s

Otherwise

Cost_ECs Total costs of supply chain s in the cap-and-trade system

ECs Total carbon emission produced in supply chain s

Caps Carbon allocated to supply chain s in the auction

T EP Total carbon emission produced in all supply chains

ψ Carbon trading price

According to these parameters and variables, each supply chain’s objective function is
formulated using mixed-integer linear programming based on a given carbon trading price.
Each supply chain aims to minimize its objective function (Eq. 13). It includes fixed costs for
operating and opening manufacturing centers, and warehouses, production cost, inventory
holding costs in manufacturing centers and warehouses, transportation costs for the shipment
of products from manufacturing centers to warehouses and warehouses to customer zones,
and the revenue (cost) of selling (buying) carbon allowances, respectively:

Cost_ECs � Min
∑

m

∑

t

Fcsm Fsmt +
∑

w

∑

t

Fc
′
swF

′
swt

+
∑

i

∑

j

∑

m

∑

t

Qpsi jmt (Psi j Lsi j +Cmsi +Ocsim) +
∑

i

∑

m

∑

t

UcsimYsimt

+
∑

i

∑

w

∑

t

Uc
′
siwY

′
siwt +

∑

i

∑

m

∑

w

∑

v

∑

t

tcsimwvXsimwvt

+
∑

i

∑

w

∑

c

∑

v

∑

t

tc
′
siwcvX

′
siwcvt + ψ(ECs − Caps)

(13)

The carbon emission generated by each supply chain s is calculated according to Eq. (14).
It includes carbon emissions generated in manufacturing centers, shipment of products from
manufacturing centers to warehouses and warehouses to customer zones, and inventory hold-
ing in manufacturing centers and warehouses.

(14)

ECs �
∑

i

∑

j

∑

m

∑

t

Psi j epsi j Qpsi jmt +
∑

i

∑

m

∑

w

∑

v

∑

t

etsimwvt Xsimwvt

+
∑

i

∑

w

∑

c

∑

v

∑

t

et
′
siwcvt X

′
siwcvt

+
∑

i

∑

m

∑

t

ehsimYsimt +
∑

i

∑

w

∑

t

eh
′
siwY

′
siwt

The objective function in Eq. (13) is subject to the following constraints:
Limitation on raw material supply:

∑

j

Qpsi jmt ≤ Crsim ∀s, i,m, t (15)
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Restriction on the total available working hours for each machine:
∑

i

Qpsi jmt Psi j ≤ Cpsjm ∀s, j,m, t (16)

Storage capacity restriction in manufacturing centers and warehouses:
∑

i

V oiYsimt ≤ Hcsm ∀s,m, t (17)

∑

i

V oiY
′
siwt ≤ Hc

′
sw ∀s, w, t (18)

Limitations on transportation capacity for shipment of products from the manufacturing
centers to the warehouses and the warehouses to the customer zones:

∑

i

(Voi Xsimwvt ) ≤ t1
max
smwv

∀s,m, w, v, t (19)

∑

i

(Voi X
′
siwcvt ) ≤ t2

max
swcv

∀s, w, c, v, t (20)

The inventory balance in manufacturing centers, warehouses, and customer zones:

Ysimt − Ysim(t−1) �
∑

j

Qpsi jmt −
∑

w

∑

v

Xsimwvt ∀s, i,m, t (21)

Y ′
siwt − Y ′

siw(t−1) �
∑

m

∑

v

Xsimwvt −
∑

c

∑

v

X ′
siwcvt ∀s, i, w, t (22)

∑

j

∑

m

∑

t

Qpsi jmt �
∑

c

∑

t

desict +
∑

m

I ′
1sim −

∑

m

I1sim +
∑

w

I ′
2siw −

∑

w

I2siw ∀i, s

(23)

Restriction on satisfying demand:
∑

w

∑

v

X ′
siwcvt � desict ∀s, i, c, t (24)

Inventory levels at the start and end of the planning horizon in manufacturing centers and
warehouses:

Ysim0 � I1sim&YsimT � I ′
1sim ∀s, i,m (25)

Y ′
siw0 � I2siw&YsiwT � I ′

2siw ∀s, i, w (26)

Limitation on decision variables:

0 ≤ Qpsi jmt ≤ GFsmt ∀s, i,m, t (27)

0 ≤ Xsimwvt ≤ GFsmt&0 ≤ Xsimwvt ≤ GF ′
swt ∀s, i,m, w, v, t (28)

0 ≤ X ′
siwcvt ≤ GF ′

swt ∀s, i, w, c, v, t (29)

0 ≤ Ysimt ∀s, i,m, t (30)

0 ≤ Y ′
siwt ∀s, i, w, t (31)
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Appendix B

The centers of each supply chain are dispersed randomly in a square area with a size of
10 × 10 units of distance. Euclidean distance is considered between the two centers. The
distance between manufacturing center m and warehouse w and between warehouse w and
customer zone c are represented by dismw and diswc, respectively. These distances are used
for the following parameters that their values are dependent on distance. They are calculated
according to the following formulas (the brackets indicate the generation of a random number
from a uniform distribution in the interval):

tcsimwv � Voi [2, 4] ∗ dismw ∗ tsv (32)

tc
′
siwcv � Voi [2, 4] ∗ diswc ∗ tsv (33)

etsimwv � Voi [2, 4] ∗ dismw ∗ ctsv (34)

et
′
siwcv � Voi [2, 4] ∗ diswc ∗ ctsv (35)

The parameters tsv and ctsv indicate the cost and carbon emissions for shipping a unit of
product in a distance unit through mode v, respectively. These two parameters are generated
according to Table 10:

The inventory level for all products at the start and the end of the planning horizon in the
manufacturing centers andwarehouses are zero. The parameters regarding themanufacturing
machine are calculated based on Table 11. The others are generated according to the details
given in Table 12.

Table 10 Specifications of
transportation mode-dependent
parameters

The parameter Mode Value

tsv 1 [1, 2]

2 [2, 3]

ctsv 1 [16 ∗ 10−3, 20 ∗ 10−3]

2 [12 ∗ 10−3, 16 ∗ 10−3]

Table 11 Specifications of the
machine-dependent parameters The parameter The type of

machine
Value

Lsi j 1 [15, 20]

2 1.1 ∗ [15, 20]

epsi j 1 1.25 ∗ [40, 45] ∗ 10−3

2 [40, 45] ∗ 10−3
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Table 12 Specifications of the
generated examples Parameters Value

desict [30,200]

Fcsm [40000, 60000]

Fc
′
sw [30000, 40000]

Ucsim u[15, 40]

Uc
′
siw u[30, 70]

Hcsm
(∑

i
∑

c
∑

t desict
T

)
∗ max{Voi }

Hc
′
sw

(∑
i
∑

c
∑

t desict
T

)
∗ max{Voi }

Psi j u[0.5, 2]

cmsi u[55, 85]

Ocsim u[15, 30]

Cps jm (max{Psi j } ∗ ∑
i
∑

c
∑

t desict )/M

Crsim (
∑

j (Cps jm/
∑

i Psi j ))/I

t1
max

smwv

u[300, 600]

t2
max

swcv

u[300, 600]

ehsim u[3, 4] ∗ 10−3

eh
′
siw u[2, 4] ∗ 10−3
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