
Electric Power Systems Research 208 (2022) 107895

Available online 3 March 2022
0378-7796/© 2022 Elsevier B.V. All rights reserved.

Online electricity theft detection framework for large-scale smart grid data

Soroush Omidvar Tehrani *, Afshin Shahrestani , Mohammad Hossein Yaghmaee
Department of Computer Engineering, Ferdowsi University of Mashhad, Iran

A R T I C L E I N F O

Keywords:
Electricity theft detection
Anomaly detection framework
Smart grid
Gradient boosting
Online processing

A B S T R A C T

Smart grid gives more control and information to the utility companies. However, it can be leveraged for data
manipulation, which can lead to new techniques in electricity theft. This paper presents an electricity theft
detection framework, designed for handling real-time large-scale smart grid data to address these new emerging
threats. It uses a hybrid approach, combining the information inferred by analyzing the reported data from
distribution transformer meters with machine learning algorithms to discover fraudulent activity. We added an
additional form of attack to the six previously known patterns and generated malicious variants of consumption
data to solve the problem of imbalanced dataset classes, resulting in more accurate classifiers. The framework
also allows for a trade-off between the detection rate and triggered false alarms by using a sliding window in the
decision-making process. In the end, the proposed framework is evaluated using well-known clustering and
classification methods in a practical scenario, resulting in outcomes superior or equal to the previously achieved
scores while having the advantages of online and distributed processing.

1. Introduction

Electricity is an essential part of humans lives now, with almost
everybody having access to and getting their lives affected by it. With its
widespread usage in all parts of the world, there are some concerning
matters that need to be addressed, such as electrical loss. According to
the Distribution Systems Operators (DSOs) point of view, this electrical
loss can be categorized into two main groups, Technical Loss (TL) and
Non-Technical Loss (NTL). Technical loss is any sort of loss that can
occur inside of the distribution network as a result of cables, trans-
formers and other devices used in the transfer of electricity. Non-
technical loss is any unbilled electricity attributed to several factors
[1]. A prime example of NTL is energy theft, a phenomenon that imposes
considerable financial damages (more than $25 billion annually [2])
and is the reason for technical consequences such as voltage violations.

Owing to the better and increased on-site inspection and the devel-
opment and adoption of the smart grid, older malicious approaches in
energy theft, for example, bypassing the meter, are now becoming
obsolete and being replaced by tampered data transmission, created
before, after, or even inside the smart meters. In [3], malicious attempts
are classified using several detection techniques into three categories:
cyber attacks, physical attacks, and data attacks. Physical attacks require
direct manipulation and tampering of the smart meter by users. Exam-
ples of these attacks are traditional meter bypassing, disconnecting the

meters, and breaking into them. Cyber attacks include fraudulent virtual
events such as modifying the firmware of the meters or compromising
the network through remote network exploits, which cause manipula-
tions in communication channels and links. Lastly, data attacks are a
product of cyber and physical attacks and try to change the measured
values of meters. Cutting the reported values by a percentage and
reporting zero consumption are examples of these types of attacks.

Although traditional methods might have previously worked in NTL
detection, nowadays, as a result of the enormous amount of generated
data and variety of anomalies, Machine Learning (ML) methods yield
better results while being more time-efficient.

ML models performances are affected by several factors. One of these
factors is the sampling rate. The sampling rate is defined as the rate at
which data, in this case, power consumption data, was reported. In
general, the more data there is for training, the higher ML models ac-
curacy is. A high sampling rate provides a larger training set. However, it
may threaten the privacy of customers and result in inferred details from
the users personal life. Study [4] further studies the effects of different
time resolutions and their impact on users privacy. Thus, we aggregated
the data to acceptable sampling rates in our research to both respect the
users privacy and keep the results accurate, while making our research
compatible with other datasets.

Another crucial factor is the existence of malicious data in the
dataset. The majority of ML models need to be trained on both malicious

* Corresponding author.
E-mail addresses: omidvar@mail.um.ac.ir (S. Omidvar Tehrani), afshin.shahrestani@alumni.um.ac.ir (A. Shahrestani), hyaghmae@um.ac.ir (M.H. Yaghmaee).

Contents lists available at ScienceDirect

Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

https://doi.org/10.1016/j.epsr.2022.107895
Received 9 November 2021; Received in revised form 23 February 2022; Accepted 26 February 2022

Electric Power Systems Research 208 (2022) 107895

2

and honest data to have optimum performance. Most available datasets
are gathered from volunteers, and these datasets probably lack mali-
cious samples in them. This class imbalance in the data can have sig-
nificant negative effects on the performance of supervised classification
models [5]. To answer this problem, researchers often use malicious
sample generators to inject honest datasets with artificial anomalies.
These functions take honest data as input, and after some operations,
create various attack patterns from them.

A critical factor in ML models performance is the amount of
computational power and time given to them. Due to the massive
amount of the generated data by power consumption and the abundance
of users, the traditional deployment of ML models on one system is
impractical. An alternative is distributed systems. If one system is tasked
with running the models on large datasets, it would require enormous
computational power, coming from powerful and expensive hardware,
which is both financially inefficient and, depending on the dataset,
unfeasible. There is also the matter of online data processing. In this
case, due to the rate of receiving data and the scale of that, centralized
computing becomes near impossible. On the other hand, distributed
systems can be easily scaled based on the tasks, meaning no unnecessary
costs for powerful hardware. They are far more robust against system
crashes and unwanted data deletion, and can be optimized for online
processing. Distributed algorithms allow researchers, companies, and
organizations to make informed decisions and draw meaningful con-
clusions from large amounts of data without inflicting unnecessary
financial pressure. Although there are many benefits to distributed
computing, it is not free of challenges. Some ML algorithms are not
designed to be performed in a distributed manner. Besides, the data
passing between different nodes in the network can be time-consuming.

Finally, the abundance of possible honest consumption patterns due
to the variety of users can be challenging to ML models. Consumers
based on their family size, usage, active electrical appliances, job, and
many other factors can have different consumption patterns. For
example, a user who works during night hours from home has vastly
different consumption patterns than a three-member household. Hence,
methods such as clustering algorithms can be helpful in differentiating
users’ consumption.

This paper aims to introduce an applicable anomaly detection
framework on real customers’ online power usage data. The framework
is designed with the issues surrounding theft detection in consumption
data and the implementation of machine learning models in them.
Machine learning models are used to analyze the user’s data for different
consumption patterns and the detection of different types of attack
patterns in the network, especially data attacks. To solve the problem of
large-scale data processing and the computational and storage over-
head, these machine learning models and methods are performed in a
distributed space to use their advantages, such as scalability, paral-
lelism, and reliability. Another point considered in the framework
design is the capability to process the users’ online data, allowing for re-
evaluation of the model’s understanding of a user’s consumption pat-
terns in case of major changes, hence, the applicability of the framework
in industrial use cases. In this paper, we proposed a framework con-
sisting of a training and a testing phase. In the former, the framework
calculates additional features based on the available users consumption
data to increase the accuracy. Next, it has a clustering phase, performed
on honest data to discover various distributions. After that, the frame-
work uses malicious sample generator functions to inject generated data
and anomalies into the dataset. In the last step of the training phase,
classifiers are trained using the generated data to classify the user’s
behavior. In the testing phase, real-time data of users are classified by
the trained models to discover suspicious users. In parallel, each users
neighborhood NTL is estimated to check for fraudulent activities in the
user’s vicinity. With the combination of these two detection methods,
the users are analyzed for possible electricity theft.

2. Related works

Non-Technical Loss (NTL) detection methods can be categorized into
three groups: data-oriented, network-oriented, and hybrid methods [6].

Network-oriented approaches use the data provided by the grid
distribution sensors and the information related to the network, such as
network topology, to detect NTL. Examples of network-oriented ap-
proaches can be seen in [7–9]. On the other hand, data-oriented
methods are built solely based on data analytics and machine learning
techniques. These methods are typically separated into three
sub-categories: supervised methods, unsupervised methods, and
semi-supervised methods. The choice of which methods can be used in
detecting NTL and electricity theft mainly depends on the data itself and
whether labeled data (data that has already been recognized as honest or
fraudulent) is available. Most data-oriented approaches need to go
through training and testing phases, while unsupervised methods only
use labeled data in evaluation. Some of the examples of supervised
data-oriented anomaly detection in power consumption data are
explained below:

One of the main algorithms used in supervised learning is Support
Vector Machine (SVM). SVMs are somewhat robust against imbalanced
data and are easy to implement. In [10], a pattern-based energy theft
detection system based on honest and malicious consumption patterns
was proposed, in which they used the predictability of customers
non-malicious and malicious behaviors. Their algorithm, called
CPBETD, consists of 2 phases, training and testing. Technical Loss is
estimated during the training phase, and an SVM is trained based on the
malicious data generated from the honest dataset to classify anomalous
and honest patterns. Next, in the training phase, the TL of the data is
measured, and the SVM is performed on data. If either TL estimator or
SVM detects NTL in the data, appropriate actions are taken.

Decision Trees, and in general, tree-based methods, are another
group of machine learning algorithms used in NTL detection. Decision
Trees generate a set of rules to classify the dataset. One of the main
advantages of these methods is their understandability compared to
other methods. Literature [11] uses a decision tree model to detect
potentially fraudulent users based on their profiles. Two types of
fraudulent behavior are discussed in this paper, reporting less power
consumption than the honest value and reporting more power con-
sumption than the honest value. After a decision tree is trained on the
data, generated rules are then used to predict the consumption. Root
Mean Squared Error (RMSE) is used to measure the difference between
the actual value and the predicted value, and the threshold on their
difference determines the existence of fraudulent behaviour on the data.

Paper [12] is another example of tree-based methods in NTL detec-
tion. It proposed a Gradient Boosting Theft Detector (GBTD), inspired by
the work in [10], based on extreme gradient boosting (XGBoost), cate-
gorical boosting (CatBoost), and light gradient model (LightGBM). They
did their research by focusing on feature engineering-based pre-
processing and considering time complexity. It is also noteworthy that
this paper made use of statistical features such as standard deviation,
mean, maximum, minimum to improve Detection Rate (DR) and False
Positive Rate (FPR).

Study [13] proposes an electricity theft detection method consisting
of four steps: missing value interpolation, data balancing, feature
extraction, and fraudulent behavior classification. The dataset used in
this study was already separated into a normal and a fraudulent class,
meaning there is no need for anomaly and theft injection. Three
tree-based classifiers, namely Decision Tree, Random Forest, and Ada-
Boost, were used to classify customers’ usage, and a Bayesian optimizer
found the best hyperparameters for each method.

In [14], the class imbalance in energy theft in older power systems,
resulting from the abundance of honest data, is addressed. Due to the
lower number of energy theft data in datasets, standard models tend to
ignore the malicious data and focus on honest data points. This paper
combined several models, such as one-class SVMs, optimum path forest,

S. Omidvar Tehrani et al.

Electric Power Systems Research 208 (2022) 107895

3

and C4.5 decision tree, to improve the detection rate of previous ap-
proaches. In the end, the combined approach achieved a 2%-10%
improvement over individual classifiers. However, this slight perfor-
mance improvement did not justify the added computational cost. Paper
[10] tried to solve this problem of imbalanced data by generating ma-
licious data to provide a dataset from different classes so the data
imbalance could be fixed.

Another group of methods used in both supervised and unsupervised
learning is Deep Learning algorithms and networks. Literature [15]
proposed a novel hybrid method, consisting of a Convolutional Neural
Network (CNN) for feature extraction and Random Forest (RF) to detect
energy theft in power consumption data automatically. In their research,
a convolutional neural network was designed to learn features from the
different hours of the day and different days using convolution and
downsampling. They also added a dropout layer to reduce the risk of
overfitting. After that, a random forest is trained based on the features
discovered by the CNN to detect anomalies in the power consumption.
To create this hybrid system, a grid search algorithm is used to deter-
mine the optimum parameters.

Study [16] tried to improve the existing supervised anomaly detec-
tion approaches in power consumption data using feature engineering. It
proposed a practical and model-agnostic feature engineering solution
for fraud detection in AMI. They combined a Finite Mixture Model
clustering and an evolutionary Genetic Programming Algorithm to
create a set of features that can show the dynamics of demand over time,
and in comparison with similar households to make anomaly and fraud
detection easier. More than 4000 users half-hourly consumption data for
a duration of 18 months were used in this study which was separated
into five segments of households using the clustering algorithm. This
new feature engineering approach was then integrated into several
machine learning algorithms to test if there are any performance im-
provements in them. The results of using the feature engineering ar-
chitecture alongside machine learning algorithms showed noticeable
improvements in performance, while being computationally practical
and compatible with existing supervised theft detection methods.
Especially in cases of zero-day attacks, unseen attacks, and
small-magnitude electricity theft, this architecture was effective.

Although supervised learning models are helpful, they might not
perform optimally in NTL detection. Due to the abundance of con-
sumption patterns, variety of malicious attacks, and lack of labeled data,
most researchers use malicious attack injection into their datasets to
train them. Unsupervised and semi-supervised methods require little to
no labeled data at all. Some of these methods usage is NTL detection are
written below:

Forecasting and predicting electricity consumption using regression
is another unsupervised form of data-oriented NTL detection. In [17],
the use of ARMA and ARIMA, two autoregression forecasting methods,
were proposed to validate the consumption values. First, they showed
the ineffectiveness of ARMA in power consumption data, due to its
non-stationary nature. Then, they calculated the first-degree difference
of these readings to show this makes them weakly stationary, therefore,
usable by ARIMA.

The use of statistical process control has also been proposed in the
field of NTL detection. Statistical process control is the processing and
monitoring of process conditions to determine its performance [18].
Literature [19] analyzed power consumption data in the form of time
series without seasonal data to detect fraudulent behavior. In this work,
statistical process control was used, and the process was represented as
electricity usage. XMR charts were used to detect significant decreases in
power consumption. To test these findings, the method was tested on a
set of users power consumption data caught stealing electricity.

Hybrid approaches are the last group of methods used in NTL
detection. Hybrid methods adopt a combination of data and network-
oriented approaches in NTL detection to increase the accuracy of the
results.

Article [10] combines SVM with observations of users meters to

estimate the network’s technical losses and calculate the non-technical
loss. When determining whether a user has committed electricity
theft, both the SVM and calculated NTL are considered.

3. Proposed approach

Electricity theft is a huge financial problem for utility companies,
due to the unpaid usage. It overloads the generators, and the quality of
electricity supply is adversely affected by it, since utility companies
cannot calculate the amount of electricity they need to supply to their
honest and illegal customers [2]. Owing to this extra cost imposed by
electricity theft, the detection process should both perform well and be
cheap. Falsely accusing customers of electricity theft can be really
expensive, since each suspect of fraudulent behavior requires on-site
inspection for proof. Our framework tries to detect these fraudulent
behaviors online, while minimizing the required performance and cost.
It combines network oriented and data-oriented approaches to achieve a
hybrid detection method, increasing the accuracy of anomaly detection
and reducing the false positive rate (FPR). The process of anomaly
detection by our framework can be separated into two main sections:
training and testing phase.

3.1. Training

In this section, we will discuss the training process of our framework.
The training phase itself consists of 3 different parts, which can be seen
in Fig. 1. Each of these parts is discussed below:

3.1.1. Preprocessing
Having an unprepared dataset can ruin the result of research, even if

the model is highly accurate. That is why preprocessing is an essential
part of every data analytics project. Our frameworks preprocessing
scheme includes these sections:

1. Data Conversion: Datasets are gathered from different sources with
different standards and outputs. These different channels of data
need to be converted into one pre-defined structure and format
before being used. Data can be generally categorized into three
groups based on its form [20]: (a) Structured Data, data typically
stored in traditional databases in the form of rows, columns and
dictionaries; (b) Unstructured Data, in the forms of videos, images,
and audio; (c) Semi-structured Data, such as data in the form of XML,
JSON and HTML files. Depending on the data sources, all of these
data types could be available, requiring conversion and integration.
Although power consumption data is typically gathered in structured
forms, integrating data from other sources with different structures,
to check the correlation between datasets, could require adjusting
semi-structured and unstructured data to some sort of structure,
which is a complex task.

2. Data Aggregation: Data points can be gathered at different rates. One
of the deciding factors in the quality of a ML model, as mentioned
before, is the size of the dataset. More data leads to training the
model on a wider array of values, which can improve its accuracy
and reduce the chances of overfitting. However, higher sampling
rates can threaten the privacy of consumers. This data can be mis-
used to infer private information regarding the customers, such as
their work schedule, home appliances, and whether the customers
are staying at their home or not [21,22]. Our framework suggests
resampling in a way that we still have enough data for training the
model, while preserving the privacy of consumers.

3. Removing Noises: It is common for datasets to have noisy data. Noisy
data are often corrupted or distorted data points, containing values
with huge differences from the expected. All noisy data are outliers,
but the opposite is not correct. Our frameworks objective is to
discover anomalies or meaningful outliers from the power con-
sumption data, but the existence of noise in the dataset impacts the

S. Omidvar Tehrani et al.

Electric Power Systems Research 208 (2022) 107895

4

model and results in lower accuracy. A good example of noise in
power consumption data is incorrectly entered values into the system
by operators, or negative values reported by the meter. Also, some
other types of meter malfunctioning, such as buffer overflow, result
in entirely different values that are considered as noise.1Hence, our
framework removes the noisy data points from the dataset before
training the models.

4. Handling Missing Values: Sometimes, due to human error, unex-
pected situations, or noisy data removal, we facemissing values in
the dataset. Handling these missing values in the dataset is an
essential step in training the system. The majority of ML models
cannot function with missing values existing in the dataset. Missing
values can be separated into three categories: Missing completely at
random (MCAR), Missing at random (MAR), Missing not at random
(MNAR). Based on what type of missing values we are dealing with,
our goal, and the dataset, we choose one or more approaches to
handle the missing values. Some of the missing value handling ap-
proaches are as follow [23]:
• Case Deletion: Removing missing data points from the dataset is

the most straightforward approach used in handling missing
values. This approach might work when training data are abun-
dant, and the missing values are assumed to be missing completely
at random (MCAR). However, if these conditions are not satisfied,
case deletion introduces biases into the data.

• Mean Substitution: In this approach, the missing value is
substituted with the mean of the variable. This approach is used
with the idea that the mean is a logical estimation of a randomly
selected observation in a normal distribution. Nevertheless, if the
observation is not completely random or values are not normally
distributed, this method may lead to inconsistency.

• Regression Imputation: This method uses other existing observa-
tions in the dataset to predict an estimated value for the missing
data. A regression model is trained on the available data to predict
the observed values. Missing values from the dataset are then filled
with values predicted by the model.

• Last/Next observation carried forward/backward: In this method,
the missing value is replaced with the previously observed/next
available value before/after it. This method works best with
datasets gathered over time with a sequential nature, such as time-
series, and assumes that values observed after one another are
strongly related to each other. One of the advantages of this
method is its ease of understanding.

In the proposed framework, we use these missing values
handling methods based on our need to fill in the blanks in our
dataset.

5. Vectorization: This step converts each users consumption data into
vectors of size V. In other words, each one-dimensional channel of
the time series is transformed into a two-dimensional space. Most
methods use daily vectors, containing either 24 one-hour elements,
or 48 half-hour elements.

6. Normalization: Normalization is a data preparation technique used
to modify the values of each data column, changing them to have a
common scale. There are several normalization methods, each used
for different situations. Depending on the model used to process the
data, normalization can significantly impact its accuracy, while some
are unaffected. For example, tree-based models do not require
normalization since splitting is on single features, and the scale of the
data does not affect it. On the other hand, distance-based methods
such as K-nearest neighbors (KNN), require normalization. In the
case of KNN, since the distance of data points from each other is
calculated and compared to determine the nearest neighbors, having
data columns with different scales affects the calculated distance and
the results of the algorithm might be inaccurate. If the ML models
used by the frameworks classifiers are affected by the scale of data
columns, we first normalize them.

7. Appending Modification Flag: We will add a modification flag to
each row of our dataset, indicating whether the value is authentic or
something calculated or modified by us. Using this flag, if needed, we
can change the impact of modified values in our training process.

3.1.2. Feature engineering
There are some techniques that can be used to improve the quality of

our dataset so we can achieve a more accurate trained model. In this
framework, we use feature engineering in one of the three ways below:

• Extracting effective features: Sometimes, instead of using all the
features of the training dataset, we can use a good subset of it to
increase our trained model’s accuracy and reduce time and resource
consumption. An example of feature extraction was performed in
[24], where a subset of features was selected from the RECS2015
dataset of power consumption to identify more relevant features to
the yearly consumed power.

• Generating new features based on consumption data: As it was
mentioned before, there are features, such as statistical features like
mean, minimum, maximum, and standard deviation, that can be
calculated from the vectors and then get appended to them. These
calculated features are advantageous when used as a description of
each user’s behavior and can be helpful in clustering them together.

• Integrating features from external datasets: Sometimes, other
external sources can help better explain your dataset. Features from
datasets, gathered from different sources, could be integrated into
one another to check their correlation together. This is especially
true for time-series data. By integrating data from other sources into
a time-series, we essentially add more channels to the time-series.
Time-series can be univariate, as in only one channel data, or

Fig. 1. Framework’s training phase

1 There are other types of noises, like altered values because of cosmic-ray-
induced errors, which are much less common in this domain.

S. Omidvar Tehrani et al.

Electric Power Systems Research 208 (2022) 107895

5

multivariate. Adding other features, which correspond with the
timestamps in our time-series, to the dataset, is similar to having
different sensors and data channels when we are gathering the data.
For example, in the case of power consumption data that we are
working with, other features such as weather conditions, tempera-
ture, and special occasions can increase the understandability of the
changes in power consumption. However, it needs to be considered
that these added features increase the time consumption of our
models training phase. They also need to be individually pre-
processed, since the range of their values can affect our models
results.

3.1.3. Training mechanism
After completing all the previous steps mentioned above and pre-

paring the dataset, we get to the training mechanism of the framework
for detecting anomalies. This training mechanism consists of three
different parts: State Creation, Clustering, Classification.

• State Creation: In the state creation phase, a representation of each
user containing necessary information of that, which gets updated
constantly, is created. It includes the users zone information, which
are meter ID and neighborhood, a detection module, which includes
the users consumption patterns in the form of clusters, and a sliding
window explained in the testing phase. The sliding window is the
mechanism that informs us of fraudulent behavior in users data. In
the first step of the training mechanism, each users state is initialized
so that it can be used and updated in the following steps of the
training phase. The details of the state module are explained in the
testing phase.

• Clustering: Clustering is the task of dividing the population of a
group so that members of a group are similar to each other, while the
difference between members of different groups is maximized. There
are several general types of clustering, such as hierarchical clus-
tering, density-based clustering, and distribution-based clustering,
each of which is suited for specific purposes and datasets. The pro-
posed framework uses clustering to find different consumption pat-
terns in each users consumption data. Clustering algorithms have
their own hyperparameters, such as the number of clusters in k-
means or epsilon and the minimum number of points to form a dense
region in DBSCAN, which need to be set beforehand. One way of
determining the optimum value for these hyperparameters is to
perform clustering algorithms several times with different values on
each users data. In the end, the results of clustering algorithms are
compared together based on some metrics to find out the optimum
values for the hyperparameters.

• Classification: Our final phase in the training mechanism is classifi-
cation. In this phase, we first inject malicious data into our users
consumption data, and then we use classification algorithms to
detect the injected anomalies. It is essential to know that the data
used in the training process must be fully honest, and any fraudulent
data in it can lower the accuracy of the model.
• Malicious Data Generation: We used six malicious attack patterns,

defined in [10], and one other pattern that we created based on the
experts’ opinion in Iran’s electricity utility company. As
mentioned before, we divided each customer’s data into vectors of
predetermined length. For each of these segments, we created a
malicious variant with each attack pattern. These attack patterns
are as follow:
• h1(xt) : αxt ,α = random(0.1,0.8)
• h2(xt) : βtxt ,

βt =

{
0 tstart < t < tend
1 otherwise ,

tstart = random(0,23 − toff),

duration = random(toff ,24),

tend = tstart + duration,
toff ≥ 4

• h3(xt) : γtxt , γt = random(0.1,0.8)
• h4(xt) : γtmean(x), γt = random(0.1,0.8)
• h5(xt) : mean(x)
• h6(xt) : x24− t
• h7(xt) : θtxt ,

θt =

{
random(0.1,0.8) tstart peak < t < tend peak
1 otherwise ,

tstart peak =

{
13:00 summer
21:00 other seasons ,

duration =

{
6 hours summer
3 hours other seasons ,

tend peak = tstart peak + duration
h1 multiplies all of the data points by a random value. h2 is

equivalent to the smart meter not sending its measurements or
sending zeros for a random duration. h3 is similar to h1, but in
this case, each of the data points is multiplied by a random
number. h4 and h5 both send out the mean of the affected data
points. h5 sends out the exact value of the mean, while the
output of h4 is a fraction of it. h5 and h6 are both attacks against
the load control mechanism. In some countries, such as Canada
and the USA, the price of electricity usage in peak and off-peak
hours are different. These load control mechanisms separate the
consumption in these hours, so they can be priced differently. h5
and h6 attacks aim to keep the total energy consumption data
equal to the actual amount while changing the calculated usage
in peak hours to lower the cost. h5 uses the mean of the data
points, and h6 reverses the power consumption of the targeted
period to achieve this goal. h7 is an attack we introduce in this
paper. It is specifically designed based on the data of Irans
Electrical Utility company. In this attack, similar to h3, each
power consumption value in a time frame is multiplied by a
random multiplier. The difference is that the affected duration is
chosen based on the start and end of the peak hours in the given
season. For example, in Iran, the peak hour of power consump-
tion in summer starts from 13:00 with a duration of 6 hours,
while in other seasons, it starts at 21:00 with a duration of 3
hours. These hours change based on the country in question.

• Training Classifiers: As mentioned above, we create malicious
variants of each consumption vector. The combination of these
vectors and the original vectors are used as the training data for
our classifiers. The framework trains one or more different clas-
sification models for each cluster in a users data, representing the
different consumption patterns in that users data. The results of
these models are then combined to determine which class the
consumption vector belongs to.

Now that the framework has been trained on a portion of the users
power consumption data and its models learned to classify anomalous
and non-anomalous behaviors, the users data can be given to the
framework through an online data stream.

3.2. Testing phase

The testing phase of the proposed framework consists of two main
segments. The first one includes computing the NTL of the users
neighborhood and classifying its consumption vectors. The second
segment of the testing phase includes the decision making unit, which
uses the information from the first segment to decide if the user has
committed electricity theft. The details of this phase are shown in Fig. 2.

3.2.1. Updating user’s state
Before checking the users consumption vectors for fraudulent

behavior, the framework first calculates the technical and non-technical

S. Omidvar Tehrani et al.

Electric Power Systems Research 208 (2022) 107895

6

loss of the users neighborhood. For each neighborhood, one or more
transformer meters report the amount of supplied electricity to that
neighborhood. The measured value (ETM) is then compared with the
total amount of consumed energy reported by the smart meters (

∑
iESMi)

of the corresponding transformer. Neighborhood NTL detection formula
is represented by equation 1, where ETL is the estimated technical loss of
the area and ε is the error in TLs calculation.

ETM(t) >
∑

i
ESMi (t) + ETL(t) + ε (1)

With the NTL value estimated for each neighborhood, high risk
neighborhoods can be discovered. As new consumption vectors are
given to the framework, The values for the NTL and TL are updated to
include them.

The framework analyzes the users as data streams in an online
manner. Similar to the training phase, the new data must first be pre-
processed to meet the required format for the framework. The pre-
processing stage includes data conversion, data resampling, and
aggregation, removing noisy data and handling missing values,
normalization, and finally, appending the modification flag. After that,
the framework performs any sort of feature engineering operation done
in the training phase to increase the quality of the testing portion of the
dataset. Now, the data is ready to be used by the frameworks detection

mechanism.
As mentioned in the training phase, consumption vectors are clus-

tered to determine the different patterns in the users data. In the testing
phase, each new consumption vector, coming through the data stream, is
assigned to one of the previously created clusters. In the training phase,
one or more models were trained for each of the clusters, based on the
honest and malicious data associated with that cluster, to classify them.
These models will now classify the newly arrived vector into one of the
honest or malicious classes. Each user had a state representing its in-
formation, including a sliding window used for discovering electricity
theft. Fig. 3 shows an abstract view of the state module. Every new
classified consumption vector is inserted into this window. Our goal is to
discover NTL in consumption data, but having one suspicious data point
is not enough to determine the existence of energy theft.

Using the sliding windows, we check the consumption vectors to see
if the anomalous behavior persists over a period of time. The length of
this period is the same as the sliding windows size (M). To trigger an
alarm of energy theft, a certain number of data points inside the sliding
windows should be anomalous (N). After passing this threshold, the
users mode in the state module changes to suspicious. The sliding win-
dow size and the minimum number of anomalies inside the window
allow for different sensitivity levels. With an increase in M, a larger
duration is considered for determining suspicious behavior. N indirectly
shows the minimum percentage of the sliding window points that need
to be anomalous, so the user is considered suspicious. Typically, with a
higher percentage, fewer users are assumed to be fraudulent, but the
probability of electricity theft committed by them is higher. This

Fig. 2. Framework’s testing phase

Fig. 3. User’s state Fig. 4. An example of sliding window, with m=6 and n=4

S. Omidvar Tehrani et al.

Electric Power Systems Research 208 (2022) 107895

7

amounts to a trade-off between the detection rate of anomalous users
and false alarms. As mentioned before, suspicious users need on-site
inspections, which is expensive. Based on the policies of the electrical
distribution company and the situation in question, these parameters
can adjust the sensitivity of the detection process. With each new data
vector, the first vector in the sliding window is pushed out, and the other
vectors get shifted to the left. An example of that can be seen in Fig. 4.
This process is performed on the data to update the users state. In the
meantime, the framework aggregates the results of the NTL estimator
and the classifiers, after each new vector, to determine whether the user
has committed electricity fraud or not.

3.2.2. Decision making
Now that the framework has identified suspicious behavior and

calculated the NTL for the users neighborhood, we can decide if the user
has committed electricity theft. There are four possible scenarios
regarding electricity theft when considering the classifiers results and
the neighborhood NTL detection formula.

• The first possible scenario is when neither the neighborhood NTL
detection formula nor the frameworks classifier has detected any-
thing suspicious. In this case, the observed vectors are deemed as
honest data and are added to the honest power consumption data
vectors of that particular user. In the future, if there is a need for
retraining in the models, this data point and its malicious variants
can be used.

• The second possible scenario happens when both the neighborhood
NTL detection formula and the user’s classifier detect fraudulent
behavior. The system checks that the user’s mode has changed to
suspicious based on the sliding window to see if the anomalous
behavior persisted over some time. If so, since both of these units
suggested that the users behavior is an indicator of electricity theft,
this user is reported for on-site inspection. It needs to be considered
that more than one fraudulent user can be present in a neighborhood,
and discovering one does not exempt others from suspicion. The
fraudulent consumption vectors are added to the malicious dataset of
the user for possible retraining of the models in the future.

• The third possible scenario is when the classifier detects anomalous
behavior, but the neighborhood NTL detection formula shows no
sign of electricity theft. There are three possible explanations for this
scenario. The classifier could have misclassified the consumption
vectors, or there might have been an error in the NTL calculation.
Both of these cases are not supposed to happen frequently. The other
explanation for this situation is an alteration in the customers con-
sumption pattern. This alteration can be the result of using new ap-
pliances, career change, or change in residents of the household. To
make sure if the consumption pattern has changed, and one of the
two first explanations is not the cause of the difference in the clas-
sifier’s results and the neighborhood NTL detection formula, this
change should last for a period of time. If we discover that the pattern
has changed, the newly observed data is kept in the database until
the new database becomes large enough for the training process.
With the classifiers retrained now, the framework can resume its
detection process on new patterns.

• The last possible scenario in detecting electricity theft is when the
NTL is detected by the neighborhood NTL detection formula, while
the models classified the users consumption behavior as non-
anomalous. If the condition persists, either the neighborhood NTL
detection formula is at fault, or an attack is probably in progress and
the classifiers cannot identify it. This might be due to contaminated
data in the honest dataset used for training the models. As mentioned
before, the framework presumes that all the data used in the training
process is completely honest. The non-malicious part of the training
dataset is checked for data contamination attacks, which slowly
changed the data and polluted the dataset to cause misclassification
in the models. A long-term consumption descending slope in the

observed consumption data of the user can be a sign of this
contamination. Another situation that can lead to this scenario is the
direct attachment of electrical devices to the feeder before the meter,
which is undetectable by both this framework and the previous
related works.

4. Evaluation

In this section, we check the feasibility of the proposed framework
and test its performance in a practical situation. We computed accuracy,
the area under the Receiver Operating Characteristics (ROC), and
Precision-Recall (PR) curves for the model. ROC shows the True Positive
Rate (TRP) as a function of False Positive Rate (FPR) at several thresh-
olds, and PR is an indicator of the tradeoff between precision and recall.
Area Under the Curve (AUC) is a proper measure to comprise ROC and
PR. Owing to the scale-invariant and threshold-invariant nature of AUC,
it is a good measure for model comparison. The larger the area, the
better the model is, with an area of 1 belonging to the perfect model. In
the following tables, AUROC shows the two-dimensional area under the
curve, and AUPR indicates that of the PR curve. Also, ACC is the overall
accuracy.

In our previous work [25], we comprised decision-tree, random
forest, and gradient boosting to detect anomalies in power consumption
data. The models were once executed with and without clustering to see
if clustering positively impacted the results. The results showed that
clustering had a significant positive impact on all models, and gradient
boosting achieved a better performance than the random forest and
decision tree algorithms. Owing to the impact of clustering in our pre-
vious work, we decided to make clustering a permanent part of the
framework.

4.1. Dataset

To test the framework in a real scenario, we chose the UMass Smart*
dataset 2017 [26]. This dataset contains data for 114 single-family
apartments for the period 2014-2016. The data sampling rate for the
first year was every 15 minutes, and for the second year, every 1 minute.
We assumed all the data in the dataset to be honest. The dataset was split
into a train and a test portion. We used 75 percent of the data (con-
sumption values until 2016-07-01) for training the framework, and the
rest of the dataset was given to the framework as a data stream.

4.2. Data processing engine

Since the proposed framework is supposed to be practical and usable
by utility companies, it also needed to be computationally efficient and
capable of online user processing. We tested several available tools for
developing the framework, concluding Apache Spark to be the best data
processing engine fit for our requirements. Apache Spark is a unified
analytics engine for large-scale data processing. It is flexible as a
development tool, since it supports multiple languages, such as Python
and Java. Spark gives us access to distributed implementations of many
ML algorithms, using MLlib, and also supports deep learning via Deep
Learning Pipelines by applying Keras models to incoming data. It also
provides us with Spark Streaming, a component allowing Spark to
process real-time data. With all of these features combined, Spark was an
excellent choice for developing the proposed framework.

4.3. Preprocessing

The dataset was then preprocessed to become usable by the frame-
work. For privacy reasons, the data was first resampled to 1 hour time
frames in the preprocessing step. The missing values in the dataset were
filled, and the resulting dataset was vectorized into vectors of size 24,
representing the 24 hours of the day. Since we are using gradient
boosting as our classification model, which is a tree-based algorithm,

S. Omidvar Tehrani et al.

Electric Power Systems Research 208 (2022) 107895

8

our dataset does not need to be normalized.

4.4. Feature engineering

The framework calculated the mean, maximum, minimum, and
standard deviation for each day and appended them to the consumption
vector. The newly generated vectors contain 28 elements: the con-
sumption of the 24 hours of the day and the 4 calculated features.

4.5. Training mechanism

A state module was created and initialized for each user. Then in the
clustering step, the framework used the K-Means algorithm. K-Means is a
fast and reliable clustering algorithm used in previous works in this
research area, such as [27]. It gives you the freedom to choose the
number of clusters, in this case, the number of consumption patterns
each user has and is capable of online execution. K-Means is a clustering
algorithm designed to divide the dataset into K partitions based on the
elements distance from the K partitions centroids. First, the value of best
K for each user should be calculated; therefore, the framework ran the
K-Means algorithms several times with different values for K on each
users consumption vectors and measured the silhouette score of the
clustering. The results showed that the majority of users gained their
best silhouette score with K=1, K=2, and in some rare cases, K=3. This
indicates that most users had either one or two distinct consumption
patterns. After the clusters for each user have been defined, they are
added to the users state. An example of different silhouette scores for
three consumers can be seen in figure 5.

As mentioned above, gradient boosting was chosen as the classifier
for the clusters in the classification step. Tree-based methods such as
gradient boosting are well-established algorithms for classification tasks
used in many different research areas, including electricity theft detec-
tion, like paper [28], for many years and have proven themselves to be
comparable to more modern state-of-the-art classifiers, such as neural
networks. In our previous work [25], we tested three classifiers, and
gradient boosting achieved the best results. That is why we decided to
implement a distributed version of gradient boosting using Apache
Spark for our classifier.

4.6. Testing phase

In the testing phase, the remaining vectors for each user were given
to the framework one by one. New data points are gathered and kept
until they can fill a consumption vector. With the arrival of each newly
filled vector, the framework updates the state of the user in question.

Since we do not have access to the transformer data of users, as this data
is not publicly available, we cannot use the neighborhood NTL detection
formula to calculate the NTL of neighborhoods. The availability of this
data could further increase the accuracy and performance of this
detection system in real-world situations. The new vector is first put
through the feature-engineering step, then it is assigned to one of the
clusters, classified, and inserted into the sliding window. Based on one of
the four possible scenarios mentioned in the testing phase section of our
proposed approach, the appropriate steps are taken to identify elec-
tricity theft.

4.7. Comparison

The results of running the framework for this scenario are shown in
the table 1. Gradient Boosting achieved an accuracy of 88 with an
AUROC of 0.94 and AUPR of 0.95, equal to our previous work [25],
performed in a non-distributed offline mode. We then compared these
scores with the results of other frameworks and papers done in this area.
It needs to be considered that given different datasets, the results could
vary. The datasets used for models’ training in the frameworks could
have different characteristics, such as the percentage of missing values
and sampling rate, for example, whether this period is long or includes
holidays. These different characteristics affect the result of the frame-
works. We also compared other aspects of the framework, including its
reliability, robustness, privacy preservation, distributed execution, on-
line processing, and sensitivity control, with other works.

Distributed Execution refers to the framework’s ability to run the
required algorithm in a distributed environment. As mentioned in the
introduction section, distributed data processing can have many bene-
fits, like scalability, cost-effectiveness, and more trustworthy big data
handling. One of the main advantages of the proposed framework is its
distributed implementation which allows for distributed Execution of
the ML models on the data. Distributed Execution refers to the frame-
work’s ability to run on a cluster of connected systems. This distributed
Execution also results in some secondary benefits. Reliable Execution is
one of these advantages, which refers to the framework’s ability to
continue its work even when one or more components of the system
have failed. Online Processing is the frameworks ability to process data
streams as data arrives. Required Sampling Rate and Privacy Preserva-
tion are related to each other. As mentioned in the proposed approach
section of this paper, higher sampling rates for data can cause a breach of
the user’s privacy. Sensitivity Control refers to the operator’s control
over the sensitivity of the proposed detection techniques offered by the
framework. The sensitivity of the detection mechanism can create a
tradeoff between the number of detected suspicious users and the false

Fig. 5. Different silhouette scores for three scenarios

S. Omidvar Tehrani et al.

Electric Power Systems Research 208 (2022) 107895

9

alarm of the detection algorithm. The last compared metric is robust-
ness. A detection technique is robust when the detection accuracy is not
significantly affected from the baseline under various conditions, such as
outliers in the dataset.

Table 1 compares this work with other frameworks in this scope. This
comparison showed our framework had achieved either comparable or
better accuracy, AUROC, and AUPR to other works. This acquired ac-
curacy is subject to change based on the sensitivity of the frameworks
detection mechanism, provided by the sliding window and used algo-
rithms. Also, due to its distributed implementation, this framework of-
fers a reliable execution on clusters of machines. However, we faced
some limitations in choosing classifiers to test the framework since not
every machine learning algorithm can have a distributed implementa-
tion. Besides the distributed advantages, this framework allows for the
online processing of data streams, an ability essential in processing
power consumption data. This approach requires a low data sampling
rate, resulting in medium privacy preservation for users, and offers high
robustness and sensitivity control in its detection mechanism.

Paper [10] presented a multi-class SVM-based electricity theft
detection approach which got an accuracy score of 89 in 24-element
vectors, tested on Irelands Commission for Energy Regulation (Irish)
dataset injected with six different malicious attack patterns. Owing to
the use of SVM in their detection mechanism, it is robust and offers a
medium degree of control over the sensitivity of the detection system.
Also, since the required sampling rate of consumption data is low, it has
a medium degree of privacy preservation. However, since their proposed
approach does not have a distributed implementation, it lacks a
distributed and reliable execution. Work [3] used power
measurement-based anomalous consumption detectors through
non-intrusive load monitoring (NILM) in AMIDS, their proposed
framework, which required a sampling rate of 0.5 samples/min to
function properly, resulting in weak user privacy preservation. Also, this
work did not focus on robustness, reliable and distributed execution, and
sensitivity control; as such, it is somewhat lacking in these aspects.
Lastly, Paper [29] developed an electricity theft detection framework
based on Kullback- Leibler Divergence, tested on the Irish dataset,
injected with specific attack patterns. This framework gained an accu-
racy score between 73.8 and 94, based on the injected attacks and their
classes. It offered robustness in its detection but lacked distributed and
reliable execution and required a high sampling rate in data, resulting in
weak privacy preservation.

5. Conclusion

In this paper, we introduced a new framework for electricity theft
detection in smart grids. This framework preprocesses the data, per-
forms feature engineering, discovers consumption patterns, classifies the
consumptions, and then tests the rest of the user’s data to look for
fraudulent behavior. This framework combines data-oriented and
network-oriented approaches to detect anomalies, further increasing its

accuracy. Because of this hybrid method and our novelty in using a
sliding window, which allows for more control over the sensitivity of the
detection process, this framework can reduce the rate of costly false
alarms. We also added a new attack pattern to the previously discovered
attacks in electricity theft, based on the experts’ opinion of the utility
company. Our proposed framework was also designed with handling
real-time large-scale smart grid data in mind, which was achieved by its
distributed deployment. Lastly, we evaluated the feasibility of this
framework by testing it on real users’ power consumption data with
gradient boosting as its classifier. We compared the results of this
experiment with other previous works in this field, which showed our
framework to be comparable or superior to other works while having the
disadvantage of limited available machine learning models in distrib-
uted form. On the other hand, the framework benefits from all the ad-
vantages of distributed deployment and the online processing of new
data. The clustering and classification methods used in the evaluation of
the framework have room for improvement by using techniques such as
hyperparameter tuning. The mentioned clustering and classification
methods were used to show the framework’s ability to produce results
similar or superior to the previously achieved metrics while having
distributed computing capabilities.

CRediT authorship contribution statement

Soroush Omidvar Tehrani: Conceptualization, Funding acquisi-
tion, Formal analysis, Writing – original draft, Visualization. Afshin
Shahrestani: Conceptualization, Funding acquisition, Formal analysis,
Writing – original draft, Visualization. Mohammad Hossein Yagh-
maee: Conceptualization, Writing – original draft, Visualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to in uence
the work reported in this paper.

References

[1] F. de Souza Savian, J.C.M. Siluk, T.B. Garlet, F.M. do Nascimento, J.R. Pinheiro,
Z. Vale, Non-technical losses: A systematic contemporary article review,
Renewable and Sustainable Energy Reviews 147 (2021) 111205, https://doi.org/
10.1016/j.rser.2021.111205.

[2] S.S.S.R. Depuru, L. Wang, V. Devabhaktuni, Electricity theft: Overview, issues,
prevention and a smart meter based approach to control theft, Energy Policy 39 (2)
(2011) 1007–1015.

[3] S. McLaughlin, B. Holbert, A. Fawaz, R. Berthier, S. Zonouz, A multi-sensor energy
theft detection framework for advanced metering infrastructures, IEEE Journal on
Selected Areas in Communications 31 (7) (2013) 1319–1330, https://doi.org/
10.1109/JSAC.2013.130714.

[4] G. Giaconi, D. Gunduz, H.V. Poor, Privacy-aware smart metering: Progress and
challenges, IEEE Signal Processing Magazine 35 (6) (2018) 59–78.

[5] N.F. Avila, G. Figueroa, C.-C. Chu, Ntl detection in electric distribution systems
using the maximal overlap discrete wavelet-packet transform and random

Table 1
Comparison among electrisity theft frameworks

Method / Approach This work Work [10] Work [3] Work [29]

ACC 88+ a 89 (with 24 element vectors) N/A varies for different attacks b

AUROC 0.94 N/A N/A N/A
AUPR 0.95 N/A N/A N/A
Dataset UMass Smart* Irish dataset (CER) N/A Irish dataset (CER)
Required Sampling Rate Low Low High High
Privacy Preservation Medium Medium Weak Weak
Distributed Execution Yes No No No
Reliable Execution Yes No No No
Online Processing Yes No No No
Sensitivity Control High Medium No N/A
Robustness High High Low High

a based on sliding window’s sensitivity level
b from 73.8 to 94.0 on particular attacks

S. Omidvar Tehrani et al.

Electric Power Systems Research 208 (2022) 107895

10

undersampling boosting, IEEE Transactions on Power Systems 33 (6) (2018)
7171–7180.

[6] G.M. Messinis, N.D. Hatziargyriou, Review of non-technical loss detection
methods, Electric Power Systems Research 158 (2018) 250–266, https://doi.org/
10.1016/j.epsr.2018.01.005.

[7] M. Tariq, H.V. Poor, Electricity theft detection and localization in grid-tied
microgrids, IEEE Transactions on Smart Grid 9 (3) (2018) 1920–1929, https://doi.
org/10.1109/TSG.2016.2602660.

[8] E.A. Aranha Neto, J. Coelho, Probabilistic methodology for technical and non-
technical losses estimation in distribution system, Electric Power Systems Research
97 (2013) 93–99, https://doi.org/10.1016/j.epsr.2012.12.008.

[9] Z. Xiao, Y. Xiao, D.H.-C. Du, Exploring malicious meter inspection in neighborhood
area smart grids, IEEE Transactions on Smart Grid 4 (1) (2013) 214–226, https://
doi.org/10.1109/TSG.2012.2229397.

[10] P. Jokar, N. Arianpoo, V.C. Leung, Electricity theft detection in ami using
customers consumption patterns, IEEE Transactions on Smart Grid 7 (1) (2015)
216–226.

[11] C. Cody, V. Ford, A. Siraj, Decision tree learning for fraud detection in consumer
energy consumption. 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA), IEEE, 2015, pp. 1175–1179.

[12] R. Punmiya, S. Choe, Energy theft detection using gradient boosting theft detector
with feature engineering-based preprocessing, IEEE Transactions on Smart Grid 10
(2) (2019) 2326–2329.

[13] A. Arif, N. Javaid, A. Aldegheishem, N. Alrajeh, Big data analytics for identifying
electricity theft using machine learning approaches in microgrids for smart
communities, Concurrency and Computation: Practice and Experience (2021)
e6316.

[14] M. Di Martino, F. Decia, J. Molinelli, A. Fernández, Improving electric fraud
detection using class imbalance strategies. ICPRAM (2), 2012, pp. 135–141.

[15] S. Li, Y. Han, X. Yao, S. Yingchen, J. Wang, Q. Zhao, Electricity theft detection in
power grids with deep learning and random forests, Journal of Electrical and
Computer Engineering 2019 (2019).

[16] R. Razavi, A. Gharipour, M. Fleury, I.J. Akpan, A practical feature-engineering
framework for electricity theft detection in smart grids, Applied Energy 238 (2019)
481–494, https://doi.org/10.1016/j.apenergy.2019.01.076.

[17] V. Badrinath Krishna, R.K. Iyer, W.H. Sanders, Arima-based modeling and
validation of consumption readings in power grids, in: E. Rome, M. Theocharidou,
S. Wolthusen (Eds.), Critical Information Infrastructures Security, Springer
International Publishing, Cham, 2016, pp. 199–210.

[18] D.S. Naidu, S. Ozcelik, K.L. Moore, Chapter 3 - gas metal arc welding: Sensing, in:
D.S. Naidu, S. Ozcelik, K.L. Moore (Eds.), Modeling, Sensing and Control of Gas

Metal Arc Welding, Elsevier Science Ltd, Oxford, 2003, pp. 95–145, https://doi.
org/10.1016/B978-008044066-8/50005-7.

[19] J.V. Spirić, M.B. Dočić, S.S. Stanković, Fraud detection in registered electricity time
series, International Journal of Electrical Power and Energy Systems 71 (2015)
42–50, https://doi.org/10.1016/j.ijepes.2015.02.037.

[20] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I.A.T. Hashem, A. Siddiqa, I. Yaqoob,
Big iot data analytics: Architecture, opportunities, and open research challenges,
IEEE Access 5 (2017) 5247–5261, https://doi.org/10.1109/
ACCESS.2017.2689040.

[21] M. Nabil, M. Ismail, M.M.E.A. Mahmoud, W. Alasmary, E. Serpedin, Ppetd:
Privacy-preserving electricity theft detection scheme with load monitoring and
billing for ami networks, IEEE Access 7 (2019) 96334–96348, https://doi.org/
10.1109/ACCESS.2019.2925322.

[22] M. Shateri, F. Messina, P. Piantanida, F. Labeau, Deep directed information-based
learning for privacy-preserving smart meter data release. 2019 IEEE International
Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm), 2019, pp. 1–7, https://doi.org/10.1109/
SmartGridComm.2019.8909813.

[23] H. Kang, The prevention and handling of the missing data, Korean journal of
anesthesiology 64 (5) (2013) 402.

[24] H.M. Sani, S.O. Tehrani, B. Behkamal, H. Amintoosi, Extracting effective features
for descriptive analysis of household energy consumption using smart home data.
International Congress on High-Performance Computing and Big Data Analysis,
Springer, 2019, pp. 240–252.

[25] S.O. Tehrani, M.H.Y. Moghaddam, M. Asadi, Decision tree based electricity theft
detection in smart grid. 2020 4th International Conference on Smart City, Internet
of Things and Applications (SCIOT), IEEE, 2020, pp. 46–51.

[26] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, J. Albrecht, et al., Smart*: An
open data set and tools for enabling research in sustainable homes, SustKDD,
August 111 (112) (2012) 108.

[27] K. Zheng, Y. Wang, Q. Chen, Y. Li, Electricity theft detecting based on density-
clustering method. 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-
Asia), IEEE, 2017, pp. 1–6.

[28] Z. Yan, H. Wen, Electricity theft detection base on extreme gradient boosting in
ami, IEEE Transactions on Instrumentation and Measurement 70 (2021) 1–9.

[29] V.B. Krishna, K. Lee, G.A. Weaver, R.K. Iyer, W.H. Sanders, F-deta: A framework for
detecting electricity theft attacks in smart grids. 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), 2016,
pp. 407–418, https://doi.org/10.1109/DSN.2016.44.

S. Omidvar Tehrani et al.

