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A B S T R A C T   

As food toxicants, 3-monochloropropane-1,2-diol (3-MCPD) and 1,3-Dichloropropan-2-ol (1,3-DCP) are poten-
tially carcinogenic and/or genotoxic chemicals formed during high-temperature refining of vegetable oils. We 
examined 45 edible vegetable oil samples (i.e. sunflower, rapeseed, corn, olive, and sesame oils) randomly 
collected from Iran market (3 batches × 3 brands × 5 types of vegetable oils = 45 samples) for the presence of 3- 
MCPD and 1,3-DCP by chromatography-mass spectrometry (GC–MS). Our results showed statistically significant 
associations between the mean concentration of 3-MCPD and 1,3-DCP and the type of vegetable oils, while no 
significant differences in either chloropropanol mean level among the brands were found. Sesame and corn oils 
had respectively the highest and lowest mean concentration of 3-MCPD and 1,3-DCP. Based on the probabilistic 
scenario, Hazard Index (HI) values calculated for 3-MCPD and 1,3-DCP levels indicated no major risk (HI < 1.0) 
to Iranian consumers. Nonetheless, to protect the consumers, understanding the dynamics of processes that 
contribute to contaminants’ formation, providing online real-time methods for monitoring reactions that lead to 
their production, developing new technologies to mitigate the occurrence of such chemicals while maintaining 
food safety and sensory properties, seem necessary.   

1. Introduction 

The compounds 3-monochloropropane-1,2-diol (3-MCPD, 
C3H7ClO2) and 1,3-Dichloropropan-2-ol (1,3-DCP, C3H6Cl2O) are found 
in acid-hydrolyzed vegetable proteins. The colorless liquid 3-MCPD with 
pleasant odor is soluble in various solvents including alcohol, diethyl 
ether, water, and acetone and 1,3-DCP is highly soluble in water. Free 3- 
MCPD was discovered in foods with low water activity that had been 
heat-treated in the presence of fat such as glycerol, allyl alcohol, lipids, 
hydrochloric acid, and carbohydrates. 1,3-DCP is formed during the 
production and treatment of foodstuffs like oil, bakery, toasted, roasted, 
and meat products, soy sauce, and acid-hydrolyzed vegetable proteins 

[18]. 
In terms of carcinogenicity, as per the International Agency for 

Research on Cancer (IARC), free 3-MCPD and 1,3-DCP are classified as 
Group 2B (possibly carcinogenic to humans) [18]. The presence of these 
compounds in human diet is a concern due to their toxicological prop-
erties. Although scarce data is available on their toxicity in humans, 
their untoward effects have been observed in vitro and in vivo; several 
studies indicated that free 3-MCPD and 1,3-DCP produce neurotoxicity, 
reproductive toxicity, renal toxicity, cardiotoxicity, genotoxicity, and 
carcinogenicity [18,22,27,41]. In this regard, the Joint World Health 
Organization/Food and Agriculture Organization (FAO/WHO) Expert 
Committee on Food Additives (JECFA) suggested a tolerable daily intake 
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(TDI) or provisional maximum tolerable daily intake (PMTDI) of 0.004 
mg/kg body weight (bw)/day for 3-MCPD and 1,3-DCP [37,39], while 
the European Food Safety Agency (EFSA) suggests a TDI of < 0.002 mg/ 
kg bw/day [6,19]. According to the findings, short-term exposure to 3- 
MCPD at levels greater than 1 mg/kg bw/day can result in decreased 
sperm motility and male fecundity in rats. Higher doses were associated 
with longer treatment durations and a decrease in sperm count as well as 
histopathological changes in the testis and epididymis [6]. BMD analysis 
using model averaging revealed a BMDL10 of 0.20 mg/kg bw/day in 
male rats, which was chosen as the new reference point for renal effects 
in relation to the increased incidence of kidney tubular hyperplasia 
[5,9]. A BMDL05 of 0.44 mg/kg bw/day was calculated for the effects on 
male fertility with decreased sperm motility chosen as the most sensitive 
relevant endpoint [6]. The reference point was thought to protect 
against effects on male fertility and to derive an updated group TDI of 
0.002 mg/kg bw/ day for these chemicals and its fatty acid esters. In the 
adult population, the TDI of 0.002 mg/kg bw/ day is not exceeded [19]. 

New developments in food processing designed to produce safe foods 
while maintaining their nutritional and sensory qualities, are originated 
from the growing consumer demand for food that is healthy, varied, 
nutritious, and convenient. New processing methods include food irra-
diation, pulsed electric field, ohmic heating, and biotechnology. High 
hydrostatic pressure treatment, also known as high pressure pasteuri-
zation or high-pressure processing, has also been evaluated within the 
European Union (EU). One of the primary goals of food processing is to 
improve chemical and microbiological food safety, such as by removing 
toxic components. Other desired effects include longer storage times, 
improved texture and flavor, and lessening negative nutritional effects 
like inactivating digestive enzyme inhibitors [10,31,34]. 

The undesired substances 3-MCPD and 1,3-DCP can be produced 
during industrial processes performed on edible oils [3]. Such com-
pounds are specially produced during the deodorization step which in-
cludes application of super-heated water steam into vegetable oil 
[11,28]. In this regard, a positive correlation between the temperature 
applied in the deodorization step and the concentration of 3-MCPD 
content was reported [13]. 

Because of its inherent natural variability, the probabilistic method 
can be a useful predictive tool for getting an indirect estimate of dietary 
exposure or risk assessment. Due to its robustness, a Monte Carlo 
Simulation (MCS) method which can examine the uncertainties associ-
ated with various health risks for probabilistic estimation, has received 
increasing attention [17,30]. 

3-MCPD was found to induce nephrotoxic effects (e.g. renal tubular 
hyperplasia) and reproductive toxicity (i.e. male antifertility effects), as 
well as carcinogenic effects. In food industry, several strategies have 

been introduced to mitigate the occurrence of these chemicals including 
controlling the deodorization temperature, adding chelating agents, 
changing the processing conditions, etc. However, these potential 
mitigation strategies often do not yield favorable results when used in 
full-scale refining. Physical refining strategies were most successful in 
mitigating glycidyl esters, but has been less effective on 3-MCPD [23]. 
Over the past decades, numerous studies and investigations have been 
conducted on the occurrence and exposure to free 3-MCPD. Neverthe-
less, few studies similar to the present work, have determined and 
compared 3-MCPD and 1,3-DCP levels in different oil types and con-
ducted probabilistic risk assessment of oral exposure to these com-
pounds. Of note, we found no comprehensive study on the occurrence of 
these chemicals in different vegetable oils (i.e. sunflower, rapeseed, 
corn, olive, and sesame oils) from various brands names marketed in 
Iran. 

The objectives of this study were determination of the concentration 
of 3-MCPD and 1,3-DCP in 45 vegetable oils (i.e. sunflower, rapeseed, 
corn, olive, and sesame oils) available in Iran market, a preliminary 
dietary exposure assessment and MCS identification of the potential 
health risks associated with chloropropanol exposure through oral 
exposure to the vegetable oils. 

2. Materials and methods 

2.1. Chemicals and reagents 

The standards of 3-MCPD (CAS Number 96–24-2) (98%) and 1,3- 
DCP (CAS Number 96–23-1) (97%) were purchased from Sigma-
–Aldrich (Steinheim, Germany). Trimethylsilyl tri-
fluoromethanesulfonate (TMSOTf), hexamethyldisilazane (HMDS), 1,5- 
pentanediol, ethyl acetate, and dichloromethane were supplied from 
Sigma–Aldrich. Their purity was not<99%. All the reagents were of 
high-performance liquid chromatography (HPLC) grade. 

2.2. Sampling 

A total of 45 vegetable oil (five types i.e. sunflower, rapeseed, corn, 
olive, and sesame oils) samples (from three brand names) were 
randomly collected from Iran retail market and analyzed. (5 types of 
vegetable oils × 3 brands × 3 batches = 45 samples) (Fig. 1). The 
vegetable oils were stored at room temperature (25 ◦C) until analyzed by 
chromatography-mass spectrometry (GC–MS). 

Fig. 1. Diagram of sample collection (A, B and C are randomly chosen to represent the brand names).  
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2.3. Sample preparation 

Using trimethylsilyl (TMS) derivatization with TMSOTf as the cata-
lyst and hexamethyldisilazane as the derivatizing agent, 3-MCPD and 
1,3-DCP in vegetable oils were analyzed [20,39]. In brief, the sample 
(2.0 g) was weighed and added to an aluminum oxide (8.0 g)-filled 
centrifuge tube (50.0 mL). The surrogate standard (1.00 mg/L of 1,5- 
pentanediol) was added to the mixture after the sample was homoge-
nized. The samples were repeatedly spiked with 0.5 and 1.0 mg/kg of 
each of the chloropropanols to assess recovery. After some gentle mix-
ing, the sample was put into a glass chromatography column (diameter 
2 cm and length 40.0 cm) and a sintered disc with zero porosity. Before 
addition of the sample, 1.0 g of anhydrous sodium sulfate and 1.0 g of 
cotton wool that had been dichloromethane-soaked, were loaded into 
the column. At a flow rate of 8.0 mL/min, dichloromethane was eluted 
from the glass chromatography column. Purified nitrogen gas was then 
used to concentrate the collected eluent until it was nearly dry. The 
extract was then immediately mixed with 1.0 mL of ethyl acetate. For 
derivatization, TMSOTf (10.0 µL) and hexamethyldisilazane (50.0 µL) 
were added to the ethyl acetate mixture. A vortex shaker was used to 
seal the mixture-filled sample vial and shake it for 30 sec. For 10 min, 
the derivatization process was carried out at room temperature (25 ◦C). 
Water (1.0 mL) was then added to the vial and vortexed for 30 sec to 
conclude derivatization. Before performing quantitative gas chroma-
tography–mass spectrometry (GC–MS) measurements, the organic layer 
was moved to a GC vial and a small amount of sodium sulfate was added 
to dry it out [20,39]. 

2.4. GC–MS analysis 

An Agilent, Santa Clara, USA quadrupole GC–MS instrument with a 
DB-5MS capillary column (30 m length, 0.23 mm diameter, and 0.25 µm 
film thickness) was used. In split-less mode, the derivatized sample (1.0 
µL) was injected into the oven. The GC oven was monitored as follows: 
the inlet temperature was set to 270 ◦C, kept at 60 ◦C for 2 min, 
increased to 120 ◦C at a rate of 5 ◦C/min, increased to 300 ◦C at a rate of 
30 ◦C/min, and then kept at 300 ◦C for 8 min. At a flow rate of 1.0 mL/ 
min, purified nitrogen was selected as the carrier gas. The total tem-
perature program took about 12 min to complete. Additionally, the m/z 
values of the characteristic ions chosen for the qualification of 3-MCPD- 
TMS were 116, 119, and 147, while the m/z values of the characteristic 
ions chosen for 1,3-DCP-TMS were 93, 151, and 154. The characteristic 
ions chosen for the quantification of 3-MCPD-TMS and 1,3-DCP-TMS 
was carried out in the single-ion monitoring (SIM) mode for peak 
confirmation [31]. 

2.5. Method validation 

The method’s limits of detection and quantification (LOD and LOQ, 
respectively) were estimated using EURACHEM guidelines [8]. Blanks 
were used to calculate the LOD and LOQ with a signal-to-noise ratio of 
3.0 and 10.0 (S/N = 3 and 10), respectively. The spiked calibration 
curves were used to calculate the method’s recovery. Samples were 

spiked with 0.5 and 1.0 mg/kg of both 3-MCPD and 1,3-DCP and trip-
licate to determine the recovery. 

2.6. Estimation of dietary exposure and risk assessment 

The estimated daily intake (EDI, mg/kg bw) exposure to 3-MCPD and 
1,3-DCP. The Eq. (1) was used to determine the EDI of 3-MCPD and 1,3- 
DCP via consumption of the analyzed vegetable oils: 

EDIi =
F × C

BW
(1) 

In this equation, concentration (C) is the level of 3-MCPD and 1,3- 
DCP (mg of 3-MCPD or 1,3-DCP/ kg vegetable oil), and F is the daily 
consumption of vegetable oils (0.04 kg/day) [14,33]. The average bw 
for the Iranian adult population was considered 70 kg [32]. 

The ratio of EDI to the exposure dose at which adverse health effects 
are expected is known as the target hazard quotient (THQ). The TDI of 
0.002 mg/kg bw/day, as recommended by EFSA [6], and the estimated 
daily intakes of 3-MCPD and 1,3-DCP to determine the potential risk to 
human health. The THQ calculated for 3-MCPD and 1,3-DCP was used to 
calculate the Hazard Index (HI) (Eq. (2) [29]. 

HI =
∑n

i=1
THQi (2) 

A THQ < 1 represents no adverse health effects following exposure 
while a THQ greater than 1, indicates adverse health effects [7]. 

2.7. Probabilistic risk assessment approach 

The third parameters from the preliminary results were fitted with a 
suitable distribution prior to the MCS, and a Kolmogorov–Smirnov (K-S) 
test using JMP 8 software (Campus Drive, Cary, NC 27513) was used to 
evaluate the goodness of fit. The log-normal distribution served for the 
statistical distributions of the parameters that were taken into consid-
eration. These individual exposure variable distributions were used as 
input parameters in the MCS technique to calculate Equation’s proba-
bility functions for human daily exposures. In this study, the MCS was 
run for 10,000 iterations. The MCS, which provides a comprehensive 
description of the probabilities of various risk levels, was used to 
determine the process of determining the mean as well as the various 
percentiles of the exposure distributions [21]. 

According to the EFSA framework for non-detected results, when 
values are below the LOD, they are considered either (I) the LOD (upper 
bound), (II) zero (lower bound), or (III) LOD/2 (medium bound) [4]. In 
this study, we used the middle bound. 

(Available at:// https://efsa.onlinelibrary.wiley.com/doi/abs/10.29 
03/j.efsa.2010.1557. 

2.8. Statistical analysis 

GraphPad Prism 9.0 (GraphPad Software, San Diego, CA, USA) was 
used to statistically analyze the mean concentration of 3-MCPD and 1,3- 
DCP in collected vegetable oil samples. Means were compared by post- 
test for parametric data. The statistical significance was determined 

Table 1 
Recoveries (%), relative standard deviation (RSD, %), correlation coefficients (R2), limit of detection (LOD) and limit of quantification (LOQ) (mg/kg) of 3-MCPD and 
1,3-DCP (mg/kg) level determination.  

Sample Spiked concentration (mg/kg) RSD% R2 Spiked concentration (mg/kg) RSD% R2 LOD LOQ  

3-MCPD   1,3-DCP      

0.5 1   0.5 1     

Sunflower oil  93.2  99.1 (2.1)  0.994  92.5  99.4 (2.0)  0.995  0.001  0.003 
Rapeseed oil  90.5  95.3 (4.3)  0.962  90.3  94.5 (3.5)  0.960  0.001  0.003 
Corn oil  92.4  97.0 (3.5)  0.965  93.0  98.4 (2.5)  0.983  0.001  0.003 
Olive oil  91.3  96.5 (3.1)  0.973  92.4  97.2 (3.2)  0.980  0.001  0.003 
Sesame oil  90.0  94.5 (4.2)  0.963  93.1  98.0 (4.0)  0.995  0.001  0.003  
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with a p-value of<0.05. 

3. Results and discussion 

3.1. Method validation 

Table 1 shows that 3-MCPD and 1,3-DCP were added to each of the 
matrices at two concentrations of 0.5 and 1.0 mg/kg. With a relative 
standard deviation (RSDs %) of<4.3%, the average recovery of 3-MCPD 
was 90.5–99.1%. Using the calibration plot, we calculated 3-MCPD and 
1,3-DCP coefficients of determination (R2) which was 96.0–99.5%. 
Based on signal-to-noise ratios of 3.0 and 10.0, the LOD and LOQ were 
respectively 0.001 and 0.003 mg/kg (Table 1). 

3.2. Mean concentration of 3-MCPD and 1,3-DCP in the vegetable oil 
samples 

To the best of our knowledge, this study is the first to assess the risk 
of oral exposure to 3-MCPD and 1,3-DCP through consumption of edible 
vegetable oils (collected from Iranian markets) for Iranian consumers. 
Along with the mean levels of 3-MCPD and 1,3-DCP are mentioned in 
Figs. 2 and 3. There was a statistically significant difference in the mean 
concentration of 3-MCPD and 1,3-DCP among the different types of 
vegetable oils, while no significant associations between the brands and 
the levels of these chemicals were observed (P = 0.43 and 0.169 for 3- 
MCPD and 1,3-DCP, respectively). The mean level of 3-MCPD in vege-
table oil samples ranged from the LOD (0.001 mg/kg) to 0.60 ± 0.0.05 
mg/kg (Fig. 2). Also, mean levels of 1,3-DCP in oil samples were in the 

Fig. 2. Comparison of the mean concentration of 3-MCPD in the vegetable oil samples of different brands. * Shows a significant difference at P < 0.05.  

Fig. 3. Comparison of the mean concentration of 1,3-DCP in the vegetable oil samples of different brands.* Shows a significant difference at P < 0.05.  
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range of LOD to 0.043 ± 0.0.01 mg/kg (Fig. 3). Sesame and corn oils had 
respectively the highest and lowest mean concentration of 3-MCPD and 
1,3-DCP. The spectra of 3-MCPD and 1,3-DCP compounds in the oil 
samples are presented in Figs S1-S15. 

The relationship between the concentrations of 3-MCPD and 1,3-DCP 
in samples where they were both at levels above LOQ was assessed by 
Spearman correlation coefficient. We found a correlation coefficient 
between the concentrations of 3-MCPD and 1,3-DCP of 0.819 (Fig. 4). 

For co-occurrence of 3-MCPD and 1,3-DCP in glycerol, correlation 
coefficients of 0.72 by[2]and 0.52 by[41]have been reported. In the 
present study, this co-occurrence had a correlation coefficient of 0.819 
(Fig. 4). 

3-MCPD and 1,3- DCP have been detected in acid-hydrolyzed vege-
table proteins. 3-MCPD which is found in heat-processed food, refined 
oil, and the environment. Occurrence of 1,3- DCP in processed food (e.g. 
products of baking, toasting and roasting) as well as the water samples 
from plants that employ epichlorohydrin-linked cationic polymer resin, 
have been reported. Considering the untoward effects of these chem-
icals, a maximum level of 0.02–1.0 mg/kg in acid-hydrolyzed vegetable 
proteins and soy sauce has been regulated by the USA, European Union, 
China, and Korea [41]. 

The toxicological effects of 3-MCPD have been the subject of exten-
sive research. The kidney is the primary target of toxicity in rats and 
mice, with effects on male fertility also observed [15]. In terms of 
reproductive toxicity, it was demonstrated that 3-MCPD inhibits male 
fertility [1]. 

Chloropropanols level is strongly influenced by temperature, lipid, 
glycerol, and water content. It was reported that high concentrations of 
3-MCPD found in some canned vegetable products may be due to dif-
ferences in the composition of the analyzed matrices and the high 
temperature of the production process [12]. The characteristics of the 
substrate, such as the composition of the lipids and the hydrolytic ac-
tivity and selectivity (including substrate specificity) of the enzymes, as 

well as the use of glycerol as a precursor, are found to affect the quantity 
of chloropropanols produced. However, more research is required to 
clarify the precise mechanisms and key intermediates involved in the 
formation of 3-MCPD and 1,3-DCP [40]. A report from Germany stated 
mean 3-MCPD concentrations of 1000 and 1400 ng/g in refined oils and 
margarine, respectively [35]. The concentration of these chemicals was 
higher in our study. 3-MCPD in vegetable oils is formed by the hydrolysis 
of triglycerides during the refining process. The hydrolysis is caused by 
high temperatures and strong acids or bases, which can break down the 
triglyceride molecules into their component fatty acids and glycerol 
[25,36]. 

3.3. Health risk assessment 

The deterministic values of THQ are presented in Table 2. The total 
HI values for oral exposure to 3-MCPD and 1,3-DCP via consumption of 
the analyzed samples, were lower than 1 (i.e. 3.03 × 10-2 and 7.98 × 10- 

3, respectively), indicating no risk to consumers’ health (Table 2). Under 
probabilistic scenario, the MCS model results showed that exposure to 3- 
MCPD and 1,3-DCP at three centiles (50th, 80th, and 95th) were below 
one. The HI values for exposure to 3-MCPD were 3.94 × 10-2, 8.44 × 10- 

2, and 1.76 × 10-1, respectively at the 50th, 80th, and 95th centiles. 
Considering 1,3-DCP mean concentration in vegetable oils, at the 50th, 
80th, and 95th centiles, HIs were 9.72 × 10-3, 1.85 × 10-2, and 2.44 ×
10-2, respectively (Table 3). 

These methods that are implemented in different steps of the pro-
duction include gumming, neutralization of the oil, bleaching with 
synthetic magnesium silicate, addition of various antioxidants, double- 
deodorization, implementation of a longer deodorization time, use of 
enzymes, absorbents, and rebleaching of the oil and treatment with 
calcinated zeolite [24]. 

To diminish the levels of chloropropanols in food, and thus, reduce 
the level of human exposure, various methods including adding rose-
mary extract, despite leaving a strong scent in the oil [42], use of a short- 
path distillation, using a vacuum to reduce the boiling point of these 
chloropropanols, and use of contaminant adsorbents such as activated 
carbon or bleaching clays have been developed. However, much efforts 
need to be made to decrease chloropropanols occurrence while main-
taining the desired quality of the food [26]. 

The following uncertainties should be noted regarding the current 
work: (a): ingestion rate data used in this study was from the Institute of 
Standards and Industrial Research of Iran [14] and in real life, it may 
have evolved over time; and (b): undetected values of 3-MCPD and 1,3- 
DCP may have influenced our overall calculations (see Figs. 5 and 6). 

Nonetheless, to protect the consumers, understanding the dynamics 
of major processing that produce contaminants, providing online real- 
time methods for monitoring reactions that lead to contaminant for-
mation, developing new processing technologies to mitigate contami-
nants while maintaining the food’s safety and sensory properties are all 
necessary. 

Fig. 4. Correlation between 3-MCPD and 1,3-DCP levels in samples in which 
both analytes were at levels above LOQ. 

Table 2 
Deterministic THQ values for 3-MCPD and 1,3-DCP in vegetable oil samples.  

Sample 3-MCPD HI (3-MCPD) 1,3-DCP HI (1,3-DCP)  

Brand A Brand B Brand C  Brand A Brand B Brand C  

Sunflower oil 3.47 × 10-3 3.45 × 10-3 1.27 × 10-2 6.56 × 10-3 2.85 × 10-3 3.14 × 10-3 8.57 × 10-3 4.85 × 10-3 

Rapeseed oil 1.38 × 10-2 2.10 × 10-2 1.71 × 10-2 1.73 × 10-2 7.14 × 10-3 1.71 × 10-2 1.57 × 10-2 1.33 × 10-2 

Corn oil 1.58 × 10-3 9.53 × 10-3 1.80 × 10-3 4.31 × 10-3 1.42 × 10-3 8.57 × 10-3 1.42 × 10-3 3.80 × 10-3 

Olive oil 3.86 × 10-3 2.50 × 10-3 1.43 × 10-2 6.91 × 10-3 1.42 × 10-3 1.42 × 10-3 1.17 × 10-2 4.85 × 10-3 

Sesame oil 1.70 × 10-1 2.56 × 10-2 1.52 × 10-1 1.16 × 10-1 1.22 × 10-2 1.42 × 10-2 1.14 × 10-2 1.26 × 10-2 

HI (Total)    3.03 £ 10-2    7.98 £ 10-3 

HI: Hazard index. 
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4. Conclusions 

In this work, we assessed the health risk associated with oral expo-
sure to 3-MCPD and 1,3-DCP via consumption of vegetable oils by Ira-
nian consumers was assessed. The mean levels of 3-MCPD and 1,3-DCP 
showed statistically significant variations among different types of 
vegetable oils, while no significant associations between the brands and 
the levels of these chemicals were observed. Sesame and corn oils had 
the highest and lowest mean concentration of 3-MCPD and 1,3-DCP, 
respectively. The risks reflected as total HI values of 3-MCPD and 1,3- 
DCP were < 1.0 in both deterministic and probabilistic mathematical 
methods. Therefore, we found that increased daily consumption of these 
matrices can directly enhance the risk. The growing concern associated 
with the toxicity of chloropropanols, necessitates periodical monitoring 
of food stuff prone to occurrence of these chemicals. In parallel, policy 
measures should be adopted to minimize the intake of 3-MCPD and 1,3- 
DCP. 
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Table 3 
Probabilistic THQ values at the 50th, 80th, and 95th centile for 3–3-MCPD and 1,3-DCP in vegetable oil samples.  

Sample 3-MCPD HI (3-MCPD) 1,3-DCP HI (1,3-DCP)  

Brand A Brand B Brand C  Brand A Brand B Brand C  

Sunflower oil         
50th 4.51 × 10-3 4.50 × 10-3 1.66 × 10-2 8.53 × 10-3 3.51 × 10-3 3.86 × 10-3 1.05 × 10-2 5.97 × 10-3 

80th 9.67 × 10-3 9.62 × 10-3 3.56 × 10-2 1.83 × 10-2 6.70 × 10-3 7.36 × 10-3 2.00 × 10-2 1.13 × 10-2 

95th 2.01 × 10-2 2.00 × 10-2 7.42 × 10-2 3.81 × 10-2 8.83 × 10-3 9.71 × 10-3 2.65 × 10-2 1.50 × 10-2 

Rapeseed oil         
50th 1.80 × 10-2 2.73 × 10-2 2.23 × 10-2 2.25 × 10-2 8.78 × 10-3 2.10 × 10-2 1.93 × 10-2 1.64 × 10-2 

80th 3.86 × 10-2 5.85 × 10-2 4.80 × 10-2 4.83 × 10-2 1.67 × 10-2 4.01 × 10-2 3.68 × 10-2 3.12 × 10-2 

95th 8.05 × 10-2 1.22 × 10-1 1.00 × 10-1 1.00 × 10-1 2.20 × 10-2 5.30 × 10-2 4.85 × 10-2 4.12 × 10-2 

Corn oil         
50th 2.06 × 10-3 1.23 × 10-2 2.35 × 10-3 5.60 × 10-3 1.75 × 10-3 1.05 × 10-2 1.75 × 10-3 4.68 × 10-3 

80th 4.42 × 10-3 2.65 × 10-2 5.04 × 10-3 1.20 × 10-2 3.34 × 10-3 2.00 × 10-2 3.34 × 10-3 8.92 × 10-3 

95th 9.22 × 10-3 5.54 × 10-2 1.05 × 10-2 2.50 × 10-2 4.41 × 10-3 2.65 × 10-2 4.41 × 10-3 1.17 × 10-2 

Olive oil         
50th 5.02 × 10-3 3.25 × 10-3 1.86 × 10-2 9.00 × 10-3 1.75 × 10-3 1.75 × 10-3 1.44 × 10-2 5.97 × 10-3 

80th 1.07 × 10-2 6.96 × 10-3 4.00 × 10-2 1.92 × 10-2 3.34 × 10-3 3.34 × 10-3 2.74 × 10-2 1.13 × 10-2 

95th 2.24 × 10-2 1.45 × 10-2 8.35 × 10-2 4.01 × 10-2 4.41 × 10-3 4.41 × 10-3 3.62 × 10-2 1.50 × 10-2 

Sesame oil         
50th 2.22 × 10-1 3.33 × 10-2 1.98 × 10-1 1.51 × 10-3 1.51 × 10-2 1.75 × 10-2 1.40 × 10-2 1.55 × 10-2 

80th 4.76 × 10-1 7.14 × 10-2 4.25 × 10-1 3.24 × 10-1 2.87 × 10-2 3.34 × 10-2 2.67 × 10-2 2.96 × 10-2 

95th 9.92 × 10-1 1.48 × 10-1 8.87 × 10-1 6.76 × 10-1 3.80 × 10-2 4.41 × 10-2 3.53 × 10-2 3.91 × 10-2 

HI 50th (Total)    3.94 £ 10-2    9.72 £ 10-3 

HI 80th (Total)    8.44 £ 10-2    1.85 £ 10-2 

HI 95th (Total)    1.76 £ 10-1    2.44 £ 10-2 

HI: Hazard index. 

Fig. 5. Parameters (%) influencing THQ calculated for 3-MCPD. (C) Mean 
concentration of 3-MCPD in vegetable oils, (F) Daily consumption of vegetable 
oils and (bw) body weight. 

Fig. 6. Parameters (%) influencing THQ calculated for1,3-DCP. (C) Mean 
concentration of 1,3-DCP in vegetable oils, (F) Daily consumption of vegetable 
oils and (bw) body weight. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.microc.2023.108946. 
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