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Prioritizing Safety Climate Improvements in the Indonesian
Construction Industry Using Supervised Classification

Moslem Attar Raouf'; Riza Yosia Sunindijo, Ph.D.%; and Mojtaba Maghrebi, Ph.D.3

Abstract: Despite its significance, the Indonesian construction industry has poor safety performance. Improving the safety climate has been
seen as a way to improve safety in the industry. Research on safety climate in this context has identified a range of safety climate factors that
require improvements. However, construction organizations face difficulties in implementing improvement recommendations due to resource
constraints. In order to help construction organizations in their efforts to improve the safety climate, this research demonstrates the use of
supervised classification approaches to identify specific safety climate factors that construction organizations should focus on. Data were
collected from 311 construction practitioners in Indonesia using a 22-item safety climate survey. Supervised classification methods, compris-
ing ensemble methods, Support Vector Machine, Naive Bayes, and Nearest Neighbor, were used. The analysis identified 14 safety climate
items that can represent the original dataset with high accuracy (93%). These 14 items can be considered crucial items that should be prior-
itized in the Indonesian construction industry. These items revealed that, due to the high power distance culture in Indonesia, top-down ap-
proaches, such as giving clear instructions, providing training, and reminding people often about safety, are effective for engaging employees
to focus on and participate in safety. The findings also suggest that understanding cultural context is important to determine effective strat-
egies to improve safety. This research has also demonstrated the potential application of supervised classification approaches to help decision
makers improve safety by focusing on crucial factors within a context. DOI: 10.1061/JAEIED.AEENG-1588. © 2023 American Society of

Civil Engineers.
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Introduction

As the fourth most populous country in the world and one of the
large emerging economies, Indonesia’s economy has grown stead-
ily in the past years. The Indonesian construction industry is an im-
portant sector that contributes to this economic growth. Supported
by the commitment of the Indonesian government to improve the
country’s infrastructure, the growth of the Indonesian construction
industry outpaces the national economic growth. The industry is
also one of the largest employers, providing needed employment
for a large number of the population, while contributing to the so-
cioeconomic development of the nation (Lestari et al. 2020).
Despite its significance, the Indonesian construction industry
has poor health and safety records, a fact that has often been ac-
knowledged previously. As a result, research on health and safety
in the context of the Indonesian construction industry has been in-
creasing. One such research area focuses on safety climate, which
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refers to people’s perceptions and attitudes toward health and safety
in the workplace. Previously, safety climate research in the Indone-
sian construction industry has mainly focused on the dimensions
and factor structure of safety climate, the relationship between
safety climate and performance, the level of safety climate, the fac-
tors that influence safety climate, and recommendations to improve
safety climate (Loosemore et al. 2019). This past research is impor-
tant for revealing the safety climate status in the Indonesian con-
struction industry, which has had little previous investigation.

Quantitative data collected using a questionnaire survey was the
main method used in conducting safety climate research (Kalteh
et al. 2021). These questionnaires consist of numerous items,
which can be problematic for the Indonesian construction industry
when prioritizing their attempt to improve safety climate. For in-
stance, a framework identified 28 strategies for developing safety cli-
mate in the Indonesian construction industry (Lestari et al. 2020),
which can be quite overwhelming for construction organizations
and the industry when transforming themselves. There is a need,
therefore, to operationalize safety climate by prioritizing important
items that represent the shared perceptions of employees within a
context (Zohar 2010). By building on these past efforts, this research
aims to use an innovative data-driven approach to assist the Indone-
sian construction industry in improving its safety climate. Based on
safety climate data, crucial factors that strongly influence safety cli-
mate are pinpointed, allowing construction organizations to focus on
these factors in their efforts to improve safety climate.

Literature Review

Safety climate is a term coined by Zohar (1980, p. 96), who defined it
as “a summary of molar perceptions that employees share about their
work environments.” The term safety culture was then proposed in a
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report by the INSAG (1986) after the Chernobyl nuclear power dis-
aster, in which the report suggested that a lack of safety culture was
one of the main causes of the disaster. In their following report,
ACSNI (1993) defined safety culture as the product of individual
and group values, attitudes, perceptions, competencies, and patterns
of behavior that determine the commitment to, and the style and pro-
ficiency of, an organization’s health and safety management.

At first, the terms safety climate and safety culture were used in-
terchangeably, a situation that persists to a certain extent today
(Kalteh et al. 2021). However, over the years, there is better clarity
on what constitutes safety climate and safety culture. Safety climate
is nowadays recognized as the psychological dimension of safety
culture, reflecting the employees’ perceptions and attitudes toward
safety at a particular point in time. Safety climate is more dynamic,
while safety culture tends to be more stable as it is linked to the em-
bedded organizational culture (Loosemore et al. 2019).

Owing to the difficulties in assessing safety culture, safety cli-
mate has often been used as an indicator of safety performance, in-
cluding that in the construction industry, to complement the typical
lagging indicators, such as fatality and incidence rates (Kadir et al.
2022). Safety climate is sometimes considered a leading indicator
due to its ability to assess performance before the occurrence of
negative events (Zohar 2010). Furthermore, as an indicator of
safety performance, safety climate has other advantages. It helps
managers make investment decisions on areas that require improve-
ments. When a safety climate survey is done regularly, it is useful
for identifying trends in performance and establishing benchmarks.
Collecting safety climate data is also relatively easy and economi-
cal, although it is important to note that safety climate cannot re-
place other measurement tools. Lastly, safety climate involves
employees in the process and, when anonymity is ensured, employ-
ees are motivated to express their opinions without any fear of re-
prisal (Sunindijo and Zou 2012).

Owing to its advantages, the use of safety climate in construc-
tion safety research in Indonesia is growing. The existing literature
reveals several distinct research areas on safety climate in the Indo-
nesian construction industry. First, research has used safety climate
to assess safety performance. Sunindijo et al. (2019) found that
safety climate in building projects was higher than safety climate
in a first-of-its-kind infrastructure project in Indonesia, even though
the latter was managed by an international contractor with a high
level of health and safety commitment. Loosemore et al. (2019)
compared the level of safety climate in the Indonesian construction
industry with that in the Australian construction industry and, sur-
prisingly, found no significant difference.

Second, research focuses on gaining in-depth understanding of
safety climate, particularly its dimensions and factor structure.
Andi (2008) assessed six dimensions of safety climate, comprising
top management commitment, safety rules and procedures, commu-
nication, worker competence, work environment, and worker in-
volvement, in three types of construction projects and highlighted
safety climate differences among the three projects. Based on qual-
itative feedback from respondents, Lestari et al. (2020) identified im-
provement gaps in the six dimensions of safety climate, comprising
management commitment, communication, rules and procedures,
supportive environment, personal accountability, and training.

Third, research investigates the impact of safety climate on pro-
ject and organizational performance. Widjaja et al. (2020) found
that safety climate is a factor that mediates the relationship between
leadership and safety performance. Widyanty et al. (2020) found
that safety climate has positive effects on construction organiza-
tions’ competitive advantage and productivity and mediates the re-
lationship between human resource management practice and
competitive advantage.
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Fourth, research finds factors that influence the level of safety
climate. Kadir et al. (2022) investigated the influence of demo-
graphic characteristics on safety climate and suggested that atten-
tion should be given to employees who have a lower level of
education, less work experience, and nonpermanent job status.
Sunindijo et al. (2019) argued that higher project complexity
hurts safety climate levels, while Loosemore et al. (2019) suggested
that understanding cultural relativity is important when comparing
safety climate across countries.

Table 1 summarizes previous research on safety climate in the
Indonesian construction industry.

As presented in Table 1, safety climate surveys often contain
many dimensions and items to capture the various manifestations
of safety climate in practice, causing problems for construction
stakeholders in prioritizing their improvement efforts. Focusing
on particular items arbitrarily may result in redundant efforts if
those items are not crucial in reality. There is a need to determine
these crucial safety climate items in a more structured way to opti-
mize efforts given limited resources. Contributing to enriching re-
search in this area and facilitating the application of research
findings to improve safety climate in the Indonesian construction
industry, this research uses an innovative data-driven approach to
eliminate safety climate items that do not contribute strongly to
the actual level of safety climate.

Supervised Classification Approach

A two-step approach (Fig. 1) for supervised classification as intro-
duced by Han et al. (2012) was developed and used in this research.
The two steps are learning and classification (or class prediction).

In this approach, a model (or classifier) is trained in the learning
step. Step 1 comprises three main components. The first component
is preprocessing. Preliminary data cleaning, removal of unneces-
sary data attributes, and generating new attributes (such as class la-
bels) are major tasks of this fundamental component. In the second
component, the data instances are split into two sets of training and
testing. Finally, in the third component, supervised learning algo-
rithms are exploited and the model is trained. Since data tuples
are labeled in multicategories, supervised learning algorithms are
applied in this step.

With the model trained, the class of test data is predicted in the
classification step (Step 2).

Case Study and Data Gathering

A 22-item safety climate questionnaire was used to assess five di-
mensions of safety climate, comprising management commitment,
accountability, training, personal involvement, and engagement, in
the Indonesian construction industry. A six-point Likert scale for-
mat, ranging from “strongly disagree” to “strongly agree” was
used in the questionnaire. Using convenience sampling, the ques-
tionnaire was distributed to construction employees, including pro-
fessionals, tradespeople, and laborers, in construction projects in
Jakarta, the capital of Indonesia. In total, 311 valid responses
were obtained. Table 2 presents the 22 items used in the question-
naire, along with their mean scores. The mode (the most frequently
occurring value) for all of the items is 5. The bold items
signify items that are retained at the end of the analysis in this
paper. Factor analysis was performed and generated five dimen-
sions of safety climate, which were subsequently named “manage-
ment commitment,” “awareness and accountability,” “training,”
“personal involvement,” and “engagement.”
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Table 1. Summary of safety climate in the Indonesian construction industry

Authors Dimensions

No. of
items

Findings

Andi (2008)

—

Top management
commitment

Safety rules and procedures
Communication

Worker competence

Work environment
Worker involvement

Loosemore et al.
(2019)

Management commitment
Communication

Rules and procedures
Supportive environment
Personal accountability
Training

Sunindijo et al.
(2019)

Management commitment
Communication

Rules and procedures
Supportive environment
Personal accountability
Training

Uk L= kW= AR WD

Lestari et al.
(2020)

Management commitment
Communication

Rules and procedures
Supportive environment
Personal accountability
Training

SNk =

Widjaja et al. Not reported
(2020)

Widyanty et al.
(2020)

1. Policy

2. Leadership

3. Participation

4. Communication

Kadiretal. (2022) 1. Management commitment

2. Priority of safety

3. Communication

4. OHS rules

5. Supportive environment

6. Involvement

7. Work environment

8. Personal priorities and need
for safety

9. Personal appreciation of
risk

31

58

58

58

Not
reported

18

55

Level of safety climate in three different types of construction projects was quite good.
The levels of safety climate dimensions among the three projects were significantly
different.

There is no difference in safety climate level between Australian and Indonesian
construction industries. Cultural relativity should be considered when comparing safety
climate across countries.

Safety climate in building projects was higher than that in an infrastructure project.
Project complexity has an influence on safety climate.

A new integrated safety climate framework to improve safety performance in the
Indonesian construction industry.

Safety leadership has a positive influence on safety climate, which in turn has a positive
influence on safety performance.

Human resource management practices have a positive influence on safety climate,
which in turn has a positive influence on competitive advantage.

There is a gap between safety management on paper and its actual implementation.
Demographic characteristics influence the level of safety climate.

Methodology

made at each stage. An overview of the applied FS process and
the performed stages are explained next.

A five-stage feature selection (FS) process (Fig. 2) introduced by
Ang et al. (2016) was used. The main objective of the FS is to de-

termine a subset of attributes such that they could describe the orig- Stage 1: Search Direction
inal dataset in the most accurate way possible. The outcome In the first stage, the search direction and search starting point were
generated by this process is highly dependent on the decision determined. The starting point has a significant impact on the

Step 1: Learning

Step 2: Classification

l Al [ \
| | | |
| | | |
| | | |
| | | |
[} | ] I
I Train/Test _ . I I Test Data _ | Performance | 1
' Pre-process Split > Train Model \ I | Classification " | Evaluation \
i | | |
\ e e e e e e e ) \ o e e e e e e e 2 ]
Fig. 1. Classification approach.
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Table 2. Safety climate items and their corresponding means

No. Mean
A. Management commitment

Al My project manager acts quickly to correct safety problems 5.022
A2 My direct supervisor pays attention to my safety 4.802
A3 My project manager expresses concern if safety procedures are not adhered to 4.363
A4 Safety procedures are carefully followed by all 5.009
AS Safety communication is effective 4.980
A6 Safety communication makes me pay attention on safety 5.113
A7 Safety information is always brought to my attention by my direct supervisor 4.993
A8 My project manager is available for discussion when it comes to safety 4.821
B. Awareness and accountability

B1 I receive a lot of information about safety 4.958
B2 Employees are always encouraged to focus on safety at their workplace 4.994
B3 A continuing emphasis on safety is important for me 5.003
B4 I understand all the safety rules 4.893
B5 Safety is the number one priority for me when completing a job 5.032
B6 I am clear about my health and safety responsibilities 4.782
C. Training

C1 The company invests a lot of time and money in safety training 4.376
C2 I am capable of identifying potentially hazardous situations 4318
C3 The safety training provided is practical 4.886
D Personal involvement

D1 I can influence safety performance in my workplace 3.728
D2 No one criticizes me if I remind someone to work safely 4.699
E. Engagement

E1l I receive praise for working safely 4.374
E2 I am strongly encouraged to report unsafe conditions in my workplace 4.637
E3 I am involved in implementing safety at work 4.624

Note: Bold items signify items that were retained at the end of the analysis in this paper.

search consequences and controls the search direction (Blum and
Langley 1997). The two most common search directions are for-
ward and backward. In forward search, the process starts with an
empty subset, and at each iteration, a new feature is added to the
subset. Backward search, in contrast, starts with the subset of all
features and at each iteration, a redundant feature is removed
from the subset. Another alternative is to start the search by ran-
domly selected subset in the middle (Ang et al. 2016). Forward,
backward, and random search directions are used in this paper.

Stage 2: Search Strategy

There are three categories of search strategies: exponential, sequen-
tial, and randomized. Exponential (or complete) search is the most
computational exhaustive because all possibilities are calculated
and then the optimal subset is determined. This strategy is imprac-
tical for FS over large datasets (Ang et al. 2016).

In a sequential search, a feature is added to or removed from the
subset considering its value at each iteration. The impact of adding or
removing any feature to the overall accuracy of the model is inter-
preted as the value of the feature. The three most-common sequential
search strategies mentioned in the literature are: forward sequential

selection (FSS), backward sequential selection (BSS), and hill climb-
ing (HC). FSS (Fig. 3) aims to find the best feature with highest value
at each iteration, which is then added to an originally empty set of
optimal features. In BSS (Fig. 4), the original subset of optimal fea-
tures includes all features. In this approach, the most redundant fea-
ture with lowest value is identified and removed at each iteration.

Both FSS and BSS are among greedy sequential search strate-
gies (Khaire and Dhanalakshmi 2022). FSS and BSS do not yield
similar results due to the direction of search sequence. In addition,
depending on the designated target number of features, one could
be faster than the other (Pedregosa et al. 2011). In HC, a feature
is added or removed from the dataset at an iteration. The search
is performed for finding the optimal features from a random set
of features, which is then followed by inverting the current status
of each feature in the subset. The random nature of HC increases
its complexity (Khaire and Dhanalakshmi 2022), and therefore
was not selected in this paper.

In a randomized search, a random subset of features is selected
and then the search proceeds in either sequential or random order,
which means the search will perform with no regular movement.
Heuristic search algorithms, such as genetic algorithm (GA) or
tabu search, are typically used in this strategy (Ang et al. 2016).

Input: Stage 1 Stage 2 D?:::rg;]ie Stage 4 Stage 5
Train Determine > Determine > Evalua Reach Stopping Yes—»| Validate Final
Dataset Search Direction Search Strategy yamaeon Criterion ? Results
= Criterion
A
No
Fig. 2. FS process.
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Initialize
A: Set of all features in original dataset
S: subset of features
Let S be empty

:

select the most valuable feature ¢ from
A AND g is not in S, such that the for

(8+¢q) the improvement in Evaluation
Criteria 1s maximum
AddgtoS
S meets stopping
pping No——

criteria?

Yes

v

Output S

Fig. 3. Forward sequential search.

GA (Fig. 5), which is among the population methods of optimi-
zation, is inspired by biological evolution, where fitter individuals
are more likely to pass on their genes to the next generation
(Kochenderfer and Wheeler 2019). At first, initial solutions are ran-
domly generated in GA. Then at each iteration, there is a chance
between two solutions to swap their components. Next, the solu-
tions are evaluated against an evaluation fitness function
(GA-objective). Solutions with better evaluation results would
have a higher chance of being regenerated. Unless any of the stop-
ping criteria is met, a new generation is created and crossover and
mutation take place as well. The population is replaced with the
newly generated population and the next iteration is initiated
(Kochenderfer and Wheeler 2019). Examples of stopping criteria
begin to reach the maximum limits of iterations, reaching to the
maximum number of iterations without any improvement, or ob-
taining the desired result with minimum requirements.

Initialize
A: Set of all features in original dataset
S: subset of features
LetS=A

\

select the most redundant feature p
from S, such that the loss in Evaluation [«—
Criteria is minimum

:

Remove p from S

:

S meets stopping
criteria?

Yes

v

Output S

Fig. 4. Backward sequential search.

Stage 3: Evaluation Criteria

The main objective of the FS is to determine a subset of attributes
such that they could describe the original dataset in the most pos-
sible accurate way. There are four categories of FS techniques in-
troduced in the literature: filter, wrapper, embedded, and hybrid
methods.

First, filter methods rely on characteristics of data to assess fea-
ture importance and are independent of any learning algorithms.
Filter methods are typically more computationally efficient than
wrapper methods, but it may not provide the best results because
there is no specific learning algorithm to guide the FS phase (Li
et al. 2018).

Second, wrapper methods evaluate the quality of feature subsets
using the results of a specific learning algorithm typically in two
steps: (1) search and determine a subset of features, and (2) evaluate

Define GA Parameters

Cross-over and Mutatation [«

[ Select from current
generation

selection, cross-over, mutation ratios
T: Maximum Iterations
W: Max. iterations without improvement
SC: stopping criteria

T

No, next generation

Y
Generate random population (first generation) - Evaluate GA Fitness Ay Slopping Yes —p| Quiput
E pop generd Lt A Criteria met? Result
Fig. 5. Genetic algorithm.
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the subset. These two steps are repeated until some predetermined
stopping criteria are met. Examples of stopping criteria could be the
“minimum acceptable performance rate” or “minimum acceptable
number of selected features.” The main disadvantage of wrapper
methods is that they typically have a higher computational cost.
The search space for learning algorithm is 29 for d features,
which makes wrapper methods impractical when d is very large.
To address this, heuristic search methods such as GA could be ap-
plied (Khaire and Dhanalakshmi 2022; Li et al. 2018).

Third, in embedded methods, a classifier is developed, and then
a search is performed for determining ideal feature subsets. While
the advantages of embedded methods are similar to wrapper meth-
ods, their computational cost is better than wrapper methods
(Khaire and Dhanalakshmi 2022).

Recently some literature added hybrid methods to the previous
three common methods. Hybrid methods attempt to benefit from
the advantages of filter and wrapper methods. They aim to have a
good compromise between efficiency (computational effort) and
effectiveness (quality in the associated objective task when using
the selected features) (Li et al. 2018; Solorio-Fernandez et al.
2020).

From various categories of supervised learning procedures, six
algorithms were selected and applied (Table 3). All classifiers
used in this research were developed by Scikit-Learn (Pedregosa
et al. 2011).

Ensemble Methods

The core of ensemble learning models is to combine predictions

from a number of learners. The ensemble methods should be far

more accurate than the individual classifiers since they leverage
the aggregation of different classifier outputs (Nzuva and Nderu

2019). Sagi and Rokach (2018) identify several challenges in ma-

chine learning that could be mitigated using ensemble methods.

These challenges are class imbalance, concept drift, and curse of

dimensionality. Class imbalance is when one class has substantially

more frequency than other classes. Concept drift refers to when the
distribution of features and the labels tend to change over time.

Curse of dimensionality is caused by an increase in features fed

to the model that expands the search space exponentially and low-

ers the fitting probability of the model.

Ensemble methods are generally categorized into two groups:
averaging and boosting. The key principle in averaging is to
build several estimators individually and then to average the pre-
dicted outcome. Examples of this group are bagging and random
forests methods. In boosting, however, base estimators are built
consequently with the aim that each one reduces the bias of the ag-
gregated estimator. AdaBoost and gradient tree boosting are among
examples of boosting group (Pedregosa et al. 2011).

Following ensemble methods were selected and applied for FS
in this paper:

1. Random forests (RF), or random decision forests, are an ensem-
ble of learning methods for classification. During the training
model, multiple decision trees are constructed (hence the
name forest). The classification task is completed when the

Table 3. Applied supervised classification algorithms

Category of supervised classification Applied algorithm

Ensemble methods 1. RF

2. Bagging

3. Adaboost
SVM method 4. Linear SVM
Naive Bayes methods 5. GNB
Nearest Neighbor methods 6. KNN
© ASCE
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result is generated by a majority of the decision trees for any
given parameter(s) (Breiman 2001). RF is a popular ensemble
method mainly due to its simplicity and predictive performance.
Moreover, it is easier to adjust the RF model than other methods
(Sagi and Rokach 2018).

2. Bagging, also known as bootstrap aggregation, is an ensemble
method developed to enhance the accuracy and stability of su-
pervised classification algorithms. The bagging classifier
model requires developing numerous instances of black-box es-
timators (or inducers) based on random subsets of the original
training set (i.e., samples). The model then aggregates their in-
dividual predictions to determine how a new instance is classi-
fied (Nzuva and Nderu 2019; Pedregosa et al. 2011).

Sagi and Rokach (2018, sec. 4.2) declare that “since sam-
pling is done with replacements, some of the original instances
are likely to appear more than once when training the same in-
ducer while other instances may not be included at all. Since the
inducers are independently trained, bagging can easily be imple-
mented in a parallel manner by training each inducer using dif-
ferent computational units.”

3. AdaBoost was introduced by Freund and Schapire (1997). The
main characteristic of AdaBoost is that it has no random ele-
ments but its core principle is to fit a sequence of weak learners,
such as small decision trees, on successive reweightings of the
training set. Weak learners are models that are only slightly bet-
ter than random guessing. The final prediction is delivered by a
combination of all of weak learners through a weighted majority
vote (Breiman 2001; Pedregosa et al. 2011).

Support Vector Machine

Support vector machine (SVM) is a classification method for both
linear and nonlinear data. “In a nutshell, an SVM is an algorithm
that uses a nonlinear mapping to transform the original training
data into a higher dimension. Within this new dimension, it
searches for the linear optimal separating hyperplane, i.e., a ‘deci-
sion boundary’ separating the tuples of one class from another.
With an appropriate nonlinear mapping to a sufficiently high di-
mension, data from two classes can always be separated by a hyper-
plane. The SVM finds this hyperplane using support vectors
(‘essential’ training tuples) and margins (defined by the support
vectors)” (Han et al. 2012, p. 408). In addition to classification,
SVMs are also used for regression and outlier detection. SVM
methods are effective in high dimensional spaces and are also
memory efficient by using a subset of training points in the decision
function. The SVM classifier used in this research is versatile, with
different kernel functions that can be specified for the decision
function (Pedregosa et al. 2011).

Naive Bayes

“Naive Bayes [NB] is the simplest form of Bayesian network, in
which all attributes are independent given the value of the class var-
iable” (Zhang 2004, para. 5). The fundamental element of this set of
supervised learning methods is applying Bayes’ theorem with the
“naive” assumption. Bayes’ theorem is a way to calculate posterior
probability, which can be represented as

PX|H)P(H)
P(X)

where P(H|X) = posterior probability, of H conditioned on X. NB
(or simple Bayesian) classifier works as follows (Han et al. 2012;
Pedregosa et al. 2011; Zhang 2004). Let X represent a training
tuple vector with n-dimension attributes, X=(xy, x, ..., x,,). Sup-
pose that there are m classes, Cy, C,, ..., C,. By using the
Bayes’ theorem (1) the posterior probability of tuple X to be

P(H|X) = (D
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Fig. 6. Quantify Likert scale diagram.
class y, we have
iy PEIPO) )
X)) = ()
P(X)

where y=class variable; and P(y|X)=NB classifier and predicts
that tuple X belongs to the Class y if and only if

POIX) > P(IX) for 1 <j<my#¢ 3

This means that the predicted class is y for which P(X]y)P(y) is
the maximum. With the naive assumption that all attributes are in-
dependent given y, that is

P(X|y)=P(x1. x2. ... xuly) = [ [ Pesely) “)
k=1

The resulting classifier is then

[Ti=1 PO »)P()
PX)

Since P(X) is constant, the NB classifier will be

Py|X)= (5)

POIX) o PO) [ [ Pesly) = 5 =argmax PO) [ [ Pealy)  (6)
k=1 k=1

with a different assumption about the distribution of P(x;|y), differ-
ent NB classifiers can be provided. For instance, in the GNB clas-
sifier, the likelihood of the features is assumed to be Gaussian,
which can be shown as

P(xily) =

RV
/271(73 203

The parameters o, and u, are estimated using maximum likeli-
hood (Pedregosa et al. 2011).

Although NB classifiers are based on over-simplified assump-
tions, they have relatively exceptional performance in real-world
classification problems such. As compared with other more com-
plex methods, NB models are extremely fast, and they can cope

Safety Score 0.00

with the curse of dimensionality (Pedregosa et al. 2011). Zhang
(2004) explains the characteristics of NB classifiers and discusses
theoretical reasons on why they work well and with which types
of data it does.

Nearest Neighbors

Nearest neighbors are among lazy learning techniques in classifica-
tion. Nearest neighbor models are capable of performing both su-
pervised and unsupervised learning. Upon receiving the training
data, the lazy model simply stores it with minor processing and
waits until receiving the test tuple. The model classifies the test
data only when it receives it. The classification is based on the sim-
ilarity of testing tuple to the stored training data. In contrast to lazy
learner models, eager learners construct a classification model upon
receiving the training tuples. In other words, in an eager learner
model, the classifier is developed, ready, and eager to classify
new (i.e., test) tuples (Han et al. 2012). Since neighbor-based meth-
ods are for simply remembering all of their training data, they are
also known and referred to as nongeneralizing machine learning
methods (Pedregosa et al. 2011).

For this research, the K-nearest neighbor (KNN) (K =5) method
was selected and applied. “When given an unknown tuple, a
k-nearest-neighbor classifier searches the pattern space for the k
training tuples that are closest to the unknown tuple. These k train-
ing tuples are the k ‘nearest neighbors’ of the unknown tuple’ (Han
et al. 2012, p. 423).

Stage 4: Stopping Criteria

The search process stops once any of the stopping criteria is met.

Some of the common stopping criteria are:

1. Target number of features.

2. Number of iterations.

3. Rate of improvements between two consecutive iterations.

4. Obtaining a subset of feature according to a defined evaluation
function.

In this research, the FS process is performed in three rounds.
The target number of features was set to 14, 11, and 6, respectively,
in each round. Moreover, the GA for random search halted if there
is no improvement in 30 consecutive iterations.

Stage 5: Result Validation

Results obtained by the search process are validated in the last
stage. The most common validation techniques are cross validation
(CV) and performance evaluation using confusion matrix. For this
research, “accuracy measurement” was selected as the evaluation
criterion for FS.

Accuracy, being one of the most popular metrics in multiclass
classification, returns an overall measure of how much the model

0.50 1.00

Spectrum

Interpretation Worst Safety

Neutral Safety

Best Safety

Environment Environment Environment
Classification jass 2 Class 3 Class 4
0.00 0.20 0.40 0.60 0.80 1.00

Fig. 7. Spectrum of safety score and uniformed-sized classes.
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correctly predicts the entire set of data, and it is directly computed
from the confusion matrix using (Grandini et al. 2020)

TP + TN
TP + TN + FP + FN

®)

Accuracy =

True Positive (TP) and True Negative (TN) in the numerator are
the entries classified correctly by the classifier. The denominator is
the sum of all entries of the confusion matrix, which includes all
correct and incorrect classifications.

Table 4. Results of all applied classifiers

Results

The original dataset consists of 22 six-point Likert scale re-
sponses collected from 311 respondents. Some researchers
consider Likert scale as an ordinal attribute (Norman 2010;
Schumacker and Lomax 2015). Han et al. (2012, p. 42) defines
ordinal attribute as “an attribute with possible values that have
a meaningful order or ranking among them, but the magnitude
between successive values is not known.” Moreover, the use of
various parametric methods, such as analysis of variance,

Search parameters Classifier ID Stopping criteria Subset Accuracy Training time (sec.)
BSS MI-RF 14 00001011-111011-110-01-111 89.36% 21.990
FSS 11011011-101011-101-00-110 92.55% 29.928
GA_Search 11010010-110111-101-10-110 92.55% 32.044
BSS M2-Bagging 10010000-011110-111-11-111 88.30% 4.040
FSS 11111011-110011-100-00-110 91.49% 4.720
GA_Search 10110111-001011-100-10-111 91.49% 9.822
BSS M3-AdaBoost 00000000-111111-111-11-111 84.04% 11.654
FSS 11111111-111110-000-00-001 84.04% 16.042
GA_Search 01011011-100011-101-10-111 84.04% 15.743
BSS M4-SVM 01001000-110101-111-11-111 85.11% 1.042
FSS 11011111-111001-100-10-001 89.36% 1.048
GA_Search 01010111-101010-010-11-111 91.49% 4.213
BSS M5-GNB 00010001-111010-111-11-111 84.04% 0.594
FSS 01101111-110110-100-00-111 91.49% 0.798
GA_Search 01000110-011111-011-10-111 90.43% 2.006
BSS M6-KNN 10000011-101011-111-01-111 90.43% 1.119
FSS 11111011-011110-100-00-110 93.62% 1.333
GA_Search 10001101-111011-101-10-110 93.62% 3.830
BSS MI-RF 11 00000001-101011-110-01-111 89.36% 27.538
FSS 11001001-001011-101-00-110 90.43% 26.018
GA_Search 10100101-000100-111-00-111 89.36% 28.493
BSS M2-Bagging 00010000-001110-101-11-111 88.30% 4.609
FSS 11111011-010000-100-00-110 92.55% 4.075
GA_Search 01101010-101110-110-00-100 90.43% 6.416
BSS M3-AdaBoost 00000000-000111-111-11-111 84.04% 14.743
FSS 11111111-011000-000-00-001 84.04% 13.529
GA_Search 00101111-011110-010-00-001 84.04% 14.803
BSS M4-SVM 01001000-000101-011-11-111 85.11% 1.262
FSS 11011111-101001-000-00-001 89.36% 0.874
GA_Search 10101100-010011-000-10-111 89.36% 3.395
BSS M5-GNB 00000001-111000-111-11-101 84.04% 0.746
FSS 01100011-110010-100-00-111 92.55% 0.739
GA_Search 00000011-111100-111-00-110 92.55% 1.998
BSS M6-KNN 10000000-101011-111-01-110 90.43% 1.431
FSS 11111011-010100-000-00-110 91.49% 1.137
GA_Search 11000110-111010-010-00-011 90.43% 3.796
BSS MI-RF 6 00000000-000000-110-01-111 89.36% 34.578
FSS 11000001-000011-000-00-100 89.36% 15.672
GA_Search 00011010-101000-000-10-000 88.30% 40.454
BSS M2-Bagging 00010000-000110-000-00-111 89.36% 5.722
FSS 11100001-000000-000-00-110 90.43% 2.483
GA_Search 00111001-000000-000-00-110 91.49% 7.650
BSS M3-AdaBoost 00000000-000000-001-11-111 84.04% 18.355
FSS 11111000-001000-000-00-000 81.91% 8.298
GA_Search 00010011-100010-000-00-001 85.11% 14.047
BSS M4-SVM 01000000-000000-000-11-111 85.11% 1.558
FSS 01010111-000000-000-00-001 88.30% 0.516
GA_Search 11000010-010000-000-00-011 88.30% 3.574
SS M35-GNB 00000000-100000-110-11-100 80.85% 0.947
FSS 01000010-100000-100-00-110 91.49% 0.422
GA_Search 00000010-110000-100-00-011 88.30% 1.895
BSS M6-KNN 10000000-100000-100-01-110 87.23% 1.649
FSS 11100010-000100-000-00-010 91.49% 0.690
GA_Search 00010001-100001-000-00-110 90.43% 4363
© ASCE 04023016-8 J. Archit. Eng.
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Table 5. Summary of results, accuracy

Search strategy

Overall average

Evaluation criteria BSS FSS GA_Search accuracy
14 Features 86.88% 90.43% 90.60% 89.30%
MI1-RF 89.36% 92.55% 92.55% 91.49%
M2-Bagging 88.30% 91.49% 91.49% 90.43%
M3-AdaBoost 84.04% 84.04% 84.04% 84.04%
M4-SVM 85.11% 89.36% 91.49% 88.65%
M5-GNB 84.04% 91.49% 90.43% 88.65%
M6-KNN 90.43% 93.62% 93.62% 92.56%
11 Features 86.88% 90.07% 89.36% 88.77%
MI1-RF 89.36% 90.43% 89.36% 89.72%
M2-Bagging 88.30% 92.55% 90.43% 90.43%
M3-AdaBoost 84.04% 84.04% 84.04% 84.04%
M4-SVM 85.11% 89.36% 89.36% 87.94%
M5-GNB 84.04% 92.55% 92.55% 89.71%
M6-KNN 90.43% 91.49% 90.43% 90.78%
6 Features 85.99% 88.83% 88.66% 87.83%
MI1-RF 89.36% 89.36% 88.30% 89.01%
M2-Bagging 89.36% 90.43% 91.49% 90.43%
M3-AdaBoost 84.04% 81.91% 85.11% 83.69%
M4-SVM 85.11% 88.30% 88.30% 87.24%
M5-GNB 80.85% 91.49% 88.30% 86.88%
M6-KNN 87.23% 91.49% 90.43% 89.72%
Overall average 86.58% 89.78% 89.54% 88.63%
accuracy

regression, and correlation, are not recommended for Likert
scale data (Norman 2010).

The use of arithmetic mean and standard deviation for research or
analysis on the ordinal data are also not recommended (Han et al.
2012; Stevens 1946) for, as Stevens stated in 1946, “these statistics
imply a knowledge of something more than the relative rank-order
of data.” For measuring the central tendency of ordinal data, the
mode and median should be used (Han et al. 2012). This research
adopts this view, although we acknowledge that there is an opposing
view that advocates the use of parametric analyses of Likert scale data.

The Likert scale in the original questionnaire is assumed as bi-
polar. The minimum and maximum quantified values of the Likert
scale in this research were considered as 0 and 1, respectively. In
addition, a different weight was assigned to each Likert scale.
The reason for this was to develop a model in which the difference
between “strongly agree (6)” and “agree (5)” would be less than
“slightly agree (4)” and “slightly disagree (3).” Fig. 6 presents
the Likert scale corresponding values, weight, and quantified score.

To obtain the safety dimension, the median of safety features as-
sociated with each dimension was calculated and then quantified
using the assigned scales presented in Fig. 6. The dimension vector
for tuple x is D, = (dx, dax, dax, dax, dsy), Wwhere d;, = ith dimension.

Table 6. Summary of results, elapsed training time

Search strategy

Average training

Evaluation criteria BSS FSS  GA_Search time
MI1-RF 28.04 23.87 33.66 28.52
M2-Bagging 4.79 3.76 7.96 5.50
M3-AdaBoost 14.92  12.62 14.86 14.13
M4-SVM 1.29 0.81 3.73 1.94
M5-GNB 0.76 0.65 1.97 1.13
M6-KNN 1.40 1.05 4.00 2.15
Average training time  8.53 7.13 11.03 8.90
© ASCE
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The safety score for each respondent, using simple additive
weighting (SAW), would be equal to the sum product of the
“weight” and “dimension” vectors, as presented in

5
Safety Score, = Z (w;i X diy) ©))

i=1
where the weight vector W =importance of each safety dimension
by the number of features it has. The weight shall be a vector in the
form W=(w;, wy, ..., ws) such that Zle w; = 1. The weight re-

flects the importance of each relative dimension to the overall
safety score. The weight vector was determined using

Number of attributes in Dimension i
w; = . s
Total number of attributes (10)
i={1, 2, 3, 4, 5}

The safety score is a float number from 0.00 to 1.00, represent-
ing lowest (or worse) and highest (or best) safety climate, respec-
tively. Finally, the safety score was classified in five safety
classes as presented in Fig. 7.

The training dataset was used for training all models and con-
sisted of 70% of the original dataset tuples (217 of 311). The remain-
ing 94 tuples were considered as the test dataset to measure the
performance of the applied model. Train/test data tuples were se-
lected randomly, and no test data was provided for training models.

The three applied search strategies, described in the Methodol-
ogy section, are: (1) forward sequential search; (2) backward se-
quential search; and (3) random start point with GA. The GA
model developed by Ryan (Mohammad) Solgi was used in this re-
search (Solgi, n.d.).

Embedded methods, with training supervised classifier, were
applied for FS. Supervised classification is applicable because
data will be labeled with the safety class. The selected classifier
shall also be able to perform multiclass classification.

FS was performed in three rounds, each for finding best 14, 11,
and 6 features (i.e., stopping criteria). Using the “search strategies”
and “algorithms” detailed in the Methodology section, the models
are trained and then generate a subset of features with an identified
targeted number of features. “Test data” will then fed to the trained
model to predict the safety classes. The accuracy measure is used to
evaluate the performance of the model. The resulting selected fea-
tures and their relevant accuracy score are presented in Table 4.

In Table 4, the selected search parameter is provided in the first
column (Stages 1 & 2). BSS and FSS represent backward sequen-
tial search and forward sequential search, respectively. “Rand. GA”
represents random starting point with random search direction, and
GA is used for this search method. “Classifier ID” contains the id/
name of the applied algorithm (Stage 3) and stopping criteria (Stage
4) and is self-explanatory. The subset is a 22-character-long string
consisting of binary values of “0” (exclusion) and “1” (inclusion)
of the relevant feature in the subset. Features in each dimension
are separated with dash (““-”) character. For each obtained subset,
the relevant accuracy score and elapsed time for training the
model are also provided in the results table (Table 4).

Accuracy and elapsed training time were evaluated to vali-
date and select the best results. Accuracy, as the main objective
of the process, represents the performance of the model and
elapsed training time provides how fast the results yielded in
each model.

As expected with reducing number of target features, the accu-
racy decreases on average as well. The average accuracy for select-
ing 14, 11, and 6 features are 89.30%, 88.77%, and 87.83%.
Regarding the search parameters, FSS and random search with
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Table 7. Final results

Search parameters

Item FSS FSS FSS

Classifier ID M6-KNN M5-GNB M5-GNB
Stopping criteria 11 6

Al
A2
A3
A4
A5
A6
A7
A8
Bl
B2
B3
B4
BS
B6
Cl
C2
C3
D1
D2
El
E2
E3 0 0
Accuracy 93.62% 92.55% 91.49%
Training time (sec.) 1.333 0.739 0.422
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GA yielded higher accuracy results with an overall average accu-
racy of 89.78% and 89.54%, respectively. BSS produced the lowest
average accuracy. Considering the evaluation criteria (applied clas-
sifiers in Stage 3), KNN and bagging have the best average accu-
racy score overall. Tables 5 and 6 present these results.

Considering the elapsed time to train the model, FSS was the
fastest search strategy. As for the evaluation criteria, GNB has
the lowest elapsed training time on average.

Evaluating Results - 14 selected features

precision recall fl-score support precision

1 1.00 1.00 1.00 [t 1 1.00
2 .00 0.00 .00 1 2 0.00
3 1.00 1.00 1.00 1 3 1.00
4 9.90 0.64 8.75 14 4 0.77
5 0.94 1.00 8.97 77 5 0.95
accuracy 8.94 94 accuracy
macro avg @.77 0.73 8.74 94 macro avg 0.74
weighted avg 9.92 0.94 .93 94 weighted avg 9.91

Evaluating Results - 11 selected features

For selecting the final results for each stopping criteria, higher
accuracy and lower training time were considered as primary and
secondary selection parameters. Considering this, the final three
models are extracted and presented in Table 7. Features A2, A7,
C1, El, and E2 are selected repeatedly in each round of FS.

The confusion matrix for multiclass classification as described
by Tharwat (2021) was used to validate selected results. All classi-
fiers performed well for predicting tuples with safety class =5, with
a precision rate of above 94%. For testing tuples with actual safety
class =4, KNN has the best precision over GNB with a precision of
90%. In addition to precision, recall and fl-score of the classifiers
results presented in Fig. 8.

Discussion

The research has used supervised classification approaches to iden-
tify important safety climate items that Indonesian construction or-
ganizations should focus on to improve their safety performance.
Here, KNN and GNB seem to be the best classification algorithms,
generating solutions with the highest accuracy. Considering the re-
sults presented in Table 7, selecting 14 safety climate items is the
optimal solution since in addition to accuracy, it has the highest
prediction score as well. Other two results, however, have accept-
able and close accuracy. In practice, organizations can select the ex-
pected standard of accuracy to identify the minimum number of
items to be used in decision making. These 14 safety climate
items were bolded in Table 2.

The most glaring result is the removal of the personal involve-
ment dimension. Considering the context, this is actually under-
standable. In Indonesia as a country with a high power distance
culture (Loosemore et al. 2019), those with a high power distance
orientation prefer directive leaders and expect to receive clear di-
rections and instructions from their managers. In fact, breaking
from hierarchical leadership styles and delegating more responsibly
and autonomy to subordinates can have negative consequences on
satisfaction for those high on power distance (Daniels and Greguras
2014). Encouraging the involvement of employees, therefore,

Evaluating Results - & selected features

recall fl-score  support

precision recall fl-score support

1.e0 1.00 1 1 1.00 1.00 1.00
0.00 0.00 1 2 ©.0a a.00 .00 1
1.00 1.00 1 3 1.00 1.00 1.69 1
0.71 8.74 14 4 8.75 .64 @.69 14
0.97 8.96 77 5 8.95 0.97 8.96 77
0.93 94 accuracy 2.91 94
0.74 0.74 94 nacre avg 2.74 8.72 2.73 94
2.93 0.92 94 weighted avg .91 .91 .91 94

60 &0
50 50
5 © ] 2 ©
2 a0 = 2 EN)
0 0
10 10
0 0
(@ Predicted label (b) Predicted label © Predicted label
Fig. 8. Classification report and confusion matrix for (a) 14; (b) 11; and (c) 6.
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although this certainly has merit, would not be as effective as pro-
viding clear top-down instructions on safety. Furthermore, many
workers in the Indonesian construction industry have a low level
of safety knowledge and awareness due to the informality of the
sector (Chan and Pribadi 2022). This can limit their safety involve-
ment and bottom-up feedback through engagement (Yip et al.
2012) as these processes require an adequate level of safety
knowledge.

Although this dimension is excluded, it is important to note that
involving and engaging employees is still important for safety.
However, cultural relativity should be considered when engaging
and involving employees in the Indonesian construction industry,
and our method is useful for identifying the appropriate approach.
For instance, within the awareness and accountability dimension, it
is crucial to remind employees frequently to focus on safety (B2)
and to ensure that employees understand all the safety rules (B4).
The training dimension indicates that providing safety training is
a way to engage employees and improve their safety knowledge
(C1). Giving praise or reward for working safely (E1) seems to
be another way to engage employees effectively, and there is a
need to do this more given the relatively low mean score. It is
clear that these approaches lean toward top-down approaches,
which are appropriate considering the high power distance culture
in Indonesia. Through these approaches, employees can then be in-
volved in safety implementation by equipping them to report un-
safe conditions in the workplace (E2) and making safety a
priority in completing tasks (B5).

Finally, management commitment is a crucial dimension, which
again indicates a top-down approach to promote a safety climate.
Previous research in Indonesia found that managers in construction
organizations are inconsistent with their attention to safety and that
there is a gap between what they say and their action (Kadir et al.
2022). Often safety is being highlighted and communicated but its
application is fairly limited usually due to the drive to reduce cost.
This reality, into a certain extent, is shown by the lack of invest-
ment in safety training (C1), which has a relatively low safety cli-
mate score. There is also a need for project managers to express
safety concerns when safety implementation is below standard
(A3), which is particularly important given their as role as leaders
at the project level.

Conclusions

Improving safety climate has been accepted as a way to improve
safety performance in the Indonesian construction industry. By
using a supervision classification approach, this research has sim-
plified the process of developing safety climate by focusing on
safety climate items that matter the most. This is important so
that construction organizations can use their limited resources intel-
ligently to implement strategies to develop specific safety climate
items that can have the most influence on safety climate in the In-
donesian construction industry.

Using the approach proposed in this research, 22 safety climate
items can be reduced to 14 items while maintaining a high level of
accuracy (93.62%) to represent the overall safety climate. As such,
theoretically, this research has introduced a new approach to reduce
questionnaire length while maintaining a high level of accuracy to
ensure that the shortened questionnaire still represents the construct
being measured. Practically, the results reveal that, in terms of in-
volving and engaging employees in the Indonesian construction in-
dustry, top-down approaches are effective due to the country’s high
power distance and low safety knowledge among their construction
workforce. This result shows the importance of considering cultural
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relativity when developing strategies to improve safety. Rather than
blindly adopting safety measures implemented in other countries
(usually from developed countries with Western culture), it is im-
portant to tailor improvement strategies that align with the cultures
and norms in Indonesia to ensure success.

There are several research limitations worth noting. The first is
related to the calculation of the safety score and the assignment of
safety classes. SAW was used in this research to convert five safety
dimensions to one scalar metric. It is expected that classifiers yield
different results if other techniques such as Euclidean or Manhattan
distance were applied. Another limitation is related to performing
GA with a random start point, since the results provided by this
search strategy are not constant. Moreover, as presented in Table 4
and expressed by Ang et al. (2016), results are classifier specific.
There is almost no consistent pattern among the features selected
by various classifiers. Finally, FS performed with accuracy measure
as the single evaluation criterion. In future research, additional met-
rics, such as consistency between selected features can be assessed.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request. The Jupyter Notebook Code is available online at https:/
github.com/moslem-raouf/safety_climate_features.
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