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Abstract
In solving the system of hyperbolic equations, highly accurate numerical methods which are easy to apply and have a shorter
run time without causing numerical oscillations are more popular. In the present study, the space–time conservation element
and solution element (CESE) method has been developed into two-dimensional spherical coordinates using polar elements.
Then, the developedCESEmethod has been applied to investigate the propagation of a non-Fourier thermalwaves in biological
tissue. To evaluate the performance of the CESE method, the numerical results are compared to the existing semi-analytical
results, and it is observed that the results are in good agreement. The experimental test is then conducted to measure the
transient temperature behavior of the spherical Intralipid phantom irradiated by a near-infrared pulsed laser. A comparison of
experimental and numerical results demonstrates the applicability of the dual phase lag model in the prediction of non-Fourier
heat conduction in biological tissue. In addition, the contours of heat flux and temperature during and after laser irradiation are
presented, and the propagation of thermal waves in the tissue is examined and discussed. The results indicate that the effects
of the two-dimensional thermal wave appear after stopping the laser irradiation. Finally, the study of the effect of tissue type
on wave progression in the tumor, muscle, and fat demonstrates that in the fat tissue, having the lowest thermal diffusivity,
the thermal progression is less than the tumor and muscle. However, the temperature distribution in the fat tissue is greater
than in the other tissues.

Keywords Conservation element and solution element method ·Dual phase lag model · Spherical tissue · Intralipid phantom ·
Non-Fourier heat conduction

List of Symbols

c Specific heat of tissue
cb Specific heat of blood
F Flux vector in radial direction
G Flux vector in angular direction
H Space–time flux vector
k Thermal conductivity
q Heat flux vector
qr Heat flux in radial direction
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qθ Heat flux in angular direction
qL Laser intensity
Qm Metabolic heat generation
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r Coordinate variable in radial direction
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R Diffuse reflectance
S Source vector
t Time
T Temperature of tissue
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θ Coordinate variable in angular direction
θ∗ Dimensionless angle
ρ Density of tissue
ρb Density of blood
τq Phase lag time of heat flux
τT Phase lag time of temperature gradient
� Dimensionless temperature
ωb Blood perfusion rate

1 Introduction

In recent years the applications of short-pulse lasers have
been expanded in laser medical treatments, such as laser-
induced hyperthermia, laser surgery, and laser-based pho-
tothermal therapy (PTT). Inaccurate prediction of tempera-
ture distribution and lack of control over temperature rise in
the tissues results in damage to surrounding healthy tissues
during any laser therapy. Hyperthermia is a type of medi-
cal treatment in which the body temperature is exposed to
temperatures above the normal range to destroy or ablate
specific cells. The best region of the wavelength spectrum
to treat hyperthermia is the near-infrared range, where tis-
sue absorption properties exceed those of the blood [1].
Based on the rate of temperature increasing in the tissue,
hyperthermia treatments are divided into three categories,
long-term low-temperature hyperthermia (T ≤ 41◦C),
moderate-temperature hyperthermia (41◦C < T < 46◦C),
and high-temperature hyperthermia (T ≥ 46◦C) [2]. The
higher the temperature in the tissue, the shorter the irradia-
tion time, and in high-temperature hyperthermia treatment,
this time is reduced to 4–6 min. Pennes equation is one of
the bio-heat transfer models that analyzes thermal processes
in the human body in different factual situations more sim-
ply than other existing models [3]. Due to the heterogeneous
structure of the biological tissue and the occurrence of struc-
tural thermal interaction at various time scales, the Fourier’s
law of thermal conduction is improper for thermal analysis,
and non-Fourier models should be used to obtain the heat
distribution.

Among the various numerical methods for simulation of
the hyperbolic equation system, the tendency is much more
toward using methods that in addition to being simple and
accurate, have a short runtime, and do not create unwanted
numerical oscillations in the range of high discontinuities.
The space–time CESE method proposed by Chang [4] to
solve one-dimensional conservation equations has all the
above features at the same time. By the mentioned method,
the quantities of space and time behave precisely the same
and differ in methodology and content from other numeri-
cal methods. This method emphasizes the integral form of

the conservation equations, giving a more accurate simu-
lation for the problems with significant discontinuities. In
the CESE method, the unknown variables are first estimated
using the first-order Taylor expansion in the solution ele-
ments (SEs). Then the conservation law is applied to each of
the conservation elements (CEs). Poshti et al. [5] used two
numerical methods, control volume (CV) and CESEmethod,
to investigate the non-Fourier temperature distribution in 1-
D spherical tissue based on the dual phase lag (DPL) model.
Analyzing the results, the CESEmethod illustrates the highly
discontinued areaswithout numerical oscillations as opposed
to the CV method. In addition, the CESE method, due to its
explicitness, requires less computational time than the CV
method for the same number of mesh points.

Based on the space–time flux conservation and type of
the governing equations, various schemes, such as a − μ,
a, and a − ε that differ in obtaining unknown derivatives
have been proposed in this method. The a − μ scheme is
a basic scheme of the CESE method used to solve the 1-
D convection–diffusion equation. In the a scheme of CESE
method, which is the time-reversible, the flux conservation
equations are written separately for the three existing CEs,
and unknown variables are obtained from the combination
of equations. In the case of the a − ε scheme; obtaining
a single conservation law around the combination of these
CEs reduces the complexity of the solution. In this scheme,
adjustable damping is added to the a scheme, so it can be
used to solve irreversible problems.

Behaving similarly to 1-D and multidimensional prob-
lems, one of the characteristics of the CESE method, there
is no need to apply dimensional splitting for solving multi-
dimensional problems. The development of the space–time
CESEmethod using tetrahedralmeshes for solving 2-DEuler
problems was proposed by Chang et al. [6, 7], and the results
were investigated for a 2-D shock reflection problem. The
primary building blocks for spatial meshes are triangular
in the 2-D CESE method. Zhang et al. [8] developed this
method with quadrilateral meshes, which creates, unlike the
original method, four conservation elements in each mesh
point and uses four mesh points at the previous time level
to find unknown variables at present. Because of the sim-
plicity, accuracy, and robustness of the a − ε scheme, they
have developed a 2-D case based on this scheme. Due to the
simplicity and comprehensiveness of the CESE method in
solving hyperbolic equations, many studies have been per-
formed using structured and unstructuredmeshing in 2-D and
3-D Cartesian coordinates [9–13]. Weng and Gore [14] used
the developed CESE method for simulating the 2-D and 3-D
flow fields, that include detonation wave, shock wave, and
expansion wave, in the pulse detonation engine. Chou and
Yang [15] applied the developed CESEmethod to investigate
non-Fourier behavior caused by laser irradiation in 2-D sin-
gle and double-layer structures.Unlike othermethods such as

123



Arabian Journal for Science and Engineering

finite difference or control volume, by this method, the heat
flux equations along the x and y directions with the energy
equation are solved simultaneously at each time step.

Wang et al. [16, 17] presented an improved CESEmethod
with a new structure of SEs and CEs. They used rectangu-
lar mesh to discretize the 2-D space domain and therefore
the directions of space meshes, contrary to the original
method, were perpendicular to each other and parallel to
the main Cartesian axes. Simplifying the solution proce-
dure, this method can be easily extended to 3-D scenarios.
An improved CESE method has obtained favorable results
in simulating various 2-D phenomena such as two-phase
detonations [18], elastic–plastic flows [19], crystallization
process [20], dam-break flows [21], shallow water problems
[22], etc. Jiang et al. [23] utilized improved CESE method
to solve 2-D and 3-D magnetohydrodynamic problems in
general curvilinear coordinates by using the PARAMESH
package for implementation of the parallel adaptive mesh
refinement algorithm. Combining two half-time steps to per-
form integration on a full-time step, they eliminated the
staggering nature of the space–time mesh structure in the
original CESE method.

Comparing the results of numericalmodelingwith the data
obtained from experiments plays a crucial role in design-
ing an effective technique for thermal ablation of tumors.
As an artificial structure, having the same characteristics as
body tissue, such as optical, thermal, electrical, and acoustic
properties, phantoms bring several advantages to experimen-
tal studies, including confirming the reliability of medical
technologies, reducing the cost of experiments, andmaintain-
ing compatibility with living tissues. The literature contains
many studies on the thermal and electrical behavior of tissue
phantoms. For example, Paul et al. [24] experimentally and
numerically studied the 3-D temperature distribution caused
by laser irradiation in equivalent tissue phantoms with the
presence and absence of blood vessels in the Cartesian coor-
dinate system. Sahoo et al. [25] presented the theoretical
and experimental results of temperature distribution in the
cylindrical tissue phantom embedded with and without gold
nanostructures and investigated the effects of thermal lagging
in the tissue during laser irradiation. Singh et al. [26] designed
a wireless multi-frequency electrical impedance tomography
system in order to test and evaluate its performance on the
phantoms with different inhomogeneities before applying it
to the human body. In order to investigate different models
of thermal conduction in the biological tissues, Li et al. [27]
measured the temperature response due to focusedultrasound
irradiation on cylindrical tissue phantom and ex vivo bovine
liver tissue and compared the resultswith the predicted results
by Fourier, thermal wave and DPL models.

A review of the applications of the CESE method in 2-D
and 3-D Cartesian coordinates with quadrilateral and hexa-
hedral meshes in previous studies confirms the ability of this

method to supply acceptable results for solving hyperbolic
problems. However, this method, despite many advantages
over other numerical methods, has not yet been used in the
multidimensional spherical coordinate system, therefore, in
the present study, an attempt has beenmade to investigate the
algorithm of the CESE method in 2-D spherical coordinates
using polarmeshes. Then, to confirm the proposed algorithm,
the results obtained from modeling of non-Fourier thermal
wave propagation due to laser irradiation on the spherical tis-
sue surface are compared with both of semi-analytical results
and experimental data measured by ultra-fast thermocouple
during laser irradiation on the phantom surface. The pro-
posed method provides the transient temperature and heat
flux distribution in the spherical tissue along with an analy-
sis of the non-Fourier thermal wave. Consequently, despite
the 2-D effects of the thermal wave, makes it possible to pre-
dict the position of the maximum temperature in the tissue
at different times.

2 Mathematical Model

At large scales, both temporally and spatially, the interac-
tion between energy carriers is macroscopically expressed
through Fourier’s law. As stated by the theory of classical
heat conduction (Fourier’s law), the heat flux is proportional
to the temperature gradient, and in 2-D spherical coordinates,
this law describes:

q(r , t) � −k∇T (r , t), (1)

where t , k, and r are the time, thermal conductivity, and 2-D
position vector (r , θ), respectively.

Nevertheless, in cases such as extremely short duration
[28], very high-temperature gradient [29], temperatures near
absolute zero [30], heat transfer in non-Newtonian fluids [31,
32], and thermal response of biological structures [33], the
conventional theory of local equilibrium, or in other words
the Fourier’s law, is not applicable because the microstruc-
tural effects are dominated in the transient heat conduction.
Tzou [34] proposed the DPL model to consider microstruc-
tural interactions of non-Fourier heat transfer, in which two
phase lags τq and τT are introduced for heat flux and tempera-
ture gradient, respectively. Considering two phase lag times,
the equation of the DPL model is mathematically expressed
as follows:

q
(
r , t + τq

) � −k∇T (r , t + τT). (2)

According to Eq. (2), three characteristic times are
defined, time t represents the transient heat transfer, time
t + τ T indicates the time at which the temperature gradient
occurs in the material, and time t + τ q denotes the time at
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which the heat flux flows [34]. By using first-order Taylor
series, Eq. (2) can be expanded at radial (r ) and angular (θ )
directions in the spherical coordinates:

qr + τq
∂qr
∂t

� −k

[
∂T

∂r
+ τT

∂2T

∂t∂r

]
, (3)

qθ + τq
∂qθ

∂t
� −k

r

[
∂T

∂θ
+ τT

∂2T

∂t∂θ

]
, (4)

where qr and qθ are the heat fluxes in the r and θ direc-
tions, respectively. Equations (3) and (4) become the classical
Fourier equation with zero considering the phase lag times
τT and τq .

Pennes equation has been applied to model the bio-heat
transfer, as shown below [35]:

ρc
∂T (r , t)

∂t
� −∇ · q + ωbρbcb(Tb − T ) + Qm + Qext,

(5)

where ρ is the density, c is the specific heat, ωb denotes
the perfusion rate of blood, Qm denotes the metabolic heat
generation, and Qext is the heat generated by external heat
sources. The subscript b is related to the blood. This model
considers the arterial system of tissue only composed of a
capillary network. Due to this, the convective heat transfer
between tissue and blood is negligible. In addition, conduc-
tive heat transfer in the blood and phase change in the tissue
are neglected in this model. Therefore, the only mode of heat
transfer between blood and tissue is blood perfusion to tissue,
which is included in the Pennes equation.

Substituting the divergence in 2-D spherical coordinates
to the right side of Eq. (5) gives:

(6)

ρc
∂T (r , θ , t)

∂t
� −2

r
qr − ∂qr

∂r
− 1

r

∂qθ

∂θ
− Cotθ

r
qθ

+ ωbρbcb (Tb − T ) + Qm + Qext.

Given that the laser irradiation is symmetrical concern-
ing the ϕ direction and there will be variations only in the
r and θ directions (see Fig. 1), the independent variables in
the 3-D Euclidean space will be r , θ , and t . Since the behav-
ior of time quantity is the same as spatial quantities in the
CESE method, the 3-D element obtained to apply the flux
conservation is similar to a cylindrical element having two
longitudinal directions with one angular direction. For this
reason, in order to use the divergence theorem, the govern-
ing equations must be written as cylindrical divergence. As a
result, Eqs. (3), (4), and (6) can be rewritten in the following
matrix form:

∂U
∂t

+
1

r

∂

∂r
(rF) +

1

r

∂G
∂θ

� S, (7)

Fig. 1 Schematic geometry of symmetrical spherical tissue irradiated
by laser light

whereU,F,G, and S are vectors of the primary variable, flux
in r-direction, flux in θ-direction, and source, respectively:

U �
⎡

⎢
⎣

qr
r
qθ

T

⎤

⎥
⎦, (8)

F �
⎡

⎢
⎣

k
τqr

(
T + τT

∂T
∂t

)

0
qr
ρc

⎤

⎥
⎦, (9)

G �
⎡

⎢
⎣

0
k
τq

(
T + τT

∂T
∂t

)

qθ
ρc

⎤

⎥
⎦, (10)

S �

⎡

⎢⎢
⎣

− qr
τqr

−qθ
τq

1
ρc

(
ωbρbcb(Tb − T ) + Qm − qr

r − Cotθ
r qθ

)

⎤

⎥⎥
⎦.

(11)

Given that the physical variables and their first-order
derivatives are unknowns in the CESE method, all unknown
quantities must be determined at time t � 0. In this study,
the initial temperature of tissue phantom is equal to 24.3◦C,
and other initial conditions can be gained by:

∂T

∂r
,

∂T

∂θ
, qr ,

∂qr
∂r

,
∂qr
∂θ

, qθ ,
∂qθ

∂r
,

∂qθ

∂θ
(r , θ , 0) � 0.

(12)

Because the wavelength of the laser irradiated on the tis-
sue is in the infrared region, the highly absorbed situation
occurs, and the majority of the laser heat flux is absorbed
within the minimal thickness at the tissue surface [36]. Thus
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Qext is omitted from Eq. (6), and the laser effect is assumed
to be the constant heat flux boundary condition at the tissue
surface (r � ro). Equation (3) calculates the temperature
gradient in the radial direction by determining the radial heat
flux at the surface of the tissue as well as initial conditions.
Then the temperature at the tissue surface is obtained using a
backward differential scheme. In order to determine the tem-
perature gradient in angular direction at the tissue surface, the
backward differential scheme for time can be used in Eq. (4).
Other unknown quantities at r � ro can be determined as:

∂qr
∂r

,
∂qr
∂θ

, qθ ,
∂qθ

∂r
,

∂qθ

∂θ
(ro, θ , t) � 0. (13)

As seen in Fig. 1, the symmetry boundary condition is
established at θ � 0. Therefore, the values of qr , ∂qr/∂r ,
T and ∂T /∂r at point (r , 0) are equal to the corresponding
values at point (r , �θ) and other unknown quantities can be
determined as:

∂qr
∂θ

, qθ ,
∂qθ

∂r
,

∂qθ

∂θ
,

∂T

∂θ
(r , 0, t) � 0. (14)

In the center of the spherical tissue, the insulation bound-
ary condition can be adopted, in which case the temperature
at the center of the tissue is equal to the temperature at the
radius r � �r , and other unknown quantities can be given
as:

qr ,
∂qr
∂r

,
∂qr
∂θ

, qθ ,
∂qθ

∂r
,

∂qθ

∂θ
,

∂T

∂r
,

∂T

∂θ
(0, θ , t) � 0.

(15)

Assuming no heat loss from the surface of the tissue and
also being the angular heat flux at θ � 0 equal to zero due to
symmetry; therefore, the output thermal boundary condition
is considered at θ � π/2. In this case, the values of qr ,
∂qr/∂r , qθ , ∂qθ/∂r , T and ∂T /∂r at point (r , π/2) are
equal to the corresponding values at point (r , π/2 − �θ)

and other unknown quantities can be determined as:

∂qr
∂θ

,
∂qθ

∂θ
,

∂T

∂θ
(r , π/2, t) � 0. (16)

3 CESE Schemewith Polar SpaceMesh

The processing steps of the CESE method begin with trans-
forming the differential form of the governing equations into
integral form equations. The next step is to divide the space—
time domain using conservation and solution elements and
approximate the unknown variables by the first-order Taylor
expansion in the solution elements, followed by determining
relationships between spatial and temporal derivatives. The

final step includes obtaining the unknown variables by trans-
forming the volume integral into the surface integral around
the conservation elements using divergence law.

The original CESEmethod uses three-dimensional octag-
onal meshes in which the two space directions are neither
perpendicular to each other nor along the coordinate axes,
resulting in complexity in the solution process. However, the
improved CESE method uses hexagonal meshes, which can
easily be extended to three-dimensional because of its two
perpendicular space directions. In this study, polar meshes
have been used to solve equations in the 2-D spherical
coordinate system, which formed a cylindrical segment in
three-dimensional Euclidean space E3 (whose coordinates
are defined as x1 � r , x2 � θ , x3 � t). Therefore, it is
unnecessary to convert the equations from the spherical coor-
dinate system to the Cartesian system or to use unstructured
meshes. By using the Gaussian divergence theorem in the
Euclidean space E3, Eq. (7) can be transformed into integral
conservation form as below [4]:
∮

S(V )

Hm · ds �
∫

V

SmdV , (17)

where m � 1, 2, 3 represents the number of primary vari-
ables, and Hm � (Fm , Gm , Um) is the space–time flux
vector, where Fm , Gm , and Um are the components of the
vector F, G, and U , respectively. S(V ) is the boundary of
arbitrary space–time domain V in the Euclidean space E3,
ds � dσ .n is the surface element on S(V ) in which dσ is the
area and n is the outward unit normal of the surface element,
and Sm are the components of the source vector S.

The spatial domain is divided into staggered mesh points
at different time levels. In the two-dimensional scheme of
the CESE method, (i , j , n) represents a set of space–time
mesh points in E3, where n � 0, ±1/2, ±1, . . . for time,
i � n ± 1/2, n ± 3/2, . . . for r and j � n ± 1/2, n ± 3/2,
. . . for θ . The projection of themesh points on the r−θ plane
is shown in Fig. 2a, where the interval between the hollow
circle points and the solid circle points in the time direction is
equal to �t/2. The solution element corresponding to mesh
point (i , j , n) is represented as SE(i , j , n), and as shown
in Fig. 2b, it consists of a curved plane BB ′′F ′′F and two
flat planes, A′C ′E ′G ′ and HH ′′D′′D, having intersection
point P ′(i , j , n). Similarly, there are four solution elements
corresponding to the other points A, C, E , and G, which
are at the time level n − 1/2. The total space–time domain
is divided into non-overlapping conservation elements. The
corresponding conservation element of point P ′ is denoted
by CE(i , j , n), which is formed as a cylindrical segment,
ACEGA′C ′E ′G ′, with the surfaces associated with SE

(
P ′)

and the surfaces associated with the four solution elements at
the previous time level, SE(A), SE(C), SE(E) and SE(G)

(see Fig. 2c). Since the surfaces of the CEs are along the
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Fig. 2 Schematic illustration of the space–time domain and primary elements in the developed CESEmethodwith polar spacemesh, a 2-D staggered
mesh points, b solution element, and c conservation element

unit vectors in the r , θ , and t directions, the normal vectors
of each surface of the CEs are along one of the coordinate
axes. Thus, only a single component of the total flux h is
considered in the calculation of the output space–time flux
from each surface.

Due to define the SE
(
P ′) for an arbitrary mesh point

P ′(i , j , n), the variablesUm , Fm , and Gm using a first-order
Taylor expansion can be approximated as follows [17]:

Um (δr , δθ , δt)P ′ ≡ [Um (δr , δθ , δt)]ni , j � (Um)P ′

+ (Umr )P ′ δr + (Umθ )P ′ δθ + (Umt )P ′ δt .

(18)

The expressions for Fm and Gm can also be written simi-
larly. Here δr � r − rP ′ , δθ � θ − θP ′ and δt � t − tP ′ ; rP ′ ,
θP ′ and tP ′ are the position coordinates at the P ′ mesh point.

Subscript P ′ represents the value of the variables mentioned
and their derivatives with respect to r , θ , and t at mesh point
P ′. Since Fm and Gm are a function of Um , their derivatives
can be obtained using the chain rule:

(19)

Fmr �
3∑

l�1

∂Fm
∂Ul

∂Ul

∂r
, Fmθ

�
3∑

l�1

∂Fm
∂Ul

∂Ul

∂θ
, Fmt �

3∑

l�1

∂Fm
∂Ul

∂Ul

∂t
.

The derivatives of Gm can be obtained in an analogous
way. In phenomena similar to thermal waves, the govern-
ing equations are stiff in nature, meaning that the source
term time scale is very small compared to the time scale of
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convective heat transfer [37]. As a result, in numerical calcu-
lations, the source term only affects mesh points that are at
the new time level, and no effect of the source term is present
in determining the values of Umt at the previous time level.
Therefore, as stated by Eq. (7), the values of Umt at points
A, C , E , and G are determined:

Umt � −1

r
Fm − Fmr − 1

r
Gmθ . (20)

Note that Eqs. (18)–(20) show that the only unknown vari-
ables in the CESEmethod areUm ,Umr , andUmθ . According
to the definition of CE at the mesh point P ′, Eq. (17) can be
rewritten as:

∮

S(CE(P ′))
Hm · ds � (Sm)P ′rP ′�r�θ

�t

2
. (21)

Integrating Eq. (21) on the surfaces of CE
(
P ′) with the

assistance of Eq. (18) yields the following expression:

ri (Um)ni , j +
�r2

12
(Umr )

n
i , j − �t

2
ri (Sm)ni , j

�
∑

p�∓1; q�∓1

{

−q
�t

4�θ

[
Gm

(
−p

�r

4
, 0,

�t

4

)]n−1/2

i p, jq

− p
�t

4�r
rip

[
Fm

(
0, −q

�θ

4
,

�t

4

)]n−1/2

i p, jq

+
1

4
rip

[
Um

(
−p

�r

4
, −q

�θ

4
, 0

)]n−1/2

i p, jq
+

�r2

48
(Umr )

n−1/2
i p, jq

}

+
�θ�r

64

⎡

⎣
∑

p�1; q�∓1

q(Umθ )
n−1/2
i p, jq −

∑

p�−1; q�∓1

q(Umθ )
n−1/2
i p, jq

⎤

⎦, (22)

where i p � i + p/2and jq � j + q/2are considered to
shorten the equation. Given the values ofUm ,Umr , andUmθ

at the time level n−1/2, the right side of Eq. (22) are known;
on the other hand, according to Eq. (11), the source vector
of Son the left side is a linear function of Um , so only two
quantities Umand Umrare unknown that must be obtained.

The central difference scheme can be used to calculate
Umr andUmθ if there is no discontinuity in the solution range:

(Umr )
n
i , j �

(
U

′
m

)n

i+1/2, j
−

(
U

′
m

)n

i−1/2, j

�r
, (23)

(Umθ )
n
i , j �

(
U

′
m

)n

i , j+1/2
−

(
U

′
m

)n

i , j−1/2

�θ
, (24)

whereU
′
m is determined by first-order Taylor expansion over

time:

(
U

′
m

)n

i±1/2, j
� (Um)

n−1/2
i±1/2, j +

�t

2
(Umt )

n−1/2
i±1/2, j , (25)

(
U

′
m

)n

i , j±1/2
� (Um)

n−1/2
i , j±1/2 +

�t

2
(Umt )

n−1/2
i , j±1/2. (26)

In the event of discontinuity, the use of the central differ-
ence scheme causes unrealistic wiggles in the solution, so
the weighted difference scheme must be used to obtain the
unknown derivatives [4]:

(Umr )
n
i , j � W

[
(Umr−)ni , j , (Umr+)

n
i , j , α

]
, (27)

(Umθ )
n
i , j � W

[
(Umθ−)ni , j , (Umθ+)

n
i , j , α

]
, (28)

where α is an adjustable parameter such that α ≥ 0 and the
quantities (Umr±)ni , j and (Umθ±)ni , j as well as the weight
function W are defined as follows:

(Umr±)ni , j � ±
[(

U
′
m

)n

i±1/2, j
− (Um)ni , j

]
/(�r/2), (29)

(Umθ±)ni , j � ±
[(

U
′
m

)n

i , j±1/2
− (Um)ni , j

]
/(�θ/2), (30)

W
[
x−, x+, α

] � |x+|αx− + |x−|αx+
|x+|α + |x−|α . (31)

The procedure of solving is such that first an initial value
for (Umr )

n
i , j is assumed, then the value of (Um)ni , j is obtained

using Eq. (22), and finally, employing Eqs. (23)–(31), new
values of (Umr )

n
i , j as well as (Umθ )

n
i , j will be determined.

This process continues until the values obtained for (Umr )
n
i , j

converge. In the present study, the linear approximation with
the finite difference scheme is used to determine the initial

Fig. 3 Upper hemisphere map with embedded holes for thermocouple
placement
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values of (Umr )
n
i , j to avoid iterative procedures in solving

and to reduce computational time.

(Umr )
n
i , j � 1

2�r

⎧
⎨

⎩

∑

p�1; q�∓1

[
Um

(
0, 0,

�t

2

)]n−1/2

i p, jq

−
∑

p�−1; q�∓1

[
Um

(
0, 0,

�t

2

)]n−1/2

i p, jq

⎫
⎬

⎭
, (32)

where i p � i+p/2and jq � j+q/2are considered to shorten
the equation. On the other hand, due to the discontinuity at
an angular direction on the surface of the tissue, the weighted
difference scheme is used to obtain the derivatives, and the
value of α is considered to be 1. In the numerical results,
the values obtained with linear approximation are consistent
with the results of the iterative procedure, which indicates
that the approximation used is perfectly rational.

Since r � 0 is a singular point of the U and S matrices,
two mesh points with r � �r/20 which is very close to the
points with r � 0, and two mesh points with r � �r are
used to determine the unknown variables in the calculations
at the mesh point with r � �r/2.

4 Experimental Method

Due to the fact that different effective parameters are out of
control in natural tissues, phantoms equivalent to biologi-
cal tissues are used to investigate the thermal behaviors. In
order to confirm the numerical results obtained through the
CESE method, experiments on the phantoms with optical
tissue characteristics have been performed in theOptical Bio-
Imaging (OBI) laboratory of the Laser and Plasma Research
Institute at Shahid Beheshti University.

Gel phantoms are made from a combination of 80% dis-
tilled water, 20% Intralipid in volume, and 5wt.% agarose
[38]. Making an Intralipid phantom includes these steps: dis-
tilled water is boiled first, then Intralipid is added and boiled
with distilled water for a short time. The agar powder is then
mixed with the prepared solution, and the existing mixture
is stirred continuously to obtain a homogeneous solution.
The resulting solution is poured into a mold and is kept in
the refrigerator. Subsequently, the hardened phantom can be
used after 24 hours. Adding agar powder to an Intralipid
phantom causes it to solidify while not having a significant
effect on its absorption coefficient.

In order to create a tissue phantom in a spherical shape,
the standard ping-pong ball with an inner diameter of 39mm
is used as themold. Two hemispherical parts, 39mm in diam-
eter, are designed to perform laser irradiation experiments on
spherical tissue phantom. These twoTeflon parts are fastened
together by bolts and nuts after placing the phantom inside

them. The use of Teflonmaterial not only prevents the chemi-
cal reaction of the phantom with it, but also insulates the test
conditions. The sensor (MLT1402 T-type Ultra-Fast Ther-
mocouple Probe, response time 0.005s, accuracy ±0.1◦C,
ADInstruments) and laser are respectively connected to the
phantom from the side and top walls of the upper hemispher-
ical part. On the side walls of the upper part, four holes with
a diameter of 1mm are considered; which are used to insert
the T-type thermocouple with a supplied 23ga. hypodermic
needle (Terumo Corporation, Laguna, Philippines) into the
tissue phantom at position θ � 0◦. The center of these holes
is located at distances of 17.5, 18, 18.5, and 19mm along the
z-axis from the base surface of the upper hemispherical part,
as shown in Fig. 3. The thermocouple data are recorded and
saved using a National Instruments Data Acquisition system
(NI SCB-68A) and LabVIEW software. The schematic of
the experimental setup and spherical Intralipid phantom are
shown in Fig. 4.

The pulsed laser used in this study has a wavelength of
1550nm, a pulse duration of 18ms, and an average inten-
sity of 2100Wm−2. The laser is irradiated to the spherical
tissue surface using fiber with a diameter of 20 microns at
the position θ � 0◦, so one M6 thread is placed on the upper
hemisphere to stabilize the tip of the fiber. Based on data pre-
sented in Refs. [39, 40], around the wavelength of 1550 nm,
the impact of the absorption coefficient of biological tissues
is significantly greater than the scattering coefficient. In this
case, it can be assumed that a thin layer on the tissue sur-
face absorbs all the laser energy, and the effect of radiation
can be applied as a constant heat flux on the tissue surface.
As a result, if the diffuse reflectance of the laser light at the
irradiated surface and the intensity of the laser are denoted
by R and qL , respectively, the constant heat flux boundary
condition qa � qL (1− R) is considered at the tissue surface.

5 Result and Discussion

The CESE method is developed to solve non-Fourier heat
conduction equations caused by laser irradiation on biologi-
cal tissue in the 2-D spherical coordinate system using polar
mesh points. Since there is no similar numerical study on 2-D
spherical coordinates to verify the performance of the devel-
oped CESE method using polar mesh points, the obtained
dimensionless temperatures (θ ) are compared with the semi-
analytical results presented byRamadan [41] in 1-D spherical
coordinates, as shown in Fig. 5. Dimensionless quantities of
radius and time are denoted by ζ and η, respectively.A pulsed
heat flux with a pulse duration of ηs � 0.2 is applied to the
outer surface of the tissue. It is clear that the results obtained
from the CESE method with polar mesh points are almost
consistent with the existing 1-D semi-analytical results. To
have a more detailed review, a number of these results are
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(a) (b)

Thermocouple

Laser

Spherical
Tissue Phantom

Fig. 4 a Experimental setup for tissue phantom irradiation using 1550 nm laser, b Spherical Intralipid phantom

compared at two times η � 0.8 and η � 0.9 in Tables 1 and
2, respectively.

Also, an in vitro experiment is performed on spherical
Intralipid phantoms exposed to laser irradiation. The laser
is irradiated on the tissue phantom surface with an initial
temperature of Ti � 24.3◦C and a radius of ro � 1.95cm
for tr � 180s. The diffuse reflectance of the laser light
at the tissue phantom surface is R � 0.05 [36], and the
effects of the laser irradiation are investigated until the final
time t f � 420s. The thermo-physical properties used in the
present study are listed in Table 3. According to the studies
[33, 42–44], both phase lag times of temperature gradient
and heat flux for the tissues are in the range of 0.01 to 32s.
In the current study, phase lag times are considered to be
τT � 2s and τq � 16s [45]. Given that the effects of blood
perfusion andmetabolic heat generation are not present in the

Fig. 5 Temperature distributions of pulsed heat flux at different dimen-
sionless times

tissue phantoms, these two terms are omitted from Eq. (6) in
numerical calculations.

In the following, numerical results are examined for spher-
ical tissue phantom with the radius of ro � 1.95cm, which
is exposed to laser irradiation at the sector of 0 < θ < 6◦
on its surface (Fig. 1). The significant discontinuity along θ

direction is well simulated using the CESE method without
generating numerical wiggles in the solution. The following
dimensionless parameters are used in the presented results
for generality:

(33)

� � T − Ti
Tmax − Ti

, η � t

t f
, ζ � r

ro
, Qr

� qr
qa

, Qθ � qθ

qa
, θ∗ � θ

θt

where Tmax is the maximum temperature generated in the
tissue phantomduring laser irradiation, and θt is the reference
angle equal to 90◦.

The mesh independency of the numerical results in the
two directions, r and θ , is shown in Fig. 6. To investigate the
effect of the grid size in the radial direction, the temperature
graph is given by the radius for the different mesh resolu-
tions, at angle θ∗ � 0 and at time η � 0.3 (Fig. 6a). As can
be seen, by increasing the mesh resolution in the radial direc-
tion, the results are entirely consistent with each other, so the
number of radial mesh points in the calculations is consid-
ered as 400 nodes. In addition, to evaluate the effect of the
number of mesh points used in θ direction on the results,
the surface temperature (ζ � 1) variation at time η � 0.3
is displayed in Fig. 6b for the different mesh resolutions in
the angular direction. It is apparent that by increasing the
number of mesh points, the results are not significantly dif-
ferent; thus 100 nodes in the θ direction are used for the

123



Arabian Journal for Science and Engineering

Table 1 Comparison between
CESE method and
semi-analytical results at time
η � 0.8

ζ 0.13 0.21 0.29 0.37 0.45

2-D CESE method 0.0062 0.7274 2.4013 1.2565 0.3842

Semi-analytical [41] 0 0.7642 2.3816 1.3112 0.3868

Table 2 Comparison between
CESE method and
semi-analytical results at time
η � 0.9

ζ 0.02 0.1 0.18 0.26 0.34

2-D CESE method 0.0172 0.9871 3.4672 1.9467 0.4683

Semi-analytical [41] 0.0185 1.0344 3.4048 1.9158 0.4982

Table 3 Thermo-physical properties of tissue and blood [36, 44, 46]

Parameters Tissue Blood

Density/ kgm−3 1000 1060

Specific heat/ Jkg−1K−1 4187 3860

Thermal conductivity/ Wm−1K−1 0.628 –

Metabolic heat generation/ Wm−3 1190 –

Blood perfusion rate/ s−1 0.00187 –

Blood temperature/ ◦C – 37

numerical simulations. It should be noted that the time step
is �η � 2.6 × 10−5.

The experimental transient temperature measured by an
ultra-fast thermocouple at the point PExp(19, 0) inside the
spherical tissue phantom (see Fig. 1) is plotted with the 2-D
numerical results obtained by the developedCESEmethod in
Fig. 7. The experiment was repeated three times and average
results were reported. Savitzky-Golay smoothing filter with
polynomial order of 2 and 400 points of window is applied
to reduce the effects of noise on experimental thermocou-
ple data. Comparing experimental and numerical transient
temperature distribution demonstrates that the results agree
well with each other. It should be noted that applying the
thermo-physical properties used in the literature for the tis-
sue phantom, assuming the value of two time lag constants
related to the temperature gradient and the heat flux, and
existing unavoidable measurement errors in experiments are
effective in creating differences between the experimental
data and the calculated results. In addition, while a part of
the laser energy is lost in actual conditions, it is assumed that
the laser heat flux is completely absorbed on the surface of the
tissue phantom in the calculations. Also, other mechanisms
of the heat transfer caused by laser irradiation, such as nat-
ural convection, evaporative cooling, and water evaporation,
are not taken into account. Finally, the subsurface location

of the thermocouple in performing the experiment test on
the spherical Intralipid phantom, which is a mechanically
soft material, may not be accurate, and hence slight discrep-
ancies between experimental measurements and numerical
results can be seen.

2-D heat flux and temperature contours at time η � 0.4
during irradiation and times η � 0.45 and 0.5 after stopping
irradiation are shown in Figs. 8–10. The angle of irradiation
(θr � 6◦) is specified in these figures for better display. It
should be noted that the irradiation time is ηr � 0.43. As
shown in Fig. 8a, at time η � 0.4 during laser irradiation, the
maximumvalue of Qr is on the surface of the tissue phantom,
and its value decreases toward the center of the tissue. When
irradiation is interrupted, the maximum value of Qr is not at
the surface, and the radial heat flux wave propagates in the
tissue phantom (see Fig. 8b and c). Comparison of Fig. 8a,
b, and c shows that the intensity of the radial heat flux wave
decreases with its propagation inside the tissue. In order to
better display the radial heat flux wave propagation, the Qr

distribution in the radial direction at angles θ∗ � 0 and 0.07
for different times η is presented in Fig. 8d. Evidently, the
heat flux Qr decreases with rising θ∗ at times η � 0.4 and
0.45, but the 2-D effects of the thermal wave at time η � 0.5
cause the Qr values to increase at angle θ∗ � 0 to 0.07.

The evolution of the 2-Dangular heat fluxfield in spherical
tissue phantom at time η � 0.4 during laser irradiation and
times η � 0.45 and 0.5 after laser interruption is illustrated
in Fig. 9. Due to the fact that laser irradiation is uniform
in the angular segment 0 < θ < 6◦, the maximum value
of angular heat flux is not around the laser irradiation area,
unlike the radial heat flux distribution in Fig. 8a. The presence
of irradiation discontinuity on the surface at the angle of θ �
6◦ causes the temperature gradient variation, i.e., ∂�/∂θ ,
to be high, hence the maximum value of Qθ occurs in this
region, as shown in Fig. 9a. It can be seen in Fig. 9b and c that
the angular heat flux wave propagates in r and θ directions
at times after stopping the laser irradiation, and the intensity
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Fig. 6 Comparison of the effects of the mesh points number in the, a radial direction and b angular direction on the numerical results

Fig. 7 Comparison of transient temperature distribution at the point
PExp(19, 0) inside the spherical tissue phantom

of the heat flux wave reduces due to the effects of diffusion
in the tissue.

Comparison of Figs. 8 and 9 show that the ratio of the
values of angular to radial heat flux (Qθ /Qr ) has increased
in the tissue over time so that these values are close to each
other at time η � 0.5. Therefore, the effects of angular and
radial heat flux at this time are such that the angular heat
flux prevails in the region behind the wave front. As seen in
Fig. 8c, in this region, the direction of radial heat flux vector
has changed toward the surface of the tissue. To better display
the angular heat flux wave propagation in the tissue, the Qθ

distribution in the angular direction for radii ζ � 1 and 0.95
at different times η is indicated in Fig. 9d. It is observed that
the angular heat flux Qθ decreases with increasing ζ at times
η � 0.4, 0.45, and 0.5.

In hyperthermia treatment planning, accurate prediction
and control of temperature distribution are essential to rise
the temperature locally in the tumoral tissue without damag-
ing adjacent healthy tissues. Non-dimensional temperature
distributions corresponding to different times η � 0.4, 0.45,
and 0.5 are shown in Fig. 10. It can be seen in Fig. 10a, at
time η � 0.4, the surface temperature increases from the
initial temperature to more than 90% of the maximum tem-
perature during the irradiation process. It should be point out
that the temperature increase in the tissue reaches its peak at
time ηr � 0.43, when the laser irradiation continues on its
surface. As shown in Fig. 10b and c, at times η � 0.45 and
0.5 after stopping the irradiation, heat penetrates toward the
center of the tissue phantom due to the diffusion behavior and
affects most areas of the tissue. According to Fig. 10b and
c, it can be seen that the interference of two heat flux waves
that propagate along the r and θ directions, has disturbed the
temperature distribution. As a result, the propagation of the
thermal wave in both radial and angular directions will cause
the formation of the low-temperature region behind the wave
front and the diffusion of the thermal wave front to the tissue
surface (see Fig. 10c).

Temperature distribution at various times for radii ζ � 1
and ζ � 0.95 in Fig. 10d demonstrates that the maximum
temperature at the tissue surface (ζ � 1) during laser irradi-
ation is at angle θ∗ � 0. However, by interrupting the laser
irradiation, the 2-D effects of the thermal wave cause the
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Fig. 8 Contours of radial heat flux Qr at different times, a η � 0.4, b η � 0.45, and c η � 0.5. d Comparison of radial heat flux distribution at
various times for angles θ∗ � 0 and θ∗ � 0.07

maximum surface temperature to move and occur at θ∗ > 0.
The results show that the temperature at the radius ζ � 1 is
higher than the radius ζ � 0.95 during irradiation (η � 0.4).
However, the propagation of the thermal wave in the tissue
at time η � 0.45 causes the temperature distribution at the
radius ζ � 1 to be less than ζ � 0.95. Then, by creating
2-D effects of thermal wave in the tissue at time η � 0.5, the
temperature profiles approach each other.

Figure 11 shows the progress of the thermalwave andposi-
tion of maximum temperature in tissues including muscle,
tumor, and fat at the angle θ∗ � 0 at different times η � 0.42,
0.44, 0.46, and 0.48 considering the same temperature range
for all tissues and similarmaximum temperature in numerical

calculations. Table 4 illustrates the thermo-physical proper-
ties applied for different tissues in this simulation.

Thermal diffusivity of the tissue is a single effective
parameter in speed of the thermal wave propagation as all
three tissues have the same values of temperature gradient
and heat flux phase lags. In addition, two parameters of
metabolic heat generation and blood perfusion are neutral in
determination of the maximum temperature location in the
tissue. Among sample tissues, the maximum and minimum
thermal diffusivity belongs to tumor and fat tissue, respec-
tively. Thus, as shown in Fig. 11, the wave progression in
fat tissue is less than in other tissues at the same time, while
the most significant wave movement is in the tumor tissue.
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Fig. 9 Contours of angular heat flux Qθ at different times, a η � 0.4, b η � 0.45, and c η � 0.5. d Comparison of angular heat flux distribution at
various times for radii ζ � 1 and ζ � 0.95

Furthermore, due to thermal diffusivity, tendency of tissue in
transferring the energy to absorb, fat tissue with lowest ther-
mal diffusivity is expected to reach the highest temperature
values. Comparing the temperature distributions of various
tissues in Fig. 11 confirms the mentioned results.

6 Conclusion

In this article, an improved 2-D space–time CESE method
in Cartesian coordinates using quadrilateral meshes is devel-
oped to solve hyperbolic equation system in the 2-D spherical
coordinate system using polar meshes. The developed CESE

method has been used to investigate non-Fourier thermal
wave propagation in spherical tissue due to laser irradiation
on its surface. Applying the proposed uncomplicated and
highly accurate approach, there is no need to use the general
coordinate system and transfer the equations to the Cartesian
coordinate system. A comparison of temperature distribution
obtained using the developed CESE method with the avail-
able semi-analytical results shows that this method is capable
of analyzing non-Fourier thermal wave problems based on
the DPL model. The experimental test is then performed to
investigate the transient temperature distribution caused by
laser irradiation in the spherical Intralipid phantom. A com-
parison of the numerical findings with the data obtained from
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Fig. 10 Contours of non-dimensional temperature � at different times, a η � 0.4, b η � 0.45, and c η � 0.5. d Comparison of temperature
distribution at various times for radii ζ � 1 and ζ � 0.95

the experiments confirms the use of the non-Fourier DPL
model in the simulation of heat transfer in biological tis-
sues. Therefore, utilizing numerical simulations, the thermal
behavior of tissues in hyperthermia treatment is predictable to
achieve desire thermal distribution by changing the effective
parameters in clinical studies. Following this research, the
transient profiles of heat fluxes and temperature in the tissue
phantom are investigated to determine the phenomenon of
thermal wave propagation inside the tissue. The results sig-
nify that the propagation of the thermal wave in both radial

and angular directions affects the temperature distribution in
the tissue. The effects of angular heat flux increase over time,
altering the direction of the radial heat flux, and the tempera-
ture drops in the region behind the wave front. Furthermore,
the investigation of thermal wave propagation in different
tissues indicates that the higher the thermal diffusivity, the
greater the wave progression within the tissue, and the more
regions are affected by laser irradiation. In contrast, temper-
ature values in the tissue with the lowest thermal diffusivity
are minimum among all.
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Fig. 11 Comparison of propagation of thermal wave along with θ∗ � 0 at different times in, a muscle, b tumor, and c fat tissue

Table 4 Thermo-physical properties of tissues

Tissue
type

Thermal
conductivity/Wm−1K−1

Density/kgm−3 Specific

heat/Jkg−1K−1

Blood perfusion

rate/s−1

Metabolic heat
generation/Wm−3

Refs.

Muscle 0.628 1000 4187 0.00187 1190 [44]

Tumor 0.5641 1020 3510 0.00066 480 [47]

Fat 0.185 971 2700 0 368.3 [48]
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