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Abstract: Pathological cardiac hypertrophy is a key risk factor for the development of heart failure
and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac
hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic
stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we high-
light the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial
cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes
and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic,
and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e.,
commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is
mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and
infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now
being integrated into computational models that provide system-level insights and will help to
translate our knowledge into new pharmacological targets. This perspective article summarizes the
last decades’ advances in cardiac hypertrophy research and discusses the herein-involved complex
myocardial microenvironment and signaling components.

Keywords: cardiac hypertrophy; cardiomyocytes; heart failure; myocardial microenvironment;
myofibroblasts; pressure overload; scar formation; vasoactive hormones

1. General Introduction

Myocardial remodeling associated with cardiac hypertrophy is one of the critical
causes in the development of heart failure. The pathogenesis of heart dysfunction is one of
the primary causes of morbidity and mortality in elderly people [1].

Cardiac hypertrophy is the most frequently compensatory or adaptive process to
numerous physiological or pathological conditions (Table 1) [2]. Hypertrophic enlargement
is characterized by an increase in the cell size of cardiomyocytes. The heart can dynamically
change its muscle mass to cope with the stimuli of development, physiological conditions of
exercise and pregnancy, or pathological disease stimuli (Table 1) [3]. Increased workload as
a consequence of volume or pressure overload due to pathological or physiological stimuli
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increases tension on the cardiac walls of the heart chambers [4,5]. This ultimately triggers
stress signals released by different cell types of the microenvironment to compensate for
the wall tension increase, resulting in a hypertrophic growth response [4,5]. Individual
cardiomyocytes can increase in length and/or width in response to hypertrophic stimuli
depending on the intracellular signaling cascades involved [6–8].

Hypertrophy, or the enlargement of individual muscle fibers, is the primary mecha-
nism by which skeletal muscle mass increases during postnatal development. A similar
process may be induced in adult skeletal muscle in response to contractile activity, satellite
cell proliferation and fusion, which increases the number of myonuclei. This event may
also play a role in muscle growth during early but not late stages of postnatal development
and in some forms of muscle hypertrophy [9]. Likewise, the number of endothelium and
mesenchymal cells can also increase from birth through early adulthood, but on the other
hand the entire complement of cardiomyocytes is created during pregnancy and remains
nearly constant throughout the human lifespan. Early infancy has the highest levels of
cardiomyocyte exchange, which steadily declines during life to 1% per year in maturity in
processes that increase very modestly in the vicinity of cardiac injury [10,11]. Important to
note that cell duplication is not always a result of cardiomyocyte cell cycle activity. In con-
trast, multinucleation and polyploidization occur during various phases of development
including heart development as a result of premature cell cycle exit [12].

Physiological and pathological cardiac hypertrophy are associated with distinct molec-
ular characteristics (Table 1) involving alterations in the expression of fetal genes, and
contractile and calcium-handling proteins [13]. A major molecular characteristic of patho-
logical hypertrophy is the re-expression of fetal genes. Pathological settings such as hy-
pertension cause the induction of the stress program that involves increased expression of
atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and alpha-skeletal actin
(α-sk actin) [14]. In contrast, an important characteristic of physiological hypertrophy is
the absence of molecular stress programs [15]. In addition, expression of cardiac contractile
proteins, such as alpha- and beta-myosin heavy chain and calcium-handling proteins, e.g.,
sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) remain unchanged during physiologi-
cal cardiac hypertrophy, whereas pathological cardiac hypertrophy is closely associated
with alterations in the above-named genes and proteins [14].

Table 1. Characteristics of physiological and pathological cardiac hypertrophy 1.

Characteristic Physiological
Cardiac Hypertrophic

Pathological
Cardiac Hypertrophic

Stimuli exercise, pregnancy i.a. pressure or volume overload
Cardiomyocyte size increased increased
Concentric or eccentric eccentric > concentric concentric or eccentric
Adaptivity yes initially yes/advanced maladaptive
Contractility preserved or increased preserved or decreased
Cardiac metabolism
Fatty acid oxidation increased decreased
Glycolysis increased increased
Structural and functional
Replacement no yes
Interstitial fibrosis no yes
Cardiomyocyte apoptosis no yes
Capillary network sufficient insufficient
Molecular characteristics
Fetal gene expression unmodified upregulated
Contractile linked genes
Inflammation

normal or increased
unmodified

downregulated
increased

Cardiac function normal or increased depressed
Reversible yes no
Heart failure unlikely prone

1 Adapted from Bernardo et al., 2010 [15] and, Nakamura and Sadoshima, 2018 [14].
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While the events associated with physiological hypertrophy are generally reversible, those
associated with pathological cardiac hypertrophy are commonly irreversible and impose a high
risk of heart failure (Table 1). A common disease stimulus, such as long-standing hypertension
usually causes pressure overload and increases systolic wall stress [16]. In this case, individual
cardiomyocytes typically grow in width more than in length, leading to the thickening of the
cardiac walls, a condition referred to as concentric hypertrophy [3,17]. Hypertrophic changes
have been rationalized employing Laplace’s law, which says wall stress (or tension) is an
inverse function of wall thickness (tension = [pressure × radius]/2 × wall thickness). Thus,
compensated growth of the cardiac muscle is a physiological response to decrease wall tension
and thereby maintain cardiac pump function [4]. Prolonged pathological stress, however,
causes maladaptive changes at the cellular and molecular level resulting in pathological cardiac
hypertrophy. Untreated pathological cardiac hypertrophy predisposes individuals to heart
failure, arrhythmia, and sudden death [6,7].

Triggers of pathological cardiac hypertrophy include extrinsic drives such as pressure
overload due to long-standing hypertension or valvular stenosis, as well as volume over-
load due to mitral regurgitation or aortic insufficiency (Table 1), loss of contractile mass
(myocardial infarction), or intrinsic causes such as hereditary defects [2,18]. Although a
notable feature of physiological and pathological cardiac hypertrophy is the increase in
heart size, pathological cardiac hypertrophy involves the loss of myocytes and fibrotic
replacement, leading to cardiac dysfunction, heart failure, and/or sudden death [19,20].
Despite views that the length of stress has a significant impact on the distinction between
pathological and physiological cardiac hypertrophy, the nature of stress and the intracellu-
lar signaling cascades involved are thought to be more important in the development of
maladaptive cardiac dysfunction than the chronic duration of exposure [21].

The role of the cardiac microenvironment and intercell communication in the cardiac
niche is becoming increasinglyevident for future studies and therapeutic interventions, as
also recently highlighted by Tazhor et al. [22], challenging the traditional view of the heart
as a cardiomyocyte-centric and targeted regenerative and therapeutic target in cardiovascu-
lar disease. Future therapeutic and mechanistic investigations should take into account the
fact that immune cells, fibroblasts, and endothelial cells collectively outnumber cardiomy-
ocytes by a significant margin as the resident cells in the heart, making this viewpoint
increasingly important as a crucial element in the study of the intercellular communications
and the treatment of heart disease. Therefore, the aim of this review article was to focus
on these processes related to the onset, progression, and pathogenesis of hypertrophic
cardiomyopathy and to complement previous work by incorporating molecular axes and
details of intercellular communication in the cardiac microenvironment that have not yet
been illuminated.

2. An Interplay of Different Cells in Hypertrophic Remodeling

The heart consists of various cell types, including myocytes, endothelial cells, fi-
broblasts, vascular smooth muscle cells, sympathetic neurons, and immune cells, which
collectively account for a synchronized cardiac function [23,24]. However, it has been
shown that owing to their enormous size, cardiomyocytes in particular account for the
majority of heart mass, increase in size and reprogram transcription in the process of cardiac
hypertrophy [2,25]. Communications between cardiomyocytes and non-myocytes lead to
the secretion of bioactive mediators, which operate in an autocrine and paracrine manner
(Table 2). This is followed by microenvironmental stimulation of different cell types and
the activation of various signaling pathways within the cells (Figures 1 and 2) [26,27]. Alto-
gether these complex processes result in cardiomyocyte hypertrophy, fibroblast hyperplasia,
interstitial tissue composition changes, and remodeling of the ventricular chambers [28].

2.1. Fibroblast Remodeling

Pressure overload triggers resident cardiac fibroblasts originating from the epicardium
and endocardium to undergo rapid expansion and activation, rather than previously
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reported hematopoietic precursor-derived fibroblasts or endothelial-to-mesenchymal tran-
sition (EndMT) as a contributing source (Figures 1 and 3) [29,30]. Despite this, the ex-
act origins of cardiac fibroblasts as well as the delineation of their characteristics and
plasticity remain a field of current investigation and controversy [31]. Like cardiomy-
ocytes, fibroblasts respond to external stress stimuli, but in a slightly different manner.
Mechanical stress promotes fibroblast differentiation to a myofibroblast-like phenotype
(Figures 1 and 3) [32,33], which has been shown to develop from tissue-derived fibroblasts
rather than endothelial or smooth muscle cells [30]. Myofibroblasts overproduce and re-
lease extracellular matrix (ECM) components and pro-hypertrophic mediators, including
Transforming growth factor-beta (TGF-ß) (Table 2), and are engaged in a wide range of
pathological conditions, particularly fibrosis and tissue remodeling [34]. Enhanced release
of ECM by myofibroblasts contributing to mechanical stiffness accompanied by increas-
ing fibrosis evolves into severe consequences causing cardiac diastolic dysfunction [35].
Moreover, progressing fibrosis can affect systolic function by building a barrier between
the resident cardiomyocytes, thereby provoking defective electrical coupling within the
myocardium [36]. Additionally, an increased level of ECM, such as collagen, can disrupt
the oxygen diffusion capacity leading to hypoxia in the affected myocytes a process that
may further enhance pathological remodeling [37]. In conclusion, cardiac fibroblasts react
to pressure overload-induced injury with activation, accumulation, and excessive ECM de-
position (Figures 1 and 3). The resulting conditions including mechanical stiffness, myocyte
uncoupling, and ischemia comprise key contributors to heart failure [29]. These lines of
evidence also emphasize the identification of mechanical stress in cardiac hypertrophy as
an independent risk factor for arrhythmias, myocardial infarction, and sudden death [19].

2.2. Endothelial Cell Activation

In response to pressure overload, cardiac endothelial cells, similar to cardiac fibrob-
lasts, are capable of changing their phenotype (Figure 1). It has been reported that en-
dothelial cells can undergo an EndMT, differentiate into myofibroblast-like cells, and
thereby contribute to cardiac fibrosis [38]. Others outlined that EndMT recruits circulating
hematopoietic progenitors to the heart thereby generating significant numbers of cardiac
fibroblasts (reviewed in [39]) but also their origin from tissue-resident fibroblasts is being
discussed [29,30]. Altogether, left ventricular myocardial tissue of end-stage cardiac failure
patients revealed dramatically increased expression levels of EndMT-related genes [40],
indicating the need for further investigation to clarify the exact contribution of EndMT.

Major factors secreted by cardiac endothelial cells (Table 2) comprise nitric oxide
(NO), endothelin 1 (ET-1), prostaglandin I2 (PI2), and angiotensin II (AT-II), which directly
influence cardiac metabolism, growth, contractile performance, and rhythmicity of the
adult heart [41]. In response to various stimuli, activated endothelial cells express adhesion
molecules, including intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion
molecule-1 (VCAM), which attract and further promote the infiltration of immune cells into
the myocardium (Figure 1). One major mediator produced and secreted by endothelial cells
is NO (Table 2; Figure 1). Among the numerous functional influences of NO are cardiac-
related functions, including key regulators of vasodilation, reduction of permeability and
thrombogenesis, and inhibition of inflammation [42]. Another active mediator secreted
by endothelial cells is CNP (Table 2). Together, NO and C-type natriuretic peptide (CNP)
contribute to the suppression of cardiac hypertrophy by up-regulating cyclic GMP (cGMP)-
dependent protein kinase 1 (PKGI) signaling [43] by inhibiting calcineurin (Figure 2).

Another endothelium-derived factor next to NO and CNP is ET-1 (Table 2) [44],
which contributes to cardiac hypertrophy and fibrosis as a major growth factor. Aside
from endothelial cells, ET-1 is, amongst others, also expressed in non-endothelial cells,
such as fibroblasts and cardiomyocytes (Table 2; Figure 1). Functioning in an autocrine
and paracrine manner, ET-1 seems to have important effects during the development
of cardiac hypertrophy [45]. ET-1 exhibits a positive inotropic effect as well as triggers
cardiac hypertrophy responses [46]. Moreover, cardiac endothelial cells carry enzymes with
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protease activities, like the angiotensin-converting enzyme (ACE) and chymase (Table 2;
Figure 1), which may contribute to changes in local levels of AT-II [47]. Besides fibroblasts,
endothelial cells may also contribute to cardiac fibrosis (Figure 3). For example, it is known
that endothelial cells and pericytes as the capillary lining cells wrapped around them,
control cardiac fibroblast numbers [38]. Whether this contribution is similarly relevant as
the proliferation and activation of resident fibroblasts upon exposure to pressure overload
await further investigation [29].
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Figure 1. A microenvironmental model of pressure overload-induced cardiac hypertrophy. The
model also illustrates multiple cell types’ substantial roles and reciprocal interactions in the myocardium.
In response to pressure overload cardiomyocyte and non-myocardial cells are transformed into an
“activated state”, releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators.
In addition, vasoactive hormones, various growth factors, cytokines, and the local renin-angiotensin
system (RAS) act in an autocrine and/or paracrine mode. Collectively, the above-mentioned mechanisms
orchestrate effects that contribute to pathological remodeling processes leading to cardiac hypertrophy,
fibrosis, and inflammation. AT II: angiotensin II; CT-1: cardiotrophin-1; ECM: extracellular matrix;
ET-1: endothelin-1; FGF-2: fibroblast growth factor-2; ICAM-1: intercellular adhesion molecule-1;
IL-1: interleukin-1; IL-6: interleukin-6; NE: norepinephrine; TGF-ß: transforming growth factor-ß;
TNFα: tumor necrosis factor-α.
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Figure 2. An overview of the pro-hypertrophic (left panel) and anti-hypertrophic (right panel) sig-
naling pathways regulating the hypertrophic response in the cardiomyocyte. Increased intracellular
Ca2+ levels mediated by TRPCs and Ca2+ import promote pro-hypertrophic transcriptional signaling
events via calcineurin-NFAT and activation of PKC. PLC may contribute to these axes in the activation
of alpha-adrenergic receptor signaling. Although canonical MAPK signaling via RTKs including
FGFR-1 promotes pro-hypertrophic signaling, the PI3K-AKT axis plays an opposing role in hyper-
trophic signaling via inhibition of GSK3β and activation of YAP transcriptional activity. Increased
secretion of cytokines promotes transcriptional activation of the pro-hypertrophic gene program
in the nucleus not only via JAK-STAT but also the MEK5-ERK5 axis. On the other hand, increased
pressure overload in cardiac tissue promotes secretion of ANP and BNP by cardiomyocytes, leading
to vasodilation and an anti-hypertrophic response in cells via an increase in intracellular cGMP levels,
which leads to activation of PKG, in turn mediating reduced hypertrophic growth. Activation of
JNK and p38 stress signaling events in the cardiomyocytes, although leading to cardiomyopathy
and heart failure, results in inhibition of NFAT through phosphorylation events that prevent its
nuclear localization and pro-hypertrophic transcriptional regulation activities, thereby blocking the
calcineurin axis. Increased secretion of TGF-β during increased pressure stress can lead to mixed
responses, with canonical TGF-β-SMAD2/SMAD3 signaling leading to anti-hypertrophic responses,
whereas activation of non-canonical SMAD1/SMAD5 leads to pro-hypertrophic responses.
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Figure 3. Schematic illustration of the process of fibrotic scar formation at the cellular level. The
myocardium develops cardiomyocyte hypertrophy under pressure overload conditions, triggering
concomitant inflammatory processes and fibrotic scar formation. The evidence discussed in the text
suggests a central role for resident fibroblasts, nonetheless cardiac endothelial cells may also con-
tribute to myofibroblast-like cells and drive cardiac fibrosis. Resident and infiltrating immune cells,
including mast cells, macrophages, and neutrophils, enhance this phenotype change by releasing
TGFß while mediating tissue inflammation via cytokines such as TNFα, IL-6, and IL-1. These mecha-
nisms increase the number of myofibroblasts and the accumulation of collagen, which accelerates
fibrotic scar formation in the microenvironment of cardiac hypertrophy.

3. The Role of Immune Cells in Cardiac Hypertrophy

The pathogenesis of pressure overload and heart failure has been suggested to be in
close context with the activation of inflammatory cells and the release of inflammatory
mediators (Figure 1) [48]. Early inflammation in hypertrophic cardiomyopathy (HCM)
may be brought on by cardiomyocyte disorganization, sarcomere damage, mitochondrial
oxidative stress, and microvascular dysfunction [49]. Numerous investigations have shown
that HCM patients have leucocyte infiltration in the myocardium and elevated levels of
inflammatory cytokines, which may be crucial to the condition of HCM and its development
to the dilated-phase end stage [50–52]. Additionally, genetic deletion of IL-6 has been shown
to mitigate TAC-induced LV dysfunction and hypertrophy, demonstrating a crucial role for
IL-6 in the pathophysiology of LV hypertrophy in response to pressure overload [53]. The
nodal point for integrating hypertrophic and inflammatory signals in the myocardium is
CaMKII, whose activity is elevated in MI hearts and which promotes cardiac hypertrophy
and inflammation, processes that are persistently stimulated by cardiac injury [54].

3.1. Cardiac Mast Cells

Identification of the presence of mast cells in the heart tissue of animals and hu-
mans [55,56], as well as the discovery of mast cells as the source of an array of mediators
(Table 2) [57], clearly emphasize the crucial participation of innate immune cells, especially
cardiac mast cells, in cardiac hypertrophy and remodeling (reviewed in [48,58]).
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Table 2. Mediators influencing the microenvironment in cardiac hypertrophy.

Vasoactive Peptides Secretion from/Location References

AT-II cardiomyocyte [59,60]
AT-II endothelial cell [41]
ET-1 cardiomyocyte [45,61]
ET-1 fibroblast [45,61–63]
ET-1 endothelial cell [41,45,61,64]

Catecholamines

NE sympathetic nerve ending [65,66]

Growth factors

FGF (aFGF, bFGF) cardiomyocyte [67,68]
FGF (aFGF, bFGF) non-myocyte [69]
FGF-2 (bFGF) fibroblast [67,68,70]
FGF-2 (bFGF) endothelial cell [71–73]
FGF-2 (bFGF) mast cell [57,74,75]
High-FGF-2 (Hi-bFGF) fibroblast [70]
TGF-ß cardiomyocyte [76–78]
TGF-ß fibroblast [45,62,70,76–78]
TGF-ß endothelial cell [76–78]
TGF-ß mast cell [57,75,79,80]
TGF-ß myofibroblast [81–83]

Cytokines

IL-6, CT-1, LIF cardiomyocyte [84–88]
IL-6, CT-1, LIF fibroblast [85–88]
IL-6 mast cell [57,75]
IL-1 mast cell [57,75]
TNFα mast cell [57,75,89–92]

Various other components

VCAM-1, ICAM-1 endothelial cell [42]
ECM components cardiomyocyte [93]
ECM components fibroblast [93]
ECM components endothelial cell [93]
ECM components myofibroblast [81,94]
Histamine mast cell [55]
Chemotactic factors mast cell [57,75]

Anti-hypertrophic peptides

ANP, BNP cardiomyocyte [8,43,95]
NO endothelial cell [41,42]
CNP endothelial cell [43]

Enzymatic activities

Local RAS cardiac tissue [96–98]
AGT, renin, ACE, AT1, AT2 cardiac tissue [99,100]
AGT cardiomyocyte [101]
AGT fibroblast [101]
Renin mast cell [65,102]
ACE endothelial cell [103]
Chymase (alternative ACE) endothelial cell [103]
Chymase (alternative ACE) mast cell [57,75,104]

Activated cardiac mast cells were identified in spontaneously hypertensive rats as a
major source of growth factors (Figure 1), such as TGF-ß and bFGF, in areas of myocardial
fibrosis [105]. This is consistent with findings that the release of TGF-ß provokes an in-
crease in collagen production alongside the differentiation of fibroblasts to myofibroblasts
(Figure 1) [106], and indicates that cardiac mast cells also contribute to the key steps
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of cardiac tissue fibrosis [107]. Another major mediator that is released upon mast cell
degranulation in the heart is histamine (Table 2) [55]. Histamine is a neurohormonal medi-
ator that binds to histamine H1, H2, and H3 receptors, thereby inducing various cellular
functions [108,109] as well as cardiac hypertrophy (Figure 1) [110]. Notably, cardiomy-
ocytes express the histamine H2 receptor, which is coupled to the beta receptor and Gs
proteins [111–115]. Consistently, histamine triggers positive inotropic effects [116,117]. In
contrast, blocking the histamine H2 receptors decreases cardiac output [116]. The appli-
cation of famotidine, a histamine H2 receptor antagonist, in chronic heart failure (CHF)
patients, was found to decrease left ventricular remodeling [118].

Another characteristic of mast cells involves their strategic location often at a perivas-
cular site, thereby exerting regulatory functions on endothelial cells. Mast cells synthesize
several endothelial cell activators comprising, amongst others, the platelet-activating factor
(PAF), IL-1ß, IL-4, and tumor necrosis factors alpha (TNFα) [119–121]. Several studies have
indicated mast cell degranulation as a major source of TNFα (Table 2; Figure 1) [89–92].
Even though many cardiac cells have been described to generate TNFα, cardiac mast
cells appear to constitutively express TNFα [89,91] and activate TNFα/nuclear factor
kappa B (NF-κB)/IL-6 cascades [105]. Activation of the TNFα/NF-κB axis leads to the
activation of p38-MAPK (Figure 2), collectively causing hypertrophy and dysfunction of
the heart [122,123]. Moreover, mast cells release other cytokines including IL-1 and IL-6
(Table 2; Figure 1) [57,75]. IL-6 cytokine family binds the common co-receptor glycoprotein
130 (gp130) and thereby potentially takes an active role in cardiac hypertrophy induction
via the JAK/STAT pathway (Figure 2) [124,125].

Although several studies suggest that cardiac mast cells are a source of renin, released
upon mast cell degranulation (Table 2) [65,102], the major source of renin in the myocardial
microenvironment is complex [126,127]. Mast cells release the proteolytic enzyme chymase,
which catalyzes, independently of ACE, the conversion of AT-I to AT-II (Figure 1) [104].
Thus, mast cell renin and chymase may serve as an alternative way to upregulate AT-II
levels in the myocardial microenvironment, and it has been demonstrated in rat models
that mast cell inhibition using mast cell stabilizer cromolyn sodium reduces pathological
left ventricular remodeling [128].

3.2. Monocytes & Macrophages

Healthy and injured cardiac tissues possess heterogeneous populations of macrophages,
in both humans and mice (Figure 1) [129]. Most macrophages within the heart are es-
tablished embryonically from the yolk sac and fetal liver progenitors, similar to tissue
macrophages of the liver or brain. Local proliferation in contrast to monocyte recruitment
serves to maintain resident macrophage subsets [130,131]. In the absence of disease, self-
renewal serves to maintain local tissue macrophage populations [132]. Despite this, in
response to pressure overload or ischemic injuries, the majority of macrophages are derived
from the recruitment and differentiation of blood monocytes [133].

Cardiac macrophages are key effector cells mediating tissue remodeling and fibro-
sis (Figure 3) [134]. The initial and significant event for vascular lesion formation re-
sults from inflammatory cytokine- and growth factor-producing migrating macrophages
(Figure 1) [135]. The accumulation of macrophages has been found in the perivascular space,
where they co-localize with fibroblasts collectively producing collagen during cardiac hy-
pertrophy (Figure 3) [136,137]. Consistent with this, other studies have found that pressure
overload initiates endothelial cells of the intramyocardial arteries to exhibit intercellular
adhesion molecule (ICAM)-1 and that accumulation of macrophages occurs adjacent to
the ICAM-1 expressing arteries in the perivascular space (Figure 1) [138]. Additionally,
vascular cells and monocytes synthesize and express monocyte chemoattractant protein
(MCP)-1, a potent monocyte chemoattractant [139], primarily regulating the recruitment
of macrophages to the vessels [140]. For example, the continuous infusion of the AT-II or
norepinephrine in hypertensive rats demonstrated that MCP-1 induction was associated
with adventitial macrophage accumulation in the aortic wall [139].
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Collectively, this suggests that resident and recruited macrophages actively take part
in the early responses to stress preceding hypertrophic remodeling.

3.3. Neutrophils

Under normal reparative conditions, neutrophil granulocytes are recruited to areas
of acute inflammation, where they perform functions such as the clearance of dead cells
and matrix debris (Figure 3) [141,142]. As key components of the inflammatory response,
neutrophils also act on the recruitment, activation, and programming of antigen-presenting
cells (APCs). Specifically, they attract monocytes and dendritic cells (DCs) by generating
chemotactic signals, thereby influencing the differentiation of macrophages into a predom-
inantly pro- or anti-inflammatory state [143–145]. Because neutrophil granulocytes are
one of the most important cellular components of the body for the destruction of microor-
ganisms, there is also the possibility that these cells damage host cells and tissues [146].
Accordingly, they may have deleterious effects on cardiac tissue when recruited to sites
where pressure overload is present (Figure 3).

Several studies have reported that in response to hypertrophy triggered by pressure
overload, the first leukocytes to appear in the myocardium within 3 days of injury are
neutrophils (Figure 3) [147,148]. Activation of endothelial cells and subsequent expression
of adhesion molecules allow the transmigration of neutrophils (Figure 3) [149,150]. In
addition, inflammatory mediators such as TNFα, IL-1ß, and mast cell-derived histamine
enhance this process [151–153]. Additionally, macrophage and neutrophil infiltration
appeared in the first 3 days after injury next to ICAM-1 containing coronary arteries in the
left and right ventricle, using a mouse model with inter-renal aortic banding. Moreover,
these alterations of macrophage and neutrophil content occurred ahead in perivascular
fibrosis (10 days), and cardiomyocyte hypertrophy (28 day) [154].

Neutrophils have been described to produce cytokines such as TNFα that drive
macrophage and dendritic cell differentiation [143,145,155]. Additionally, neutrophilic
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase gets activated in response
to pressure overload injury [156], resulting in the degranulation of neutrophils and thereby
release of pro-fibrotic proteases (Figure 3) as well as reactive oxygen species (ROS) [157].

3.4. Lymphocytes

A growing body of research indicates that systemic inflammation may play a signifi-
cant pathophysiologic role in the etiology of cardiac disease development, including HCM,
and may have an impact on the severity of the phenotypic and clinical outcomes, including
heart failure. A high neutrophil-to-lymphocyte ratio (NLR), a marker of oxidative stress
damage, has been linked to an increased 5-year risk of sudden cardiac death associated
with HCM [158,159], which supported further the prognostic significance of inflammation.
In addition, the lymphocyte-to-monocyte ratio (LMR) and survival in patients with hyper-
trophic cardiomyopathy have been correlated, with a lower LMR being associated with a
lower mortality rate [160].

However, in angiotensin II-induced HF models, the absence of B cells led to less
hypertrophy and collagen deposition, the preservation of left ventricular function, and, in
conjunction with these changes, a decrease in the expression of proinflammatory cytokines
and apoptosis in the myocardium [161]. Different studies have also reported that activation
of NK T cells improved cardiac remodeling events and failure in mice by increasing
the expression of cardioprotective cytokines, including IL-10 [162,163]. Additionally, the
activation of invariant natural killer T (iNKT) cells may act as a preventative measure
against HF brought on by pressure overload as their disruption was shown to worsen
cardiac hypertrophy [164]. Importantly, Ayach et al. emphasized the crucial role of c-KIT
signaling in preventing ventricular dilation and hypertrophy as well as the maintenance of
cardiac function after infarction by mediating the mobilization of NK and angiogenic cells
derived from bone marrow, which helps with improved remodeling after MI [165].
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On the other hand, a case study of a primary cardiac lymphoma (PCL) patient with T
cell-lymphoma was shown to be in association with hypertrophic cardiomyopathy [166],
besides a different patient with acute lymphoblastic leukemia (ALL) being reported in an-
other case study to have developed HCM after cell therapy interventions using T cells [167].
Apart from these reports, in conclusion, the majority of the evidence points to lymphocytes
having a favorable influence on HCM remodeling events.

3.5. Sympathetic Neurons

Sympathetic neurons that innervate the heart and release norepinephrine (NE) also
express the endothelin receptor A (ET-A) [168,169]. ET-resulted in a tremendous NE release
in cocultured cardiomyocytes and sympathetic neurons with exaggerated hypertrophy
of cardiomyocytes compared to monocultured cardiomyocytes. In contrast, mice lacking
the ET-A receptor exclusively in sympathetic neurons showed less adverse structural
remodeling, and cardiac dysfunction when exposed to pathological pressure overload [170].

Substantial amounts of renin released in the cardiac microenvironment upon cardiac
mast cell degranulation [65] result in both AT-II formation within striking distance of
AT1 receptor-expressing cardiac sympathetic nerve terminals and enhanced NE release
(Figure 1) and arrhythmias (Figure 4) [171,172]. The fact that these events can be prevented
by mast cell-stabilizing agents confirms the central role of cardiac mast cell-derived renin
in AT1 receptor signaling [65]. Locally produced AT-II thus activates the AT1 receptor at
sympathetic nerve endings, resulting in increased NE release (Figure 1) [65].
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Figure 4. Schematic representation of the effects of changes in the microenvironment on cardiac
function. Hypertension, a common cardiovascular disease, causes pressure overload followed by
a massive release of pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators. At this stage,
when individuals do not experience symptoms, hypertension, and its accompanying microenvi-
ronmental complications may be reversible with strategies such as lifestyle modification, however
without any intervention, this could evolve into cardiac hypertrophy and fibrotic remodeling. In-
creasing fibrosis leads to mechanical stiffness and impaired filling phase, both prominent features
of diastolic dysfunction. Common symptoms include headache, dizziness, palpitations, and chest
discomfort. Notably, this phase is not reversible and requires pharmacological management. Late
diagnosis or inadequate treatment leads to progressive fibrosis and detrimental changes at the molec-
ular level, such as a barrier between cardiomyocytes at the cellular level, impaired electrical coupling,
and hypoxia of affected cardiomyocytes, collectively resulting in cardiomyocytes’ cell death. The
subsequent decreased contractile force characterizes systolic dysfunction while having severe con-
sequences as individuals suffer from shortness of breath. Biomarker identification in a diagnostic
screening approach could help detect early onset diastolic dysfunction in affected individuals, set-
ting the platform for early management and preventive course of action to avoid the subsequent
detrimental outcomes of the developing condition.
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4. Mediators of Cardiac Remodeling

Mechanical stretch and neurohumoral mechanisms identify the most proximal stim-
uli for initiating hypertrophic signaling pathways (Figure 1) [3]. Due to hemodynamic
overload, cardiomyocytes undergo mechanical stress and thereby release autocrine and
paracrine signaling factors, such as growth factors, hormones, cytokines, and chemokines
(Table 2) [14]. Furthermore, mechanical stress is sensed by both cardiac fibroblasts re-
sulting in the production and release of signaling mediators (Figure 1) [173], and cardiac
endothelial cells, which communicate with cardiomyocytes by secretion of autocrine and
paracrine mediators [43,174]. Cardiomyocytes sense these ligands through a multitude
of G-protein-coupled receptors (GPCRs), growth factor receptors, and cytokine receptors
(Figures 1 and 2) [3]. Orchestrated mechanisms of the induction, maintenance, and progression
of cardiac hypertrophy, particularly left ventricular hypertrophy, underlie a series of events that
follows the activation of cardiomyocytes upon pressure overload/mechanical stress.

4.1. Activation of the Local Renin-Angiotensin System (RAS)

In addition to the classical circulating renin-angiotensin system (RAS) [96], the heart
has a local RAS that mediates autocrine, paracrine, and intracrine effects (Figure 1) [97,98].
Components of the RAS, including angiotensinogen (AGT), renin, ACE, AT-I, and AT-II, are
expressed in the heart [99,100], and component expression is upregulated in cardiomyocytes
in vitro in response to stretch [175,176]. Several studies have indicated that hemodynamic
overload activates the local RAS and highlighted the crucial role of the AT1 receptor in
strain-induced cardiac hypertrophy [177–180]. Thus, mechanical stress can be considered
the major upstream trigger that activates the local RAS and leads to increased AT-II levels
throughout the microenvironment.

4.2. Reactive Oxygen Species (ROS)

Reactive oxygen species (ROS) such as superoxide anion (O−2), hydroxyl (OH), and
hydrogen peroxide (H2O2), and reactive nitrogen species including nitric oxide (NO) and
peroxynitrite (ONOO−) classify reactive species involved in redox signaling. The latter
results from the reaction of (O−2) with NO [181]. Data suggest that both direct and indirect
mechanisms resulting from redox signaling within and between endothelial cells and
cardiomyocytes are responsible for functional communication between these cells [23].
Moreover, redox signaling not only influences many physiological processes in the heart
but also plays an important role in pathological cardiac remodeling [182,183].

In cardiac cells, several sources of ROS have been described, such as mitochondria [184],
xanthine oxidase (XO) [185], uncoupled NO synthases (NOS) [186], and NADPH oxidases
(NOXs) [187]. The interactions of NOX proteins with NOS-derived NO have been high-
lighted to be particularly important for redox signaling in the development of heart failure
(Figure 1) [187–189].

An increase in the cardiac generation of ROS and therefore an increase in oxidative
stress has been implicated in pressure-overload-induced left ventricular cardiac hypertro-
phy (LVH) and heart failure (Figure 1) [13,190]. Additionally, the development of cellular
hypertrophy and remodeling has been found to implicate increased ROS production, and
activation of the mitogen-activated protein kinase (MAPK) superfamily, where redox-
sensitive protein kinases, are known to be partly responsible. Moreover, cardiomyocyte
apoptosis and necrosis may be due to increased oxidative stress (Figure 4), which is de-
scribed to be associated with the transition from compensated pressure-overload-induced
hypertrophy to heart failure. Furthermore, alterations in the redox-sensitive activity of
several key proteins including sarcolemma ion channels and exchangers and sarcoplasmic
reticulum calcium release channels, which collectively account for excitation-contraction
coupling, contribute to myocardial contractile dysfunction (Figure 4). Beyond that, the
consequent generation of peroxynitrite (ONOO−) as a result of increased inactivation of
NO has been attributed to indirect effects of ROS, leading to coronary vascular endothelial
dysfunction and peroxynitrite-induced inhibition of myocardial respiration [191].
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Several mediators including AT-II, ET-1, alpha-adrenergic agonists, TNFα, and me-
chanical forces trigger NOX2 activation. Via induction of four cytosolic regulatory subunits
(p47phox, p67phox, p40phox, and RAC1), these mediators initiate O2

− production [192],
indicating that pressure overload subsequently increases O2

− levels (Figure 1). Exces-
sive O2

− levels interact extremely rapidly with NO, resulting in peroxynitrite formation,
thereby disrupting physiological NO signaling [189,193]. Hence, pressure overload shifts
the balance towards increased ROS (Figure 1), a condition that suppresses the physiological
functions of NO. Consistently, O−2 has long been recognized to be implicated in severe
cardiovascular diseases. Moreover, reports indicate that NOS may generate O2

− instead of
NO, a condition referred to as uncoupled NOS. The switch to O2

− generation appears as a
consequence of tetrahydrobiopterin (BH4) depletion (usually through oxidation to BH2)
or as NOS enzymes undergo post-translational modification [194]. Consistent, increased
levels of O2

− and ONOO− may be implicated in an amplifying mechanism that aggravates
NOS uncoupling through oxidation of BH4 [195].

Hence as outlined above, reactive oxygen species should be considered as a group
of key mediators driving pathological remodeling in the microenvironment of cardiac
hypertrophy (Figure 1), especially regarding pressure overload.

4.3. Endogenous Storage Pools of AT-II in Secretory Granules

AT-II secretion into the culture medium upon mechanical stress of isolated cardiomy-
ocytes has been observed and provides some evidence supporting the concept of increased
local concentrations of AT-II [175]. Potential autocrine and paracrine regulatory mecha-
nisms of AT-II may activate the AT1 receptor on cardiomyocytes and surrounding cells
(Table 2) [196,197]. This in turn has been proposed to induce the release of autocrine
and paracrine mediators, including vasoactive peptides, growth factors, cytokines, and
ECM components, such as collagen (Figure 1) [45,62,70,198]. Potentiated or sustained AT1
receptor activation is likely associated with cardiomyocyte hypertrophy, fibroblast hyper-
plasia, and fibrosis (Figure 4) [59,199,200]. Alternative mechanisms have been proposed
to contribute to the activation of the AT1 receptor upon binding of AT-II [201], including
membrane stretch and mechanoactivation that can in turn promote distinct conformational
rearrangements in the receptor, leading to alternative signaling outcomes [202,203]. Several
proteins have been implicated as sensors of mechanical stretches, such as muscle LIM
proteins, integrins, and their associated signaling pathways [204,205]. Network models
have been developed to predict how these mechano-sensitive proteins work together to
coordinate cardiomyocyte hypertrophy [206,207]. Mechanisms that integrate these events
and propagate the stress signal to the AT1 receptor after activation by mechanical stress re-
main areas of active investigation. Interestingly, despite the absence of AT-II/AT1 signaling,
cardiac hypertrophy, systolic dysfunction, and fibrosis occurred in response to pressure
overload (Figure 4) [200].

4.4. The Two Faces of the TGF-ß Signaling

AT-II-activated fibroblasts release TGF-ß and ET-1 in a paracrine manner into cardiomy-
ocytes, leading to hypertrophy (Table 2) [45]. Similar to mechanical stress, autocrine TGF-ß
signaling promotes fibroblast proliferation and ECM production (Figure 1), especially collagen
and fibronectin, whereas degradation of these components is reduced [208]. Several studies re-
port that the canonical TGF-ß/SMAD2/3 signaling pathways (Figure 2) induce the expression
of genes related to collagen, fibronectin, and other ECM proteins [209–212], which concomi-
tantly contribute to cardiac fibrosis (Figure 1) [76]. Experiments using pressure-overload rats
demonstrated that a TGF-ß neutralizing antibody inhibited fibroblast activation and prolif-
eration, and diastolic dysfunction [76]. These data suggest TGF-ß as a central target and the
inhibition of TGF-ß signaling as beneficial. In line with this, cardiac fibrosis was attenuated in
SMAD3 deficient mice subjected to cardiac pressure overload, but interestingly cardiac hyper-
trophy and cardiac dysfunction were aggravated [213]. Also, another rat model revealed that
worsened cardiac remodeling and increased mortality correlate with a reduction of ECM using
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a TGF-ß neutralizing antibody after myocardial infarction [214]. TGF-ß-activated kinase 1
(TAK1) binds directly to type II (TBRII) TGF-ß receptors. Identification of this interaction links
TAK1 to the TGF-ß signaling cascade, implicating an additional way of hypertrophy induction
in cardiomyocytes by TGF-ß signaling [215]. Thus, aside from contributing to cardiac fibrosis,
the non-canonical TGF-ß/TAK 1 signaling pathway has also been reported to promote cardiac
hypertrophy (Figure 2) [216]. Altogether, TGF-ß is released from cardiomyocytes, fibroblasts,
and endothelial cells in the healthy heart (Table 2) [77,78] and in the context of injury and
repair also from myofibroblasts and infiltrating immune cells [82,83]. Thus, TGF-ß seems
to be involved in adaptive or maladaptive processes most likely depending on the context,
and may locally trigger interactions between different cell types such as cardiomyocytes and
fibroblasts (Figure 1) and thereby impact cardiac hypertrophy, fibrosis, and the development
of heart failure (Figure 4).

4.5. Endothelin-1 Effects

Endothelin-1 (ET-1) is an endothelium-derived vasoconstrictor of 21 amino acids.
Later, two additional homologs (ET-2 and ET-3) were identified. ET-1 is released from
vascular endothelium and other cells including cardiomyocytes (Figure 1) after cleavage
from a large precursor peptide [217]. ET-1 is the predominant endothelin in the heart and
is identified as a potent hypertrophic stimulus in neonatal cardiomyocytes [218]. ET-1
is a ligand for two GPCRs: ET-A and ET-B where 90% of the endothelin receptors on
cardiomyocytes belong to the ET-A subtype (Figure 2) [219]. In rat hearts, the ET-A is
predominant and identified to be coupled to both the Gq and Gi subfamily of G-proteins
(Figure 2) [220,221]. In addition, a characteristic pattern of gene expression is induced by
ET-1 in ventricular neonatal rat cardiomyocytes (NRC) including immediate early genes
(c-FOS, c-JUN, EGR-1), early genes (ANF, β-MHC, α-sk actin), and later on, ventricular
MLC-2 and α-cd actin [222]. The Gq-RAS-RAF-ERK pathway may be involved in these
transcriptional changes (Figure 2). Furthermore, ET-1 activates the Ras-MEKK1-SEK-JNK
pathway contributing to the hypertrophy-associated gene expression program field [223].

ET-1 causes cell damage in cardiomyocytes in vivo, and experiments with long-term
treatment with the ET-A receptor blocker BQ-123 showed improved survival of rats with
heart failure [224].

The release of ANP and BNP from cardiomyocytes can also be triggered by AT-II and
ET-1, though cardiomyocyte stretch is the main regulatory mechanism for ANP and BNP
production [225].

4.6. FGF-2 Effects in Scar Formation

In general, considering the epigenetic state and very low proliferative potential of adult
cardiomyocytes, consensus exists that there is only a small ability to regenerate injured
myocardium through the proliferation of cardiomyocytes [226,227]. Instead, scar formation
occurs through infiltrating highly proliferative cardiac fibroblasts (Figures 1 and 3) [228].
A key player is FGF-2 (bFGF), which is expressed by numerous cell types in the adult
myocardium. FGF-2 is released upon cardiac injury from its “storage site” (Table 2) thereby
potentially activating cell surface receptors, such as FGFR (Figure 2) [229]. Moreover, AT-II,
ET-1, and FGF-2 itself are known to promote FGF-2 gene expression (Table 2) [67,230]. Ac-
cordingly, FGF-2 increases both fibroblast and myofibroblast proliferation [231], therefore
contributing to both enhanced scar formation and stiffness during cardiac injury (Figure 3).
Noteworthy, FGF-2 exists as an isoform with a high molecular weight (Hi-FGF-2) and low
molecular weight (Lo-FGF-2), thus it is important to determine the potential effects of both
in the context of cardiac hypertrophy and tissue remodeling. In the past, several in vitro
studies revealed evidence for an important role of FGF-2 in cardiac hypertrophy (Figure 1).
Consistent with reports Lo-FGF-2 alters the gene profile of contractile proteins from “adult”
to “fetal” programs when added to cultured neonatal cardiomyocytes, a distinct character-
istic that is attributed to pressure overload-induced cardiac hypertrophy in vivo. Although
data seems contradictory as others reported that cardiomyocyte hypertrophy is stimulated
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only by Hi-FGF-2, both in vivo and in vitro [198,232]. Hi-FGF-2 accumulates preferentially
in response to stress stimuli (Figure 1), including AT-II [233] and oxidative stress [234].
This is further supported by others who found that Hi-FGF-2 is preferentially accumulated
and released by cardiac fibroblasts which induce paracrine cardiomyocyte hypertrophy
(Table 2) [70]. Once released, Hi-FGF-2 may directly interact and activate the tyrosine kinase
receptor FGFR-1 (Figure 2) [235], and downstream MAPK signaling [70,236]. Lo-FGF-2
exhibits cardioprotective effects, especially against post-ischemic cardiac dysfunction [237].
One mechanism for the effects of Lo-FGF-2 is its potent angiogenic activity that may in-
crease resistance to ischemic injury and cardioprotection [67,238,239]. In conclusion, these
data imply that Hi-FGF-2 is a contributor to cardiac hypertrophy, fibrosis, and heart failure
(Figure 4), while Lo-FGF-2 seems to exert opposite functions as a component of adaptive
responses in the injured myocardium [240].

FGF-2 null mice had a marked reduction of the hypertrophic response in cardiomy-
ocytes in response to pressure overload [241]; however, questions remain whether the entire
blockade of FGF-2 signaling is therapeutically beneficial. Considering data highlighting
the role of FGF-2 in the progression of many cancer types [242–246], blocking of FGF-2 may
have beneficial effects as shown in reports on the elimination of tumor angiogenesis [247].
But, in the context of ischemic heart disease, inhibition of FGF-2 signaling may be detri-
mental, since an angiogenic effect by Lo-FGF-2 upregulation may be desirable [67,238,239].
Although data suggests functions for Hi-FGF-2 and Lo-FGF-2 in the myocardium, further
investigations are certainly needed to understand (a) the precise outcomes of targeting
one or the other isoform, (b) the effects on exact organs/cells, and (c) to define the precise
function of the isoforms in the context of cardiomyocyte hypertrophy and fibrosis. Addi-
tionally, unwanted effects of Hi-FGF-2 and Lo-FGF-2 need to be considered. Moreover, in
addition to FGF-2, TGF-ß, AT-II, catecholamines, and other molecules as well orchestrate
the response to hemodynamic stress (Figure 1), which suggests that targeting just one
mediator may not be sufficient.

ERK as the most prominent downstream effector of FGF-2 signaling plays a predomi-
nant role in the development of both physiological and pathological cardiac hypertrophy
(Figure 2). While cytosolic functions of ERK upon activation through pressure overload
and mediators are believed to promote the development of physiological hypertrophic
conditions, nuclear transcriptional activations mediated by ERK promote a pathological hy-
pertrophic response in CMs (Figure 2) [248,249]. Hypertrophic stimuli such as AT-II, ET-1,
cytokines, catecholamines, and biomechanical stress may also contribute to detrimental
ROS formation in cardiomyocytes, and additional autophosphorylation of ERK1/2 has been
reported to trigger pathological ERK1/2-mediated cardiac hypertrophy (Figure 2) [250,251].
These changes can then activate several hypertrophic signaling mediators regulated by
ERK1/2 [249,252].

Hyperactivation of ERK1/2 activity is most frequently linked to HCMs caused by
genetic abnormalities [253,254]. While genetic variant-induced hyperactivation of ERK is
closely linked to pathogenic remodeling, normalization of ERK activation by simvastatin
treatment restores contractility and protects against fibrosis in animal models [255,256].

One study reported different cardiac hypertrophic responses using both mice that
completely lacked ERK1/2 protein in the heart and mice that expressed an activated MEK1
in the heart. Inhibiting MEK-ERK1/2 in mice lacking ERK1/2 in the heart causes eccen-
tric cardiac growth with elongated cardiomyocytes, whereas activation of MEK1-ERK1/2
signaling by the overexpression of an active MEK1 mutant appears to be responsible for
the concentric type of hypertrophy with thicker cells [257]. Thus, increased pre- versus
afterload have been described to result in typical hypertrophic responses, and ERK1/2
seem to exhibit a central role, partially regulating the underlying molecular mechanisms.
Induction of ERK1/2 translocation to the nucleus in adult rat myocytes, corresponded
to reduced myocyte lengths and increased width, under both baseline and chronic pac-
ing conditions [258], pointing to the critical role played by ERK signaling in balancing
concentric and eccentric hypertrophic growth (Figure 2).
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4.7. Cytokines and Inflammasome in Cardiac Remodeling

Cytokines of the interleukin-6 (IL-6) family are key molecules for the local regula-
tion of hypertrophic responses in cardiomyocytes (Figure 1). Pressure overload acts as
a strong trigger for the upregulation of genes related to leukemia inhibitory factor (LIF)
and cardiotrophin-1 (CT-1) in the adult human myocardium [259,260]. Cardiomyocytes
and cardiac fibroblasts produce leukemia LIF and CT-1 (Table 2) [261]. The release of
Hi-FGF-2 from cardiac fibroblasts (Table 2) has been suggested to act in an autocrine
way and trigger the release of pro-hypertrophic CT-1 [70,262]. Moreover, cardiomyocytes
also express autocrine-acting CT-1, and CT-1 induces hypertrophy of cardiomyocytes
in vitro [263]. Increased production and release of LIF, CT-1, and IL-6 in cardiac fibroblasts
in response to AT-II can contribute to cardiomyocyte hypertrophy by paracrine activation
of the gp130-linked downstream signaling (Figure 2) [264]. Interestingly, IL-6 contributes
to the induction of massive collagen release by cardiac fibroblasts in response to AT-II and
norepinephrine stimulation [265,266], consistent with a pro-hypertrophic response. Alter-
natively, LIF stimulates several beneficial effects including reduction of collagen production
and matrix metalloproteinase activity in cardiac fibroblasts, resulting in an inhibition of
differentiation of cardiac fibroblast to myofibroblast [267]. Likewise, the role of CT-1 seems
unclear as consistent with reports describing CT-1 as having a potent hypertrophic effect
on cultured cardiomyocytes [268] in addition to cardioprotective effects such as promoting
cardiomyocyte survival [269]. In conclusion, during the process of developing cardiac hy-
pertrophy, cytokine release is increased in response to a variety of stress stimuli, including
pressure overload, injury, and mediators like AT-II. However, since IL-6 has a negative
inotropic effect, its function is still unclear, suggesting the possibility of detrimental impacts
by IL-6 driving hypertrophy toward heart failure.

According to data binding of all IL-6-type cytokines to their common receptor subunit
gp130 potently activates STAT3 and to a lesser extent STAT1 (Figure 2) [270]. Transgenic
mice with cardiac-specific STAT3 over-expression found that STAT3 holds a key role in
hypertrophic and protective signaling, respectively. STAT3 induced the expression of
cardiac protective factors and guarded against decreases in the expression rates of cardiac
contractile genes in the case of doxorubicin-induced cardiomyopathy [271]. In line with
this, another study that used pressure overload on ventricular-restricted gp130 receptor
knockout mice found a rapid onset of dilated cardiomyopathy and induction of cardiomy-
ocyte apoptosis. In comparison, a normal cardiac structure and function were found under
basal conditions, and compensated hypertrophy was found in control mice under pressure
overload [272]. These observations suggest a key role of the gp130/STAT pathway in
cardiomyocytes for transmitting adaptive and protective functions in response to pressure
overload and injury. However, a study on transgenic mice that expressed a dominant
negative mutant of gp130 (to decrease activation of this pathway) reported concomitant to a
suppressed STAT3 activation a significantly smaller hypertrophic response when subjected
to pressure overload [273], suggesting a pro-hypertrophic function for STAT3. Whether
the effects of the gp130 signaling pathway are beneficial or detrimental remains unclear.
Since pressure overload triggers hypertrophic responses in cardiomyocytes via GPCRs in
turn activating PKC and PKD (Figure 2) [274], potential crosstalk of signaling pathways
could be involved. Likewise, neonatal rat cardiomyocytes showed that stretch induces a
transient activation in a sequential time order on PKC and other downstream targets as the
successive components of the MAPK signaling cascade (Figure 2) [275].

In contrast, YAP1, a downstream effector of Hippo signaling regulating prolifera-
tion, survival, and organogenesis in mammalian cells, that can also be activated through
SRC-mediated gp130 activation in cardiomyocytes [276], is involved in cardio-protective
mechanisms against pressure overload stimulation of cardiac hypertrophy (Figure 2). Un-
der chronic pressure overload conditions, activation of YAP transcriptional activity reduces
the development of cardiac hypertrophy. Additionally, apoptosis and fibrosis effects on
cardiomyocytes that can be prerequisites for myocardial infarction are reduced [277]. The
transcriptional activity of YAP mediates compensatory cardiac hypertrophy under pressure
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overload conditions [278] to stop the progression of wall stress into myocardial infarction,
while CMs are driven toward heart failure by the detrimental effects of YAP signaling
loss-of-function [279].

Concomitant hypertrophic responses via activation of PKC and MAP kinases can also
be triggered by AT-II (Figure 2). Cardiomyocytes under mechanical stress secrete AT-II [280].
Here, active PKC, with its numerous nuclear and cytosolic substrates, specifies the extensive
crosstalk of signaling pathways in response to pressure overload. The alpha-isoform
of PKC directly activates RAF1 [281], providing evidence for a complex link between
the signaling pathway downstream of growth factor receptors in the context of cardiac
hypertrophy. Others have reported that GPCR signaling can be linked directly to RAS
GTPase (Figure 2) [282], and GTP-bound RAS interacts with many downstream effectors
which in turn transmit the signal for activating multiple signaling pathways [283,284],
potentially promoting hypertrophic responses in cardiomyocytes. Additionally, others
reported that the C-terminus of the AT1 receptor associates with JAK2 upon binding of the
ligand, resulting in JAK2/STAT3 pathway activation [285,286], indicating another example
of the crosstalk of signaling pathways in response to hypertrophy-associated stress signals.
These lines of evidence indicate that the discrepancy of data regarding the gp130 signaling
pathway may be due to the extensive crosstalk between intracellular signaling pathways
(Figure 2). Taken together, there are contradictory reports regarding the individual effects
of IL-6, LIF, CT-1 and their signaling via the gp130 pathway in cardiac hypertrophy, thus
further investigation is necessary for elucidating the exact mechanisms.

4.8. Calcineurin/NFAT in Cardiac Hypertrophy

Calcineurin as a Ca2+-dependent serine/threonine protein-phosphatase has been found
to exhibit central pro-hypertrophic functions in the myocardium (Figure 2) [287,288]. Cal-
cineurin contains two subunits: the 57–61-kDa catalytic subunit (CnA) and the
19-kDa regulatory subunit (CnB). Activation of this dimeric protein occurs through direct
binding of the Ca2+-saturated adaptor protein calmodulin [289]. The mammalian heart only
expresses CnAα, CnAβ, and CnB1, although there are three genes including CnAα, β γ en-
coding for CnA, and two genes (CnB1 and B2) encode for CnB. Calcineurin becomes activated
in response to increased Ca2+ levels, which enables binding to transcription factors of the
nuclear factor of activated T cells (NFAT) family (Figure 2) [289].

Pro-hypertrophic gene expression is activated upon binding, and through dephospho-
rylation of conserved serine residues at the N-terminus of NFAT by calcineurin, resulting
in NFAT translocating into the nucleus (Figure 2). Here, NFAT regulates the expression of
cardiac genes via association with GATA4 and myocyte enhancer factor 2 (MEF2), which
are also transcription factors [290,291]. Noteworthy, several studies indicate that NFAT
transcription factors act as primary calcineurin effectors in the heart, as they have been iden-
tified as necessary and sufficient mediators promoting cardiac hypertrophy [287,290,292].
Moreover, cardiomyocytes contain structural proteins located in the repetitive Z-disc
that have been found to regulate calcineurin in addition to the activation via increased
Ca2+ [293,294].

GPCR stimulation with hypertrophic agonists, including AT-II and PE on cultured
neonatal rat cardiomyocytes indicated an increase in calcineurin enzymatic activity, which
was induced by increased calcineurin Aß (CnAβ) mRNA and protein, compared to CnAα

or CnAγ [295]. By that, human hypertrophied and failing hearts (Figure 4) also exhibit
increased calcineurin activity [296], as well as in ventricular muscle with exposure to AT-II,
ET-1, and Urotensin II in human failing heart [297]. Significantly, hypertrophied hearts in
rodents subjected to aortic banding displayed upregulated calcineurin activity [298,299]
and profound cardiac hypertrophy with rapid progression to dilated cardiomyopathy,
extensive fibrosis, congestive heart failure, and sudden death (Figure 4) were observed in
active calcineurin expressing transgenic mice [292].

Upregulated NFAT activity has been observed upon both physiological stimuli (exer-
cise training, growth hormone-IGF1 infusion) and pathological stimuli (pressure overload,
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myocardial infarction) (Table 1) [15]. In contrast, the hypertrophic response to pressure
overload and GPCR agonists was impaired in a model of transgenic mice exhibiting a
targeted inactivation of calcineurin Aβ [300] and in transgenic mice expressing a dominant
negative form of calcineurin A [298]. Furthermore, cardiac hypertrophy was prevented in a
model using pharmacological inhibition of calcineurin A activity on transgenic mice with
constitutively active calcineurin A [289,292].

These lines of evidence taken together indicate that calcineurin/NFAT plays a major
role in the conversion of pathogenic stimuli into pathological cardiac remodeling, suggest-
ing it is a key target in the setup of clinical prevention of cardiac hypertrophic (Figure 4).
But data seems contradictory, as a study reported accentuated hypertrophy, impaired
histopathology as well as risk for early death when applying calcineurin inhibitors [301].
Thus, further investigation is necessary to clarify if calcineurin/NFAT could be considered
as a key target.

4.9. ANP/BNP in Cardiac Hypertrophy

Development of pathological cardiac hypertrophy is frequently linked to increased
mRNA expression of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP),
according to studies in both human and animal models [302,303], as well as an increase
in the plasma levels of ANP and BNP with the severity of heart failure. Under critical
conditions, more BNP than ANP is secreted, largely in the ventricles and atria, respectively.
However, as heart failure worsens, ANP is also secreted in the ventricles; for this reason, the
ventricles are crucial locations for both BNP and ANP [304]. Both ANP and BNP, as well as
their more stable cleavage products, NT-proANP and NT-proBNP, respectively, are efficient
biomarkers in the clinical diagnosis and management of heart failure (Figure 4) [305,306].

Besides the physiological effects of ANP and BNP such as vasodilation, regulation
of sodium reabsorption and water balance as well as inhibition of the renin-angiotensin-
aldosterone (RAA) system, collectively directed towards responding to cardiac pressure and
volume dynamics and suppression of heart failure [307,308], ANP/BNP causes the cGMP-
dependent PKG to be activated (Figure 2), which in turn prompts the Ca2+/calmodulin-
dependent endothelial nitric oxide (NO) synthase to aid in the production of more NO, which
relaxes the vascular smooth muscle cells and lowers systemic blood pressure [307,309,310].
ANP/BNP and NO can also counteract NE effects on the size expansion of cardiomyocytes,
presumably through the cGMP-PKG-mediated cardioprotective axis resulting in the reduction
of NE-stimulated Ca2+ influx [309,311].

Moreover, while ANP and BNP expression is being regulated by pro-hypertrophic
transcriptional activation of NFAT, on the other hand, ANP and BNP can counteract as
negative regulators of hypertrophy by PKG-mediated inhibition of calcineurin to curb
nuclear translocation of NFAT (Figure 2) [312–314].

5. Mathematical Modeling of Cardiac Remodeling

Many mediators and pathways implicated in cardiac hypertrophy hinder the field’s
ability to integrate individual findings into a common framework. Mathematical modeling
has also been useful for the elucidation of intracellular and intercellular signaling that
controls cardiac functionality.

5.1. Computational Models of Cardiac Hypertrophy

Several computational models have been developed to address this, providing systems-
level insight into how cardiac hypertrophy is regulated. In the first model of hypertrophic
signaling, Cooling et al. examined the factors that control the kinetics of IP3 [315]. They
found that ET-1 induced a much more sustained IP3 signal than AT-II, which was best
explained by differences in receptor kinetics. To obtain a more global view of hyper-
trophic signaling, Ryall et al. used a logic-based modeling framework [316] to simulate
193 reactions integrated across 14 pathways [317]. Comprehensive knockout simulations
supported the conclusion that RAS GTPase is the hub of a bow-tie control structure, which
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integrates signals from many receptors and stimulates hypertrophy through partially re-
dundant MAPK pathways. This was validated in new experiments comparing the effects
of inhibition of RAS GTPase, MEK, p38, and JNK [317].

While neonatal cardiomyocytes have been extremely useful in the study of cardiac
hypertrophy, it is well-known that they show limited maturity compared to adult cells [318].
But quantitatively, to what extent are in vitro data predictive of in vivo cardiac hypertro-
phy? To address this question comprehensively, Frank et al. used the model of neona-
tal cardiomyocyte hypertrophy [317] to attempt to predict the in vivo hypertrophy for
52 cardiac-specific transgenic mice [319]. Strikingly, they found that the model correctly pre-
dicted 78% of cardiac outputs, including four double-transgenic mouse models. Differences
between model predictions and in vivo experiments may indicate differences between
in vitro and in vivo mechanisms or specific transgenic mice whose hypertrophic phenotype
depends on specific contexts (e.g., hormones, genetic background).

Indeed, examination of context-dependent regulation can elucidate new aspects of
signaling networks. Khalilimeybodi et al. developed a computational method called
CLASSED to systematically revise the previous model of Ryall et al. [316] using context-
dependent experimental data from 550 experimental data from 230 literature articles.
Examining areas of a model-experiment disagreement using CLASSED, they identified
the reactions that should be removed or added from the network. They also found new
crosstalks between Gβγ and CaMKII or calcineurin, which were validated in neonatal
cardiomyocytes [316]. Most recently, models of cardiomyocyte signaling are being in-
corporated into models of multiscale integration of mechanics and signaling in pressure
overload, hormones [320], or pregnancy [321]. Recently, researchers have attempted to
mature iPSC-CMs by prolonged culture duration, metabolic substrates, and mechanical
and electrical stimulation to model HCM and measure cellular morphology, contractility,
electrophysiological property, calcium handling, and metabolism [322,323]. Therefore,
network model reparameterization for iPSC-CM will be advantageous from the perspective
of translational applications. Cardiac hypertrophy is associated with increased ventricular
arrhythmia [324]. Interestingly, several nodes in the signaling network of hypertrophy
(such as CaMKII, PKA, and calcineurin) modulate the ion channels [325,326]. Therefore,
the involvement of these node states in multiscale electromechanical models may predict
the association of hypertrophy and arrhythmia.

5.2. Computational Modeling of Fibrosis

As illustrated in Figure 2, the complexity of intracellular networks often prohibits the
identification of the signaling mechanisms that control cellular responses to biochemical or
mechanical stimuli upon hypertrophy. To address this challenge, Zeigler et al. developed a
logic-based differential equation model of the cardiac fibroblast signaling network, which
was successfully validated against 80% of 41 papers from the literature not used in model
development [327]. This model predicted that stretch-mediated myofibroblast activation
was mediated not by any single path from integrins to α-SMA expression, but by an
autocrine TGF-β autocrine loop. They validated this new prediction in new experiments by
using a TGF-β receptor inhibitor to block cardiac myofibroblast activation in mechanically-
restrained collagen gels [327]. This model was later extended to predict the in vivo fibroblast
dynamics after myocardial infarction, predicting how IL-1 can paradoxically enhance
collagen production through the above autocrine TGF-β loop but suppress it through
activation of NFkB and BAMBI [328]. To make patient-specific predictions, Rogers et al.
connected the logic-based model to transcriptional responses from valvular interstitial cells
treated with patient serum samples [329]. They found that endothelin-1, IL-6, and TGF-β
were most important for explaining patient-specific fibroblast activation.

To predict therapeutic approaches, the fibroblast network model was integrated
with DrugBank to predict FDA-approved drugs that could be repurposed against car-
diac fibrosis [330]. Interestingly, the combination drug Entresto (valsartan/sacubitril) was
predicted to be particularly effective due to combined suppression of ERK through val-
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sartan and enhancement of PKG through sacubitril [330]. This prediction was validated
by independent studies showing that Entresto decreases fibrosis due to pressure overload
in rats [331,332] and heart failure in humans [333]. Watts et al. extended this model with
estrogen signaling, predicting that the effects of some drugs may be sex specific [334],
building on previous experimental studies of how estrogen affects cardiac fibroblast signal-
ing and activation [335]. Others have combined network modeling with an experimental
drug screen through machine learning to identify pathways by which drugs regulate new
fibroblast phenotypes such as stress fiber organization [336].

While fibroblasts play a central role, they regulate fibrosis through communication
with many other cell types. Jin et al. developed a mathematical model that simulated the
communication between monocytes, macrophages, and fibroblasts that lead to fibrosis after
myocardial infarction [337]. Their model was validated against dynamics of inflammation
and collagen content after myocardial infarction and then applied to predict how the
strength or timing of perturbations to TGF-β or MMP9 can modulate the kinetics of post-
MI fibrosis. Using a similar paradigm, Chowkwale et al. developed a model of the
post-MI communication between neutrophils, monocytes, macrophages, cardiomyocytes,
and fibroblasts [338]. They validated the model against 61 of 84 experiments not used
to build the model. Using this model, they identified key dynamic features that control
inflammation, fibrosis, and a new concept of inflammation-fibrosis coupling. Specifically,
they predicted that inflammation is amplified by positive feedback between neutrophils
and IL-1β, macrophage phagocytosis of cardiomyocytes is critical for inflammation to
drive fibrosis, and that fibroblast proliferation acts as an ultrasensitive switch to amplify
collagen deposition [338]. Intriguingly, this dual-amplification control system identified for
inflammation-fibrosis coupling [338] appears analogous to that in excitation-contraction
coupling [339]. Intercellular models illustrate complex dynamic relationships that should
be experimentally validated for potential therapeutic strategies.

6. Concluding Remarks and Future Directions

The microenvironment involved in the development of cardiac hypertrophy involves
cardiomyocytes and non-myocardial cells, and the accompanying release of numerous pro-
hypertrophic, pro-fibrotic, and pro-inflammatory mediators facilitating reciprocal interactions.

Cardiac fibroblasts are the main players in the development of fibrosis, nevertheless, en-
dothelial cells that can undergo EndMT toward a myofibroblast-like phenotype are closely
involved as well. Resident and infiltrating immune cells (mast cells, macrophages, neu-
trophils) enhance these processes while simultaneously contributing to tissue inflammation.
Thus, considering all these mechanisms in the hypertrophic microenvironment, tailoring
an efficient treatment regimen appears extremely complex. Sophisticated strategies and
most likely multidirectional approaches are needed and should be well-approachable using
computational modeling systems that allow the integration of all signaling components.

Since it is not feasible to discuss every cellular and molecular process involved in the
development of different types of cardiac hypertrophy, we aimed to outline the main drivers
of the hypertrophic microenvironment and the respective signaling pathways being affected.
A necessary future approach will be the identification of the precise involvement of different
cell types, cellular mediators released by them, and the respective activation of second
messengers. This will allow us to evaluate the known and thus far unrecognized molecular
signaling axes during disease development. Moreover, such data collection within a
computational model will help to guide effective and selective targeting strategies in cardiac
hypertrophy. Given the high prevalence of heart disease in the Western world, an important
future effort should be to translate the knowledge gained into new pharmacological targets
that help to delay or even stop the remodeling process and the severe consequences that
patients experience after diagnosis of diastolic or systolic dysfunction.
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