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A B S T R A C T   

Smart grid gives more control and information to the utility companies. However, it can be leveraged for data 
manipulation, which can lead to new techniques in electricity theft. This paper presents an electricity theft 
detection framework, designed for handling real-time large-scale smart grid data to address these new emerging 
threats. It uses a hybrid approach, combining the information inferred by analyzing the reported data from 
distribution transformer meters with machine learning algorithms to discover fraudulent activity. We added an 
additional form of attack to the six previously known patterns and generated malicious variants of consumption 
data to solve the problem of imbalanced dataset classes, resulting in more accurate classifiers. The framework 
also allows for a trade-off between the detection rate and triggered false alarms by using a sliding window in the 
decision-making process. In the end, the proposed framework is evaluated using well-known clustering and 
classification methods in a practical scenario, resulting in outcomes superior or equal to the previously achieved 
scores while having the advantages of online and distributed processing.   

1. Introduction 

Electricity is an essential part of humans lives now, with almost 
everybody having access to and getting their lives affected by it. With its 
widespread usage in all parts of the world, there are some concerning 
matters that need to be addressed, such as electrical loss. According to 
the Distribution Systems Operators (DSOs) point of view, this electrical 
loss can be categorized into two main groups, Technical Loss (TL) and 
Non-Technical Loss (NTL). Technical loss is any sort of loss that can 
occur inside of the distribution network as a result of cables, trans
formers and other devices used in the transfer of electricity. Non- 
technical loss is any unbilled electricity attributed to several factors 
[1]. A prime example of NTL is energy theft, a phenomenon that imposes 
considerable financial damages (more than $25 billion annually [2]) 
and is the reason for technical consequences such as voltage violations. 

Owing to the better and increased on-site inspection and the devel
opment and adoption of the smart grid, older malicious approaches in 
energy theft, for example, bypassing the meter, are now becoming 
obsolete and being replaced by tampered data transmission, created 
before, after, or even inside the smart meters. In [3], malicious attempts 
are classified using several detection techniques into three categories: 
cyber attacks, physical attacks, and data attacks. Physical attacks require 
direct manipulation and tampering of the smart meter by users. Exam
ples of these attacks are traditional meter bypassing, disconnecting the 

meters, and breaking into them. Cyber attacks include fraudulent virtual 
events such as modifying the firmware of the meters or compromising 
the network through remote network exploits, which cause manipula
tions in communication channels and links. Lastly, data attacks are a 
product of cyber and physical attacks and try to change the measured 
values of meters. Cutting the reported values by a percentage and 
reporting zero consumption are examples of these types of attacks. 

Although traditional methods might have previously worked in NTL 
detection, nowadays, as a result of the enormous amount of generated 
data and variety of anomalies, Machine Learning (ML) methods yield 
better results while being more time-efficient. 

ML models performances are affected by several factors. One of these 
factors is the sampling rate. The sampling rate is defined as the rate at 
which data, in this case, power consumption data, was reported. In 
general, the more data there is for training, the higher ML models ac
curacy is. A high sampling rate provides a larger training set. However, it 
may threaten the privacy of customers and result in inferred details from 
the users personal life. Study [4] further studies the effects of different 
time resolutions and their impact on users privacy. Thus, we aggregated 
the data to acceptable sampling rates in our research to both respect the 
users privacy and keep the results accurate, while making our research 
compatible with other datasets. 

Another crucial factor is the existence of malicious data in the 
dataset. The majority of ML models need to be trained on both malicious 
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and honest data to have optimum performance. Most available datasets 
are gathered from volunteers, and these datasets probably lack mali
cious samples in them. This class imbalance in the data can have sig
nificant negative effects on the performance of supervised classification 
models [5]. To answer this problem, researchers often use malicious 
sample generators to inject honest datasets with artificial anomalies. 
These functions take honest data as input, and after some operations, 
create various attack patterns from them. 

A critical factor in ML models performance is the amount of 
computational power and time given to them. Due to the massive 
amount of the generated data by power consumption and the abundance 
of users, the traditional deployment of ML models on one system is 
impractical. An alternative is distributed systems. If one system is tasked 
with running the models on large datasets, it would require enormous 
computational power, coming from powerful and expensive hardware, 
which is both financially inefficient and, depending on the dataset, 
unfeasible. There is also the matter of online data processing. In this 
case, due to the rate of receiving data and the scale of that, centralized 
computing becomes near impossible. On the other hand, distributed 
systems can be easily scaled based on the tasks, meaning no unnecessary 
costs for powerful hardware. They are far more robust against system 
crashes and unwanted data deletion, and can be optimized for online 
processing. Distributed algorithms allow researchers, companies, and 
organizations to make informed decisions and draw meaningful con
clusions from large amounts of data without inflicting unnecessary 
financial pressure. Although there are many benefits to distributed 
computing, it is not free of challenges. Some ML algorithms are not 
designed to be performed in a distributed manner. Besides, the data 
passing between different nodes in the network can be time-consuming. 

Finally, the abundance of possible honest consumption patterns due 
to the variety of users can be challenging to ML models. Consumers 
based on their family size, usage, active electrical appliances, job, and 
many other factors can have different consumption patterns. For 
example, a user who works during night hours from home has vastly 
different consumption patterns than a three-member household. Hence, 
methods such as clustering algorithms can be helpful in differentiating 
users’ consumption. 

This paper aims to introduce an applicable anomaly detection 
framework on real customers’ online power usage data. The framework 
is designed with the issues surrounding theft detection in consumption 
data and the implementation of machine learning models in them. 
Machine learning models are used to analyze the user’s data for different 
consumption patterns and the detection of different types of attack 
patterns in the network, especially data attacks. To solve the problem of 
large-scale data processing and the computational and storage over
head, these machine learning models and methods are performed in a 
distributed space to use their advantages, such as scalability, paral
lelism, and reliability. Another point considered in the framework 
design is the capability to process the users’ online data, allowing for re- 
evaluation of the model’s understanding of a user’s consumption pat
terns in case of major changes, hence, the applicability of the framework 
in industrial use cases. In this paper, we proposed a framework con
sisting of a training and a testing phase. In the former, the framework 
calculates additional features based on the available users consumption 
data to increase the accuracy. Next, it has a clustering phase, performed 
on honest data to discover various distributions. After that, the frame
work uses malicious sample generator functions to inject generated data 
and anomalies into the dataset. In the last step of the training phase, 
classifiers are trained using the generated data to classify the user’s 
behavior. In the testing phase, real-time data of users are classified by 
the trained models to discover suspicious users. In parallel, each users 
neighborhood NTL is estimated to check for fraudulent activities in the 
user’s vicinity. With the combination of these two detection methods, 
the users are analyzed for possible electricity theft. 

2. Related works 

Non-Technical Loss (NTL) detection methods can be categorized into 
three groups: data-oriented, network-oriented, and hybrid methods [6]. 

Network-oriented approaches use the data provided by the grid 
distribution sensors and the information related to the network, such as 
network topology, to detect NTL. Examples of network-oriented ap
proaches can be seen in [7–9]. On the other hand, data-oriented 
methods are built solely based on data analytics and machine learning 
techniques. These methods are typically separated into three 
sub-categories: supervised methods, unsupervised methods, and 
semi-supervised methods. The choice of which methods can be used in 
detecting NTL and electricity theft mainly depends on the data itself and 
whether labeled data (data that has already been recognized as honest or 
fraudulent) is available. Most data-oriented approaches need to go 
through training and testing phases, while unsupervised methods only 
use labeled data in evaluation. Some of the examples of supervised 
data-oriented anomaly detection in power consumption data are 
explained below: 

One of the main algorithms used in supervised learning is Support 
Vector Machine (SVM). SVMs are somewhat robust against imbalanced 
data and are easy to implement. In [10], a pattern-based energy theft 
detection system based on honest and malicious consumption patterns 
was proposed, in which they used the predictability of customers 
non-malicious and malicious behaviors. Their algorithm, called 
CPBETD, consists of 2 phases, training and testing. Technical Loss is 
estimated during the training phase, and an SVM is trained based on the 
malicious data generated from the honest dataset to classify anomalous 
and honest patterns. Next, in the training phase, the TL of the data is 
measured, and the SVM is performed on data. If either TL estimator or 
SVM detects NTL in the data, appropriate actions are taken. 

Decision Trees, and in general, tree-based methods, are another 
group of machine learning algorithms used in NTL detection. Decision 
Trees generate a set of rules to classify the dataset. One of the main 
advantages of these methods is their understandability compared to 
other methods. Literature [11] uses a decision tree model to detect 
potentially fraudulent users based on their profiles. Two types of 
fraudulent behavior are discussed in this paper, reporting less power 
consumption than the honest value and reporting more power con
sumption than the honest value. After a decision tree is trained on the 
data, generated rules are then used to predict the consumption. Root 
Mean Squared Error (RMSE) is used to measure the difference between 
the actual value and the predicted value, and the threshold on their 
difference determines the existence of fraudulent behaviour on the data. 

Paper [12] is another example of tree-based methods in NTL detec
tion. It proposed a Gradient Boosting Theft Detector (GBTD), inspired by 
the work in [10], based on extreme gradient boosting (XGBoost), cate
gorical boosting (CatBoost), and light gradient model (LightGBM). They 
did their research by focusing on feature engineering-based pre
processing and considering time complexity. It is also noteworthy that 
this paper made use of statistical features such as standard deviation, 
mean, maximum, minimum to improve Detection Rate (DR) and False 
Positive Rate (FPR). 

Study [13] proposes an electricity theft detection method consisting 
of four steps: missing value interpolation, data balancing, feature 
extraction, and fraudulent behavior classification. The dataset used in 
this study was already separated into a normal and a fraudulent class, 
meaning there is no need for anomaly and theft injection. Three 
tree-based classifiers, namely Decision Tree, Random Forest, and Ada
Boost, were used to classify customers’ usage, and a Bayesian optimizer 
found the best hyperparameters for each method. 

In [14], the class imbalance in energy theft in older power systems, 
resulting from the abundance of honest data, is addressed. Due to the 
lower number of energy theft data in datasets, standard models tend to 
ignore the malicious data and focus on honest data points. This paper 
combined several models, such as one-class SVMs, optimum path forest, 
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and C4.5 decision tree, to improve the detection rate of previous ap
proaches. In the end, the combined approach achieved a 2%-10% 
improvement over individual classifiers. However, this slight perfor
mance improvement did not justify the added computational cost. Paper 
[10] tried to solve this problem of imbalanced data by generating ma
licious data to provide a dataset from different classes so the data 
imbalance could be fixed. 

Another group of methods used in both supervised and unsupervised 
learning is Deep Learning algorithms and networks. Literature [15] 
proposed a novel hybrid method, consisting of a Convolutional Neural 
Network (CNN) for feature extraction and Random Forest (RF) to detect 
energy theft in power consumption data automatically. In their research, 
a convolutional neural network was designed to learn features from the 
different hours of the day and different days using convolution and 
downsampling. They also added a dropout layer to reduce the risk of 
overfitting. After that, a random forest is trained based on the features 
discovered by the CNN to detect anomalies in the power consumption. 
To create this hybrid system, a grid search algorithm is used to deter
mine the optimum parameters. 

Study [16] tried to improve the existing supervised anomaly detec
tion approaches in power consumption data using feature engineering. It 
proposed a practical and model-agnostic feature engineering solution 
for fraud detection in AMI. They combined a Finite Mixture Model 
clustering and an evolutionary Genetic Programming Algorithm to 
create a set of features that can show the dynamics of demand over time, 
and in comparison with similar households to make anomaly and fraud 
detection easier. More than 4000 users half-hourly consumption data for 
a duration of 18 months were used in this study which was separated 
into five segments of households using the clustering algorithm. This 
new feature engineering approach was then integrated into several 
machine learning algorithms to test if there are any performance im
provements in them. The results of using the feature engineering ar
chitecture alongside machine learning algorithms showed noticeable 
improvements in performance, while being computationally practical 
and compatible with existing supervised theft detection methods. 
Especially in cases of zero-day attacks, unseen attacks, and 
small-magnitude electricity theft, this architecture was effective. 

Although supervised learning models are helpful, they might not 
perform optimally in NTL detection. Due to the abundance of con
sumption patterns, variety of malicious attacks, and lack of labeled data, 
most researchers use malicious attack injection into their datasets to 
train them. Unsupervised and semi-supervised methods require little to 
no labeled data at all. Some of these methods usage is NTL detection are 
written below: 

Forecasting and predicting electricity consumption using regression 
is another unsupervised form of data-oriented NTL detection. In [17], 
the use of ARMA and ARIMA, two autoregression forecasting methods, 
were proposed to validate the consumption values. First, they showed 
the ineffectiveness of ARMA in power consumption data, due to its 
non-stationary nature. Then, they calculated the first-degree difference 
of these readings to show this makes them weakly stationary, therefore, 
usable by ARIMA. 

The use of statistical process control has also been proposed in the 
field of NTL detection. Statistical process control is the processing and 
monitoring of process conditions to determine its performance [18]. 
Literature [19] analyzed power consumption data in the form of time 
series without seasonal data to detect fraudulent behavior. In this work, 
statistical process control was used, and the process was represented as 
electricity usage. XMR charts were used to detect significant decreases in 
power consumption. To test these findings, the method was tested on a 
set of users power consumption data caught stealing electricity. 

Hybrid approaches are the last group of methods used in NTL 
detection. Hybrid methods adopt a combination of data and network- 
oriented approaches in NTL detection to increase the accuracy of the 
results. 

Article [10] combines SVM with observations of users meters to 

estimate the network’s technical losses and calculate the non-technical 
loss. When determining whether a user has committed electricity 
theft, both the SVM and calculated NTL are considered. 

3. Proposed approach 

Electricity theft is a huge financial problem for utility companies, 
due to the unpaid usage. It overloads the generators, and the quality of 
electricity supply is adversely affected by it, since utility companies 
cannot calculate the amount of electricity they need to supply to their 
honest and illegal customers [2]. Owing to this extra cost imposed by 
electricity theft, the detection process should both perform well and be 
cheap. Falsely accusing customers of electricity theft can be really 
expensive, since each suspect of fraudulent behavior requires on-site 
inspection for proof. Our framework tries to detect these fraudulent 
behaviors online, while minimizing the required performance and cost. 
It combines network oriented and data-oriented approaches to achieve a 
hybrid detection method, increasing the accuracy of anomaly detection 
and reducing the false positive rate (FPR). The process of anomaly 
detection by our framework can be separated into two main sections: 
training and testing phase. 

3.1. Training 

In this section, we will discuss the training process of our framework. 
The training phase itself consists of 3 different parts, which can be seen 
in Fig. 1. Each of these parts is discussed below: 

3.1.1. Preprocessing 
Having an unprepared dataset can ruin the result of research, even if 

the model is highly accurate. That is why preprocessing is an essential 
part of every data analytics project. Our frameworks preprocessing 
scheme includes these sections:  

1. Data Conversion: Datasets are gathered from different sources with 
different standards and outputs. These different channels of data 
need to be converted into one pre-defined structure and format 
before being used. Data can be generally categorized into three 
groups based on its form [20]: (a) Structured Data, data typically 
stored in traditional databases in the form of rows, columns and 
dictionaries; (b) Unstructured Data, in the forms of videos, images, 
and audio; (c) Semi-structured Data, such as data in the form of XML, 
JSON and HTML files. Depending on the data sources, all of these 
data types could be available, requiring conversion and integration. 
Although power consumption data is typically gathered in structured 
forms, integrating data from other sources with different structures, 
to check the correlation between datasets, could require adjusting 
semi-structured and unstructured data to some sort of structure, 
which is a complex task.  

2. Data Aggregation: Data points can be gathered at different rates. One 
of the deciding factors in the quality of a ML model, as mentioned 
before, is the size of the dataset. More data leads to training the 
model on a wider array of values, which can improve its accuracy 
and reduce the chances of overfitting. However, higher sampling 
rates can threaten the privacy of consumers. This data can be mis
used to infer private information regarding the customers, such as 
their work schedule, home appliances, and whether the customers 
are staying at their home or not [21,22]. Our framework suggests 
resampling in a way that we still have enough data for training the 
model, while preserving the privacy of consumers.  

3. Removing Noises: It is common for datasets to have noisy data. Noisy 
data are often corrupted or distorted data points, containing values 
with huge differences from the expected. All noisy data are outliers, 
but the opposite is not correct. Our frameworks objective is to 
discover anomalies or meaningful outliers from the power con
sumption data, but the existence of noise in the dataset impacts the 
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model and results in lower accuracy. A good example of noise in 
power consumption data is incorrectly entered values into the system 
by operators, or negative values reported by the meter. Also, some 
other types of meter malfunctioning, such as buffer overflow, result 
in entirely different values that are considered as noise.1Hence, our 
framework removes the noisy data points from the dataset before 
training the models. 

4. Handling Missing Values: Sometimes, due to human error, unex
pected situations, or noisy data removal, we facemissing values in 
the dataset. Handling these missing values in the dataset is an 
essential step in training the system. The majority of ML models 
cannot function with missing values existing in the dataset. Missing 
values can be separated into three categories: Missing completely at 
random (MCAR), Missing at random (MAR), Missing not at random 
(MNAR). Based on what type of missing values we are dealing with, 
our goal, and the dataset, we choose one or more approaches to 
handle the missing values. Some of the missing value handling ap
proaches are as follow [23]:  
• Case Deletion: Removing missing data points from the dataset is 

the most straightforward approach used in handling missing 
values. This approach might work when training data are abun
dant, and the missing values are assumed to be missing completely 
at random (MCAR). However, if these conditions are not satisfied, 
case deletion introduces biases into the data.  

• Mean Substitution: In this approach, the missing value is 
substituted with the mean of the variable. This approach is used 
with the idea that the mean is a logical estimation of a randomly 
selected observation in a normal distribution. Nevertheless, if the 
observation is not completely random or values are not normally 
distributed, this method may lead to inconsistency. 

• Regression Imputation: This method uses other existing observa
tions in the dataset to predict an estimated value for the missing 
data. A regression model is trained on the available data to predict 
the observed values. Missing values from the dataset are then filled 
with values predicted by the model.  

• Last/Next observation carried forward/backward: In this method, 
the missing value is replaced with the previously observed/next 
available value before/after it. This method works best with 
datasets gathered over time with a sequential nature, such as time- 
series, and assumes that values observed after one another are 
strongly related to each other. One of the advantages of this 
method is its ease of understanding. 

In the proposed framework, we use these missing values 
handling methods based on our need to fill in the blanks in our 
dataset.  

5. Vectorization: This step converts each users consumption data into 
vectors of size V. In other words, each one-dimensional channel of 
the time series is transformed into a two-dimensional space. Most 
methods use daily vectors, containing either 24 one-hour elements, 
or 48 half-hour elements.  

6. Normalization: Normalization is a data preparation technique used 
to modify the values of each data column, changing them to have a 
common scale. There are several normalization methods, each used 
for different situations. Depending on the model used to process the 
data, normalization can significantly impact its accuracy, while some 
are unaffected. For example, tree-based models do not require 
normalization since splitting is on single features, and the scale of the 
data does not affect it. On the other hand, distance-based methods 
such as K-nearest neighbors (KNN), require normalization. In the 
case of KNN, since the distance of data points from each other is 
calculated and compared to determine the nearest neighbors, having 
data columns with different scales affects the calculated distance and 
the results of the algorithm might be inaccurate. If the ML models 
used by the frameworks classifiers are affected by the scale of data 
columns, we first normalize them.  

7. Appending Modification Flag: We will add a modification flag to 
each row of our dataset, indicating whether the value is authentic or 
something calculated or modified by us. Using this flag, if needed, we 
can change the impact of modified values in our training process. 

3.1.2. Feature engineering 
There are some techniques that can be used to improve the quality of 

our dataset so we can achieve a more accurate trained model. In this 
framework, we use feature engineering in one of the three ways below:  

• Extracting effective features: Sometimes, instead of using all the 
features of the training dataset, we can use a good subset of it to 
increase our trained model’s accuracy and reduce time and resource 
consumption. An example of feature extraction was performed in 
[24], where a subset of features was selected from the RECS2015 
dataset of power consumption to identify more relevant features to 
the yearly consumed power.  

• Generating new features based on consumption data: As it was 
mentioned before, there are features, such as statistical features like 
mean, minimum, maximum, and standard deviation, that can be 
calculated from the vectors and then get appended to them. These 
calculated features are advantageous when used as a description of 
each user’s behavior and can be helpful in clustering them together.  

• Integrating features from external datasets: Sometimes, other 
external sources can help better explain your dataset. Features from 
datasets, gathered from different sources, could be integrated into 
one another to check their correlation together. This is especially 
true for time-series data. By integrating data from other sources into 
a time-series, we essentially add more channels to the time-series. 
Time-series can be univariate, as in only one channel data, or 

Fig. 1. Framework’s training phase  

1 There are other types of noises, like altered values because of cosmic-ray- 
induced errors, which are much less common in this domain. 
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multivariate. Adding other features, which correspond with the 
timestamps in our time-series, to the dataset, is similar to having 
different sensors and data channels when we are gathering the data. 
For example, in the case of power consumption data that we are 
working with, other features such as weather conditions, tempera
ture, and special occasions can increase the understandability of the 
changes in power consumption. However, it needs to be considered 
that these added features increase the time consumption of our 
models training phase. They also need to be individually pre
processed, since the range of their values can affect our models 
results. 

3.1.3. Training mechanism 
After completing all the previous steps mentioned above and pre

paring the dataset, we get to the training mechanism of the framework 
for detecting anomalies. This training mechanism consists of three 
different parts: State Creation, Clustering, Classification.  

• State Creation: In the state creation phase, a representation of each 
user containing necessary information of that, which gets updated 
constantly, is created. It includes the users zone information, which 
are meter ID and neighborhood, a detection module, which includes 
the users consumption patterns in the form of clusters, and a sliding 
window explained in the testing phase. The sliding window is the 
mechanism that informs us of fraudulent behavior in users data. In 
the first step of the training mechanism, each users state is initialized 
so that it can be used and updated in the following steps of the 
training phase. The details of the state module are explained in the 
testing phase.  

• Clustering: Clustering is the task of dividing the population of a 
group so that members of a group are similar to each other, while the 
difference between members of different groups is maximized. There 
are several general types of clustering, such as hierarchical clus
tering, density-based clustering, and distribution-based clustering, 
each of which is suited for specific purposes and datasets. The pro
posed framework uses clustering to find different consumption pat
terns in each users consumption data. Clustering algorithms have 
their own hyperparameters, such as the number of clusters in k- 
means or epsilon and the minimum number of points to form a dense 
region in DBSCAN, which need to be set beforehand. One way of 
determining the optimum value for these hyperparameters is to 
perform clustering algorithms several times with different values on 
each users data. In the end, the results of clustering algorithms are 
compared together based on some metrics to find out the optimum 
values for the hyperparameters. 

• Classification: Our final phase in the training mechanism is classifi
cation. In this phase, we first inject malicious data into our users 
consumption data, and then we use classification algorithms to 
detect the injected anomalies. It is essential to know that the data 
used in the training process must be fully honest, and any fraudulent 
data in it can lower the accuracy of the model.  
• Malicious Data Generation: We used six malicious attack patterns, 

defined in [10], and one other pattern that we created based on the 
experts’ opinion in Iran’s electricity utility company. As 
mentioned before, we divided each customer’s data into vectors of 
predetermined length. For each of these segments, we created a 
malicious variant with each attack pattern. These attack patterns 
are as follow:  
• h1(xt) : αxt ,α = random(0.1,0.8)
• h2(xt) : βtxt ,

βt =

{
0 tstart < t < tend
1 otherwise ,

tstart = random(0,23 − toff ),

duration = random(toff ,24),

tend = tstart + duration,
toff ≥ 4  

• h3(xt) : γtxt , γt = random(0.1,0.8)
• h4(xt) : γtmean(x), γt = random(0.1,0.8)
• h5(xt) : mean(x)
• h6(xt) : x24− t  
• h7(xt) : θtxt ,

θt =

{
random(0.1,0.8) tstart peak < t < tend peak
1 otherwise ,

tstart peak =

{
13:00 summer
21:00 other seasons ,

duration =

{
6 hours summer
3 hours other seasons ,

tend peak = tstart peak + duration 
h1 multiplies all of the data points by a random value. h2 is 

equivalent to the smart meter not sending its measurements or 
sending zeros for a random duration. h3 is similar to h1, but in 
this case, each of the data points is multiplied by a random 
number. h4 and h5 both send out the mean of the affected data 
points. h5 sends out the exact value of the mean, while the 
output of h4 is a fraction of it. h5 and h6 are both attacks against 
the load control mechanism. In some countries, such as Canada 
and the USA, the price of electricity usage in peak and off-peak 
hours are different. These load control mechanisms separate the 
consumption in these hours, so they can be priced differently. h5 
and h6 attacks aim to keep the total energy consumption data 
equal to the actual amount while changing the calculated usage 
in peak hours to lower the cost. h5 uses the mean of the data 
points, and h6 reverses the power consumption of the targeted 
period to achieve this goal. h7 is an attack we introduce in this 
paper. It is specifically designed based on the data of Irans 
Electrical Utility company. In this attack, similar to h3, each 
power consumption value in a time frame is multiplied by a 
random multiplier. The difference is that the affected duration is 
chosen based on the start and end of the peak hours in the given 
season. For example, in Iran, the peak hour of power consump
tion in summer starts from 13:00 with a duration of 6 hours, 
while in other seasons, it starts at 21:00 with a duration of 3 
hours. These hours change based on the country in question.  

• Training Classifiers: As mentioned above, we create malicious 
variants of each consumption vector. The combination of these 
vectors and the original vectors are used as the training data for 
our classifiers. The framework trains one or more different clas
sification models for each cluster in a users data, representing the 
different consumption patterns in that users data. The results of 
these models are then combined to determine which class the 
consumption vector belongs to. 

Now that the framework has been trained on a portion of the users 
power consumption data and its models learned to classify anomalous 
and non-anomalous behaviors, the users data can be given to the 
framework through an online data stream. 

3.2. Testing phase 

The testing phase of the proposed framework consists of two main 
segments. The first one includes computing the NTL of the users 
neighborhood and classifying its consumption vectors. The second 
segment of the testing phase includes the decision making unit, which 
uses the information from the first segment to decide if the user has 
committed electricity theft. The details of this phase are shown in Fig. 2. 

3.2.1. Updating user’s state 
Before checking the users consumption vectors for fraudulent 

behavior, the framework first calculates the technical and non-technical 
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loss of the users neighborhood. For each neighborhood, one or more 
transformer meters report the amount of supplied electricity to that 
neighborhood. The measured value (ETM) is then compared with the 
total amount of consumed energy reported by the smart meters (

∑
iESMi ) 

of the corresponding transformer. Neighborhood NTL detection formula 
is represented by equation 1, where ETL is the estimated technical loss of 
the area and ε is the error in TLs calculation. 

ETM(t) >
∑

i
ESMi (t) + ETL(t) + ε (1) 

With the NTL value estimated for each neighborhood, high risk 
neighborhoods can be discovered. As new consumption vectors are 
given to the framework, The values for the NTL and TL are updated to 
include them. 

The framework analyzes the users as data streams in an online 
manner. Similar to the training phase, the new data must first be pre
processed to meet the required format for the framework. The pre
processing stage includes data conversion, data resampling, and 
aggregation, removing noisy data and handling missing values, 
normalization, and finally, appending the modification flag. After that, 
the framework performs any sort of feature engineering operation done 
in the training phase to increase the quality of the testing portion of the 
dataset. Now, the data is ready to be used by the frameworks detection 

mechanism. 
As mentioned in the training phase, consumption vectors are clus

tered to determine the different patterns in the users data. In the testing 
phase, each new consumption vector, coming through the data stream, is 
assigned to one of the previously created clusters. In the training phase, 
one or more models were trained for each of the clusters, based on the 
honest and malicious data associated with that cluster, to classify them. 
These models will now classify the newly arrived vector into one of the 
honest or malicious classes. Each user had a state representing its in
formation, including a sliding window used for discovering electricity 
theft. Fig. 3 shows an abstract view of the state module. Every new 
classified consumption vector is inserted into this window. Our goal is to 
discover NTL in consumption data, but having one suspicious data point 
is not enough to determine the existence of energy theft. 

Using the sliding windows, we check the consumption vectors to see 
if the anomalous behavior persists over a period of time. The length of 
this period is the same as the sliding windows size (M). To trigger an 
alarm of energy theft, a certain number of data points inside the sliding 
windows should be anomalous (N). After passing this threshold, the 
users mode in the state module changes to suspicious. The sliding win
dow size and the minimum number of anomalies inside the window 
allow for different sensitivity levels. With an increase in M, a larger 
duration is considered for determining suspicious behavior. N indirectly 
shows the minimum percentage of the sliding window points that need 
to be anomalous, so the user is considered suspicious. Typically, with a 
higher percentage, fewer users are assumed to be fraudulent, but the 
probability of electricity theft committed by them is higher. This 

Fig. 2. Framework’s testing phase  

Fig. 3. User’s state  Fig. 4. An example of sliding window, with m=6 and n=4  
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amounts to a trade-off between the detection rate of anomalous users 
and false alarms. As mentioned before, suspicious users need on-site 
inspections, which is expensive. Based on the policies of the electrical 
distribution company and the situation in question, these parameters 
can adjust the sensitivity of the detection process. With each new data 
vector, the first vector in the sliding window is pushed out, and the other 
vectors get shifted to the left. An example of that can be seen in Fig. 4. 
This process is performed on the data to update the users state. In the 
meantime, the framework aggregates the results of the NTL estimator 
and the classifiers, after each new vector, to determine whether the user 
has committed electricity fraud or not. 

3.2.2. Decision making 
Now that the framework has identified suspicious behavior and 

calculated the NTL for the users neighborhood, we can decide if the user 
has committed electricity theft. There are four possible scenarios 
regarding electricity theft when considering the classifiers results and 
the neighborhood NTL detection formula.  

• The first possible scenario is when neither the neighborhood NTL 
detection formula nor the frameworks classifier has detected any
thing suspicious. In this case, the observed vectors are deemed as 
honest data and are added to the honest power consumption data 
vectors of that particular user. In the future, if there is a need for 
retraining in the models, this data point and its malicious variants 
can be used.  

• The second possible scenario happens when both the neighborhood 
NTL detection formula and the user’s classifier detect fraudulent 
behavior. The system checks that the user’s mode has changed to 
suspicious based on the sliding window to see if the anomalous 
behavior persisted over some time. If so, since both of these units 
suggested that the users behavior is an indicator of electricity theft, 
this user is reported for on-site inspection. It needs to be considered 
that more than one fraudulent user can be present in a neighborhood, 
and discovering one does not exempt others from suspicion. The 
fraudulent consumption vectors are added to the malicious dataset of 
the user for possible retraining of the models in the future.  

• The third possible scenario is when the classifier detects anomalous 
behavior, but the neighborhood NTL detection formula shows no 
sign of electricity theft. There are three possible explanations for this 
scenario. The classifier could have misclassified the consumption 
vectors, or there might have been an error in the NTL calculation. 
Both of these cases are not supposed to happen frequently. The other 
explanation for this situation is an alteration in the customers con
sumption pattern. This alteration can be the result of using new ap
pliances, career change, or change in residents of the household. To 
make sure if the consumption pattern has changed, and one of the 
two first explanations is not the cause of the difference in the clas
sifier’s results and the neighborhood NTL detection formula, this 
change should last for a period of time. If we discover that the pattern 
has changed, the newly observed data is kept in the database until 
the new database becomes large enough for the training process. 
With the classifiers retrained now, the framework can resume its 
detection process on new patterns.  

• The last possible scenario in detecting electricity theft is when the 
NTL is detected by the neighborhood NTL detection formula, while 
the models classified the users consumption behavior as non- 
anomalous. If the condition persists, either the neighborhood NTL 
detection formula is at fault, or an attack is probably in progress and 
the classifiers cannot identify it. This might be due to contaminated 
data in the honest dataset used for training the models. As mentioned 
before, the framework presumes that all the data used in the training 
process is completely honest. The non-malicious part of the training 
dataset is checked for data contamination attacks, which slowly 
changed the data and polluted the dataset to cause misclassification 
in the models. A long-term consumption descending slope in the 

observed consumption data of the user can be a sign of this 
contamination. Another situation that can lead to this scenario is the 
direct attachment of electrical devices to the feeder before the meter, 
which is undetectable by both this framework and the previous 
related works. 

4. Evaluation 

In this section, we check the feasibility of the proposed framework 
and test its performance in a practical situation. We computed accuracy, 
the area under the Receiver Operating Characteristics (ROC), and 
Precision-Recall (PR) curves for the model. ROC shows the True Positive 
Rate (TRP) as a function of False Positive Rate (FPR) at several thresh
olds, and PR is an indicator of the tradeoff between precision and recall. 
Area Under the Curve (AUC) is a proper measure to comprise ROC and 
PR. Owing to the scale-invariant and threshold-invariant nature of AUC, 
it is a good measure for model comparison. The larger the area, the 
better the model is, with an area of 1 belonging to the perfect model. In 
the following tables, AUROC shows the two-dimensional area under the 
curve, and AUPR indicates that of the PR curve. Also, ACC is the overall 
accuracy. 

In our previous work [25], we comprised decision-tree, random 
forest, and gradient boosting to detect anomalies in power consumption 
data. The models were once executed with and without clustering to see 
if clustering positively impacted the results. The results showed that 
clustering had a significant positive impact on all models, and gradient 
boosting achieved a better performance than the random forest and 
decision tree algorithms. Owing to the impact of clustering in our pre
vious work, we decided to make clustering a permanent part of the 
framework. 

4.1. Dataset 

To test the framework in a real scenario, we chose the UMass Smart* 
dataset 2017 [26]. This dataset contains data for 114 single-family 
apartments for the period 2014-2016. The data sampling rate for the 
first year was every 15 minutes, and for the second year, every 1 minute. 
We assumed all the data in the dataset to be honest. The dataset was split 
into a train and a test portion. We used 75 percent of the data (con
sumption values until 2016-07-01) for training the framework, and the 
rest of the dataset was given to the framework as a data stream. 

4.2. Data processing engine 

Since the proposed framework is supposed to be practical and usable 
by utility companies, it also needed to be computationally efficient and 
capable of online user processing. We tested several available tools for 
developing the framework, concluding Apache Spark to be the best data 
processing engine fit for our requirements. Apache Spark is a unified 
analytics engine for large-scale data processing. It is flexible as a 
development tool, since it supports multiple languages, such as Python 
and Java. Spark gives us access to distributed implementations of many 
ML algorithms, using MLlib, and also supports deep learning via Deep 
Learning Pipelines by applying Keras models to incoming data. It also 
provides us with Spark Streaming, a component allowing Spark to 
process real-time data. With all of these features combined, Spark was an 
excellent choice for developing the proposed framework. 

4.3. Preprocessing 

The dataset was then preprocessed to become usable by the frame
work. For privacy reasons, the data was first resampled to 1 hour time 
frames in the preprocessing step. The missing values in the dataset were 
filled, and the resulting dataset was vectorized into vectors of size 24, 
representing the 24 hours of the day. Since we are using gradient 
boosting as our classification model, which is a tree-based algorithm, 
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our dataset does not need to be normalized. 

4.4. Feature engineering 

The framework calculated the mean, maximum, minimum, and 
standard deviation for each day and appended them to the consumption 
vector. The newly generated vectors contain 28 elements: the con
sumption of the 24 hours of the day and the 4 calculated features. 

4.5. Training mechanism 

A state module was created and initialized for each user. Then in the 
clustering step, the framework used the K-Means algorithm. K-Means is a 
fast and reliable clustering algorithm used in previous works in this 
research area, such as [27]. It gives you the freedom to choose the 
number of clusters, in this case, the number of consumption patterns 
each user has and is capable of online execution. K-Means is a clustering 
algorithm designed to divide the dataset into K partitions based on the 
elements distance from the K partitions centroids. First, the value of best 
K for each user should be calculated; therefore, the framework ran the 
K-Means algorithms several times with different values for K on each 
users consumption vectors and measured the silhouette score of the 
clustering. The results showed that the majority of users gained their 
best silhouette score with K=1, K=2, and in some rare cases, K=3. This 
indicates that most users had either one or two distinct consumption 
patterns. After the clusters for each user have been defined, they are 
added to the users state. An example of different silhouette scores for 
three consumers can be seen in figure 5. 

As mentioned above, gradient boosting was chosen as the classifier 
for the clusters in the classification step. Tree-based methods such as 
gradient boosting are well-established algorithms for classification tasks 
used in many different research areas, including electricity theft detec
tion, like paper [28], for many years and have proven themselves to be 
comparable to more modern state-of-the-art classifiers, such as neural 
networks. In our previous work [25], we tested three classifiers, and 
gradient boosting achieved the best results. That is why we decided to 
implement a distributed version of gradient boosting using Apache 
Spark for our classifier. 

4.6. Testing phase 

In the testing phase, the remaining vectors for each user were given 
to the framework one by one. New data points are gathered and kept 
until they can fill a consumption vector. With the arrival of each newly 
filled vector, the framework updates the state of the user in question. 

Since we do not have access to the transformer data of users, as this data 
is not publicly available, we cannot use the neighborhood NTL detection 
formula to calculate the NTL of neighborhoods. The availability of this 
data could further increase the accuracy and performance of this 
detection system in real-world situations. The new vector is first put 
through the feature-engineering step, then it is assigned to one of the 
clusters, classified, and inserted into the sliding window. Based on one of 
the four possible scenarios mentioned in the testing phase section of our 
proposed approach, the appropriate steps are taken to identify elec
tricity theft. 

4.7. Comparison 

The results of running the framework for this scenario are shown in 
the table 1. Gradient Boosting achieved an accuracy of 88 with an 
AUROC of 0.94 and AUPR of 0.95, equal to our previous work [25], 
performed in a non-distributed offline mode. We then compared these 
scores with the results of other frameworks and papers done in this area. 
It needs to be considered that given different datasets, the results could 
vary. The datasets used for models’ training in the frameworks could 
have different characteristics, such as the percentage of missing values 
and sampling rate, for example, whether this period is long or includes 
holidays. These different characteristics affect the result of the frame
works. We also compared other aspects of the framework, including its 
reliability, robustness, privacy preservation, distributed execution, on
line processing, and sensitivity control, with other works. 

Distributed Execution refers to the framework’s ability to run the 
required algorithm in a distributed environment. As mentioned in the 
introduction section, distributed data processing can have many bene
fits, like scalability, cost-effectiveness, and more trustworthy big data 
handling. One of the main advantages of the proposed framework is its 
distributed implementation which allows for distributed Execution of 
the ML models on the data. Distributed Execution refers to the frame
work’s ability to run on a cluster of connected systems. This distributed 
Execution also results in some secondary benefits. Reliable Execution is 
one of these advantages, which refers to the framework’s ability to 
continue its work even when one or more components of the system 
have failed. Online Processing is the frameworks ability to process data 
streams as data arrives. Required Sampling Rate and Privacy Preserva
tion are related to each other. As mentioned in the proposed approach 
section of this paper, higher sampling rates for data can cause a breach of 
the user’s privacy. Sensitivity Control refers to the operator’s control 
over the sensitivity of the proposed detection techniques offered by the 
framework. The sensitivity of the detection mechanism can create a 
tradeoff between the number of detected suspicious users and the false 

Fig. 5. Different silhouette scores for three scenarios  
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alarm of the detection algorithm. The last compared metric is robust
ness. A detection technique is robust when the detection accuracy is not 
significantly affected from the baseline under various conditions, such as 
outliers in the dataset. 

Table 1 compares this work with other frameworks in this scope. This 
comparison showed our framework had achieved either comparable or 
better accuracy, AUROC, and AUPR to other works. This acquired ac
curacy is subject to change based on the sensitivity of the frameworks 
detection mechanism, provided by the sliding window and used algo
rithms. Also, due to its distributed implementation, this framework of
fers a reliable execution on clusters of machines. However, we faced 
some limitations in choosing classifiers to test the framework since not 
every machine learning algorithm can have a distributed implementa
tion. Besides the distributed advantages, this framework allows for the 
online processing of data streams, an ability essential in processing 
power consumption data. This approach requires a low data sampling 
rate, resulting in medium privacy preservation for users, and offers high 
robustness and sensitivity control in its detection mechanism. 

Paper [10] presented a multi-class SVM-based electricity theft 
detection approach which got an accuracy score of 89 in 24-element 
vectors, tested on Irelands Commission for Energy Regulation (Irish) 
dataset injected with six different malicious attack patterns. Owing to 
the use of SVM in their detection mechanism, it is robust and offers a 
medium degree of control over the sensitivity of the detection system. 
Also, since the required sampling rate of consumption data is low, it has 
a medium degree of privacy preservation. However, since their proposed 
approach does not have a distributed implementation, it lacks a 
distributed and reliable execution. Work [3] used power 
measurement-based anomalous consumption detectors through 
non-intrusive load monitoring (NILM) in AMIDS, their proposed 
framework, which required a sampling rate of 0.5 samples/min to 
function properly, resulting in weak user privacy preservation. Also, this 
work did not focus on robustness, reliable and distributed execution, and 
sensitivity control; as such, it is somewhat lacking in these aspects. 
Lastly, Paper [29] developed an electricity theft detection framework 
based on Kullback- Leibler Divergence, tested on the Irish dataset, 
injected with specific attack patterns. This framework gained an accu
racy score between 73.8 and 94, based on the injected attacks and their 
classes. It offered robustness in its detection but lacked distributed and 
reliable execution and required a high sampling rate in data, resulting in 
weak privacy preservation. 

5. Conclusion 

In this paper, we introduced a new framework for electricity theft 
detection in smart grids. This framework preprocesses the data, per
forms feature engineering, discovers consumption patterns, classifies the 
consumptions, and then tests the rest of the user’s data to look for 
fraudulent behavior. This framework combines data-oriented and 
network-oriented approaches to detect anomalies, further increasing its 

accuracy. Because of this hybrid method and our novelty in using a 
sliding window, which allows for more control over the sensitivity of the 
detection process, this framework can reduce the rate of costly false 
alarms. We also added a new attack pattern to the previously discovered 
attacks in electricity theft, based on the experts’ opinion of the utility 
company. Our proposed framework was also designed with handling 
real-time large-scale smart grid data in mind, which was achieved by its 
distributed deployment. Lastly, we evaluated the feasibility of this 
framework by testing it on real users’ power consumption data with 
gradient boosting as its classifier. We compared the results of this 
experiment with other previous works in this field, which showed our 
framework to be comparable or superior to other works while having the 
disadvantage of limited available machine learning models in distrib
uted form. On the other hand, the framework benefits from all the ad
vantages of distributed deployment and the online processing of new 
data. The clustering and classification methods used in the evaluation of 
the framework have room for improvement by using techniques such as 
hyperparameter tuning. The mentioned clustering and classification 
methods were used to show the framework’s ability to produce results 
similar or superior to the previously achieved metrics while having 
distributed computing capabilities. 
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