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Abstract 

In this study an artificial neural network (ANN) based 

modeling and a heuristic based optimization procedure 

using simulated annealing (SA) algorithm for modeling 

and optimization of flux assisted TIG welding process 

known as activated TIG (A-TIG) have been addressed. 

In this study effect of the most important process 

variables (welding current (C), welding speed (S)) and 

percentage of activating fluxes (TiO2 and SiO2) 

combination (F) on the most important quality 

characteristics (depth of penetration (DOP), weld bead 

width (WBW), and consequently aspect ratio (ASR)) in 

welding of AISI316L austenite stainless steel parts have 

been considered. To gather the required data for 

modeling and optimization purposes, box-behnken 

design (BBD) in design of experiments (DOE) approach 

has been used. In order to establish a relation between 

process input variables and output characteristics, back 

propagation neural network (BPNN) has been employed 

results of which have been compared with regression 

modeling outputs. Particle swarm optimization (PSO) 

algorithm has been used for determination of BPNN 

architecture (number of hidden layers and 

neurons/nodes in each hidden layer). Simulated 

annealing (SA) and PSO algorithms have been 

employed for process optimization in such a way that 

desired AR, minimum WBW, and maximum DOP 

achieved simultaneously. Finally, confirmation 

experimental tests have been carried out to evaluate the 

performance of the proposed method. Based on the 

results, the proposed procedure is efficient in modeling 

and optimization (with less than 4% error) of A-GTAW 

process. 

 

Keywords: Activated TIG (A-TIG) welding process, 

optimization, design of experiments (DOE), and simulated 

annealing (SA) algorithm. 

 
Introduction 

To tackle the problem of poor penetration in TIG 

welding process of thick plates, different procedures 

have been introduced [1−3]. Using paste-like activated 

fluxes coated on the weld surface before welding begins, 

known as activated TIG (A-TIG) welding process is one 

of the important methods used to increase depth of 

penetration (DOP) and consequently reduce weld bead 

width (WBW) in TIG welding process [4, 5]. This 

process can be taken in to account as the TIG welding 

process in which a layer including activating fluxes 

(including oxide, fluoride, and chloride) used on the 

weld surface before welding process started. These 

fluxes, are melted and vaporized during the process and 

due to arc constriction and reversal of Marangoni 

convection phenomena, DOP and WBW are increased 

and decreased respectively (Figure 1). These phenomena 

have been well documented in refs [1, 2].  

 

 

 

 

 

 
Figure 1 Schematic illustration of preparation of activating 

paste-like flux and A-GTAW process 
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To the best of our knowledge, there is no study in which 

modeling and optimization of A-GTAW process output 

characteristics (especially DOP, WBW and AR) have 

been considered simultaneously using BBD-based 

design of experiments approach, BPNN-based modeling 

method, and heuristic algorithm-based optimization (SA 

and PSO) technique. As different activating fluxes have 

different effects on WBG, mechanical and metallurgical 

properties, therefore, in this study effect of combination 

of the two most crucial activating fluxes has been 

considered as the process input variable (apart from 

welding speed and current) and optimized in such a way 

that DOP increases, WBW decreases and proper value 

for ASR achieved simultaneously. Based on the 

preliminary experimental tests carried out using DOE 

(screening) approach and literature survey studied, as 

mentioned three process inputs parameters (welding 

current (I), welding speed (S) and percentage of 

activating fluxes combination (F)) have been taken into 

account and their corresponding intervals and levels 

have been determined. According to the number of 

process input variables and their predetermined levels, 

the most appropriate design matrix (BBD) has been 

considered as the way of carrying out experiments and 

gathering data required for modeling and optimization 

purposes. Next, to establish the relations between 

process input variables (I, S and F) and output 

characteristics (DOP, WBW and ASR), back 

propagation neural network (BPNN) has been used. 

Next, the best BPNN architecture including number of 

hidden layers and number of nodes/neurons in each 

hidden layer has been determined using PSO algorithm. 

Furthermore, results of regression modeling have been 

used to evaluate the BPNN performance in modeling of 

the process. Finally, multi-response optimization (in 

order to achieve desired ASR, maximum DOP and 

minimum WBW simultaneously) has been carried out 

using SA and PSO algorithms to determine the values 

for process input variables. BBD approach has also been 

used to optimize the process. The proposed approach 

has been carried out on AISI316L austenitic stainless 

steel parts which is extensively used in power plants 

piping system (Fig. 2). Based on the achieved results, an 

optimized formula for activating fluxes (TiO2 + SiO2) 

has been proposed in such a way a desired ASR with 

minimum WBW and maximum DOP achieved 

simultaneously.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Piping used in Rumaila combined cycle power plant 

Process input parameters and their corresponding 

interval and levels 
There are different parameters affecting the A-TIG 

welding process among which, welding current (I), 

speed (S) and gap (G) are the most influential ones 

based on the literature review and screening method 

used [1-3]. Similarly, process quality characteristics 

include DOP and WBW are the most important 

responses of A-TIG welding process. To determine the 

possible working intervals of each process input 

variables, welding references studied and some 

preliminary tests were conducted [6-7]. Table 1, lists 

the process input variables and their corresponding 

intervals and levels based on the initial test findings. 

Other input variables with trivial effects have been 

considered at an optimum fixed level. 

 
Table 1. A-GTAW process input variables and their 

corresponding intervals and levels 

Process  

parameter 

Welding 

speed 

Welding 

current 

Flux 

combinations 

( SiO2- TiO2) 

Unit mm/sec Amps % 

Symbol S C F 

Interval 125-175 100-120 25-75 

Level 1 125 100 25 

Level 2 150 110 50 

Level 3 175 120 75 

 

Design of experiments (DOE) and Experimental 

results 
Generally, to facilitate the identification of the influence 

of individual variables, establish the relationships 

between process input variables, output responses, and 

finally determine the optimal levels of input variables in 

order to get the desired responses, DOE approach is 

used. In DOE, there are different approaches among 

which response surface methodology (RSM) due to its 

merits is the most extensively used ones. There are 

different RSM designs, including the central composite 

design (CCD) and its variations (spherical CCD, 

rotatable CCD, small composite design, etc.), box–

behnken design (BBD) and hybrid family of designs [8]  

In this study, based on the number of input variables 

and their corresponding levels a BBD’s L17 matrix has 

been opted  (Table 2). 

    To conduct the experimental tests, a DIGITIG 250 

AC/DC welding machine has been used. Furthermore, 

in this study, Argon (with 99.7% purity) acted as the 

shielding inert gas. 

    Experimental tests have been conducted on AISI316L 

stainless steel specimens with dimension of 100 mm×50 

mm×5 mm. In this study a combination of Nano oxide 

fluxes (TiO2, SiO2) (+99%, 20-30 nm, amorphous) has 

been used as activating flux to enhance the welding 

process. In order to prepare a paste-like activating flux 

coating, prior to welding process begins, 20 grams of 

flux has been mixed for approximately 20 minutes with 

20 ml of a carrier solvent (methanol) using mechanical 

and magnetic mixers [1, 2]. Then, the paste like flux 

was coated on the specimen with a brush and dried 

before the welding process begins. When the carrier 

solvent evaporated, the flux layer remained attached to 

the surface of the specimen and the welding process 
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could be started. The tests have been conducted in 

Rumaila combined cycle power plant, Basra, Iraq.  

For measuring DOP and WBW, on each samples 

two transverse cross sections were made. Next, to 

clearly show DOP and WBW, the cut faces were 

smoothly polished and etched. 

Then, for taking images an optical microscope has 

been used. To determine samples’ DOP and WBW, 

images were consequently processed by MIP 

(microstructural image processing) software (Figure 3). 

The average of two measurements for each sample was 

reported (Table 2). 

 

 
 

Figure 3 Cross section of the 17 specimens 

 
Table 2. Experimental conditions based on BBD and their 

corresponding measured outputs 
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1 (mm/sec) (I) (SiO2 -TiO2) 3.96 6.21 1.57 

2 50 175 100 4.65 7.66 1.65 

3 50 150 110 5.10 7.58 1.48 

4 50 150 110 6.16 6.12 0.99 

5 50 125 120 4.84 5.07 1.05 

6 50 125 100 5.65 5.74 1.02 

7 75 125 110 4.79 8.26 1.72 

8 50 150 110 4.95 7.62 1.54 

9 75 150 120 4.42 7.64 1.73 

10 50 175 120 4.83 7.91 1.64 

11 50 150 110 4.58 6.75 1.47 

12 25 125 110 3.64 7.82 2.15 

13 75 175 110 3.04 7.44 2.44 

14 25 175 110 4.03 6.61 1.64 

15 75 150 100 4.68 7.96 1.70 

16 50 150 110 3.63 7.57 2.08 

17 25 150 120 3.15 7.33 2.32 

 
Back propagation neural network 

Artificial neural networks (ANNs) has been proposed 

by McCulloch and Pitts for the first time [9]. The 

ability to learn and obtain information and make it 

accessible for use is the main merit of the ANNs. 

ANNs embrace of connecting processing units named 

nodes or neurons. Each input parameter (defined as xi) 

is related with a weight (wi) which indicates a portion 

of the input to the neuron for processing. The inputs 

and weights are multiplied (xi×wi) by neurons and 

input values transformed into output values (Figure 4) 

using transfer functions or activation functions 

(considered as (f)) [8]. 

In most of the studies, the architecture of the ANN is 

determined using trial and error procedure. Whereas, in 

this study PSO algorithm has been used for determining 

the suitable architecture for BPNN. The number of 

hidden layers was diverse from 1 to 3; hence a 3–n1–

n2–n3–2 structure was constructed; where n1, n2, and 

n3 are the number of nodes/neurons for the 1st to the 

3rd hidden layers respectively. The training of a NN 

denotes finding desired architecture and weights of net 

that leads to minimum error between the desired and 

predicted outputs. Figure 5 represents the comparison 

of process responses and proposed model prediction 

 

 
Figure 4 Architecture of proposed artificial neural network 

model 

 

 
Figure 5 Comparison of process responses and 

proposed model prediction 
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The comparison between process responses and the model 

prediction has been shown in Fig. 5. The performance of 

the proposed model has been illustrated in Fig.6. Fig.7 

shows the variation of mean squared error (MSE) during 

the training process of BPNN. 

Based on the literature survey which has been 

confirmed via experimental tests, the weld bead geometry 

(including DOP, WBW and ASR) has a noticeable 

influence on solidification cracking and in order to avoid 

solidification cracks in welding process the best interval for 

ASR is [1.0-1.4]. 

 

Heuristic algorithms 
Nowadays, different heuristic algorithms for different 

optimization purposes have been proposed (including 

ant colony (AC), genetic algorithm (GA), bee colony 

(BC), tabu search (TS), simulated annealing (SA), 

particle swarm optimization (PSO), and etc.,) among 

which SA and PSO, based on their merits are being 

extensively used. Few input parameters to adjust (easy 

programming) and fast convergence are the major 

advantages of PSO algorithm. SA is employed for 

optimization of a wide range of problems in different 

research areas (simple and easy to implement). 

Moreover, having few parameters for tuning, reasonable 

time of convergence are other merits of SA over other 

heuristic algorithms.  

     Based on the mentioned reasons SA and PSO 

algorithms have been considered as the heuristic 

algorithms to optimize A-GTAW process variables in 

order to achieve maximum DOP, minimum WBW and 

desired value of ASR simultaneously. The details of 

these algorithms’ procedures are well documented in 

Ref. [8] 

    In this regard, SA is reminiscent of annealing process 

in heat treatment [9].   

    In annealing process, heated metals are slowly cooled 

down to make them reach a state of low energy. First, 

metals are heated up to a specific and pre-determined 

temperature, which is above the melting point. 

Therefore, at this temperature, all particles of the metal 

are in intense random motion. Then, the metal is slowly 

cooled down. All particles rearrange themselves and 

tend to be toward a low energy state. As the cooling 

process is conducted appropriately slowly, lower and 

lower energy states are gained until the lowest energy 

state is reached. Flowchart of SA algorithm used for the 

TIG welding process optimization has been shown in 

Fig 6.  

The performance of SA has been checked using particle 

swarm optimization (PSO) algorithm.    

    Particle swarm optimization (PSO) is a random-

generated and population-based evolutionary heuristic 

algorithm proposed by Kennedy and Eberhart. [21] 

First, a population of random solutions initialized and 

generations for optimum searching updating. Next, the 

current optimum solutions (called particles) followed by 

potential particles through the problem space. The best 

solution achieved and the corresponding location 

obtained named “pBest” and “gBest” respectively. The 

PSO algorithm procedure comprises changing the 

velocity of each particle toward its “pBest” and “gBest”. 

Acceleration toward “pBest” and “gBest” is being done 

using a random term with separate random numbers for 

weighing velocity generated. 

 

SA variables: 

 

Initial temperature: 700, Temperature reduction rate: 

0.91, Processing time: 30 seconds 

 

PSO variables: 

 

Number of iteration performed: 30, Population: 50, 

Learning factor c1: 2, learning factor c2: 2 

 

 

 

 
     
Figure 6 Flowchart of SA algorithm used for the TIG welding 

process optimization 

 

 

Based on the nature of the PSO algorithm, its 

convergence is faster than SA algorithm. Furthermore, 

as the PSO drawback is falling into optimum traps, its 

performance could be better to be checked by another 

algorithm. The convergence of PSO and SA algorithms 

has been shown in Figure 7.  Table 3. Represents the 

results of optimization using PSO and SA. Based on the 

results, PSO and SA could accurately optimize the 

process responses (with less than 4% error). Based on 

the optimized condition has been obtained using ANN-

PSO algorithm an experimental test has been conducted 

to measure the accuracy of the proposed approach in an 

experimental test. The experimental test was in a quite 

efficient agreement with the proposed approach result.  



 

9 to 11 May, 2023 

 

 
Figure 7 convergence of PSO and SA algorithms 

 

 

Figure 8 Results of optimization condition 

 
Table 3 Optimal welding variables and corresponding 

process quality measures for equal weighing 
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DOP PSO-ANN 75 134 100 3.40 3.40 3.40 

WBW PSO-ANN 75 134 100 2.60 2.60 2.60 

ASR PSO-ANN 75 134 100 1.11 1.11 1.11 

 

 

 

 

 

 

 

 

 

 

Conclusion 

The problem of modeling and optimization of A-TIG 

welding process for AISI316L austenite stainless steel 

parts has been addressed throughout this study. First, 

experimental tests matrix required for modeling and 

optimization purposes has been determined using OA-

Taguchi method. Next, DOP and WBW values have 

been measured using MIP software. Then, BPNN has 

been employed to establish the relations between 

process input variables and output responses. 

Furthermore, in order to determine the architecture 

(number of neurons/nodes and hidden layers) PSO 

algorithm has been used. Then, PSO algorithm has been 

used to optimize the proposed model in such a way that 

DOP increases and WBW decreases simultaneously 

(based on the importance of WBW and DOP). 

Furthermore, the performance of PSO has been checked 

using SA algorithm. 
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