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Abstract: Prevalent cohort studies are commonly conducted in many ar-
eas of research when incident cohort studies are deemed infeasible due to lo-
gistic or other constraints. While such studies are cost effective, it is known
that survival data collected on prevalent cases do not form a representative
sample from the target population. When the incidence (e.g. onset of dis-
ease) arise from a stationary Poisson process, it allows developing a more
efficient methodology. While the stationarity assumption holds in many ap-
plications, to the best of our knowledge, the problem of establishing uniform
confidence bands using data arisen in such settings has not been addressed
in the current literature. We devise a method for obtaining uniform confi-
dence bands for the cumulative hazard and the survival function built on
their nonparametric maximum likelihood estimators (NPMLEs). To attain
this objective, we first present results on uniform strong consistency, weak
convergence and asymptotic efficiency of the NPMLE of the cumulative
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hazard function. Given the intractable forms of the limiting processes in
this case, the idea is to numerically approximate the functionals of the
asymptotic processes of the normalized NPMLEs. Our simulation studies
reveal the efficiency of the estimators for finite samples. The proposed pro-
cedures are illustrated using a set of real data on patients with dementia
from the Canadian Study of Health and Aging.

Keywords and phrases: Asymptotic efficiency, uniform Confidence band,
hazard function, informative censoring, length-bias, NPMLE, prevalent co-
hort, uniform strong consistency, weak convergence, dementia.
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1. Introduction

Survival data typically comprise an initiating event, say onset of a disease, and a
terminating event, say death due to the disease. The classical setting of survival
analysis requires incident cases, i.e. subjects who have not experienced the initi-
ating event before being recruited for follow-up. A viable alternative to follow-up
studies on incident cases when logistics or other constraints render such studies
impractical is conducting studies on prevalent cases, i.e. subjects who have ex-
perienced the initiating event before being recruited. Although prevalent cohort
studies are typically cost effective, compared to incident cohort studies, it is well
known that survival data collected on prevalent cases do not form a represen-
tative sample of the target population. Moreover, when the terminating event
is subject to right censoring, it is known that such censoring is informative. As
such statistical inference from prevalent cohort survival data should take into
account the bias induced by response-selective sampling mechanism and the
informative censoring. Failure to address the structural sampling bias leads to
considerable overestimation of the survivor function, and the functionals of the
survivor function, e.g. [42] for survival with dementia.

Prevalent survival data are typically left truncated by the gap time between
the onset of the initiating event and the recruitment time. Left truncated right
censored data have been extensively studied in survival analysis, attesting to the
frequent use of the prevalent cohort survey design to investigate survival from
onset of a disease [39, 40, 17]. The conditional approach to analysis of right
censored prevalent cohort data, pioneered by [20] and [31], conditions away the
observed truncation times (e.g., [32, 41, 40, 31, 19, 3, 39]). It is known that the
conditional approach while robust is not most efficient when the left-truncation
distribution is fully, or partially, known ([39]). There are many real instances
where making assumptions about the form of the truncation distribution is sup-
ported by the data and the context of the application ([7, 26]). A case that has
received particular attention in many areas of application ([7]) is the so-called
stationarity where the initiating events, say the onset of a disease for different
subjects, are assumed to be generated from a stationary point process. Such
assumption is commonly referred to as the stationarity assumption ([9]). Under
the stationarity assumption the collected survival data are called length-biased
([1]). To account for the information about the left-truncation distribution and
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informative censoring, the unconditional approach was proposed and shown to
be asymptotically most efficient (e.g., [35, 36, 16, 39, 6, 9, 23]). The validity
of the stationarity assumption has been frequently verified in cohort surveys in
the current literature which makes studies on unconditional approach more per-
suasive. Examples of length-biased data include epidemiological cohort studies,
such as research on different chronic diseases and the early detection models
[44]. Further instances found in literature contain cancer prevention trials, such
as screening for breast cancer [43], ages at death for residents of a retirement
centre [18], a survey on elders with dementia [42]. While prevalent cohort stud-
ies are the main motivation behind this paper, the statistical tools we propose
are also useful for analysis of length-biased data arising from other different
sampling procedures. Sampling procedures subject to length-bias have been re-
ported in a variety of different studies in the literature, such as investigation
into unemployment duration [13] (see [7, 2, 21] for a list of references).

A subtle but pivotal distinction missed by several authors and frequently
in practice is that the Kaplan–Meier estimator is not a consistent estimator
of the length-biased (prevalent-case) survival function due to informative cen-
soring, and hence cannot be transformed to find a consistent estimator of the
unbiased (incident-case) survival function. When there is no censoring, the clas-
sical empirical distribution is the unconditional NPMLE of the length-biased
distribution function. However, in the presence of right censoring, the NPMLE
proposed by [37], called hereafter Vardi estimator, for the multiplicative censor-
ing model may be applied to estimate the length-biased survival function. The
application of Vardi’s NPMLE for the length-biased distribution from prevalent
cohort cases was discussed by [6] and [8]. The asymptotic behavior of Vardi’s
NPMLE under multiplicative censoring was established by [38]. Similar results
under the prospective prevalent cohort setting were derived by [8].

Many studies have been carried out on hazard functions in the presence of
left truncation and right censoring (see [14] for a list of references), but all those
works applicable to the sampling setting we study here were based on the condi-
tional likelihood approach. Our approach here, however, centres around studying
the unconditional NPMLE of the cumulative hazard function as a Vardi integral,
i.e. integrals of appropriate integrands with respect to Vardi estimator, as the
integrator. Besides, the other key parameter we study is the unbiased survival
function as another Vardi integral. [6] proposed the unconditional NPMLE of the
unbiased survival function and investigated its limiting behaviour. Furthermore,
the higher efficiency of the survival function estimator for small sample sizes in
comparison to a conditional estimator was exhibited. However, the intractable
form of the limiting stochastic process given in [8] for the Vardi’s NPMLE under
prevalent cohort setting renders derivations of analytical forms of asymptotic
processes of functionals of the Vardi’s estimator practically impossible (e.g. [6]).

In this paper, we take a different approach. To derive uniform confidence
bands for the cumulative hazard function of the target population of interest
using prevalent cohort survival data, we first study the asymptotic behaviour
of the NPMLE of the cumulative hazard function. We prove the uniform strong
consistency with the appropriate rate of convergence under assumptions that are
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weaker than those used in [6]. To obtain results over the whole domain of the
distribution function, we directly derive the weak convergence of the NPMLE
of the hazard function as a functional of Vardi’s estimator. We then propose a
computational method to surmount the obstacle associated with the intractable
forms of the functionals of the asymptotic processes of the normalized NPMLEs.
This method is applied to compute quantiles of the limiting distributions of the
supremum of the stochastic integrals corresponding to the cumulative hazard
and the survival function, needed to derive uniform confidence bands.

Even though we only present our results for censored prevalent cohort survival
data under stationarity assumption, we further discuss (Subsection 3.1) that our
methodology can be modified for other scenarios if the intensity of the incidence
process is known. Our results are also valid under the multiplicative censoring
model (Subsection 2.3), which unifies several important problems, such as an
estimation problem in renewal processes, estimation under a decreasing density
constraint, and deconvolution of an exponential random variable [37].

The rest of this article is organised as follows. In Section 2, we discuss data
structure, definitions and assumptions required throughout the paper. Main
theoretical results are discussed in Section 3. We then derive asymptotic effi-
ciency of the mentioned NPMLEs in Section 4. The general framework to derive
uniform confidence bands for the cumulative hazard function and survival func-
tion is discussed in Section 5. Section 6 provides a computational algorithm
to approximate the limiting distributions. The following section reports results
on simulation studies conducted to illustrate and inspect the performance of
the NPMLEs and the corresponding confidence bands for finite sample sizes.
Section 9 summarises the results inferred by applying the proposed procedures
for the data on Canadian elderly population with dementia collected through
the Canadian Study of Health and Aging (CSHA). Proofs of the theoretical
statements are presented in Section 10.

2. Preliminaries

2.1. Data setup

Let X ′ denote the unbiased continuous lifetime (or failure time) of interest. In
cross-sectional sampling, the truncation variable T ′ associated with X ′ indicates
the time duration between the initiating and recruitment time. Therefore, there
is a pair of random variables (X ′, T ′) for each subject in the population. It is
often reasonable to assume that X ′ and T ′ are independent. Let FX′(x) :=
P (X ′ ≤ x) and fX′ , defined on R

+ := [0,∞), denote the respective cumulative
distribution and probability density functions of the lifetime variable X ′. In
prevalent cohort studies, cases that have experienced the initiating event but
are yet to encounter the terminating event are only observable. Thus, those
subjects with X ′ ≥ T ′ are identifiable whereas the rest of cases are left truncated
(see Figure 1). Denote the observation satisfying this condition (X ′ ≥ T ′) by
X. Suppose that the stationarity assumption for the incidence rate holds, that
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Fig 1. Cross-sectional Sampling with Follow-up.

implies the truncation variable follows a uniform distribution on some interval
[0, τ ′], where τ ′ > τ . It is then obtained for G(x) := P (X ≤ x) that

G(x) = FX′|X′>T ′ (x) = μ−1
X′

∫ x

0
sFX′(ds), x ≥ 0, (1)

where μX′ = E(X ′) < ∞ is the expected value corresponding to variable X ′.
Define g as the density function of the observed survival time corresponding
to G. Then, G and g represent the so-called length-biased distribution function
and length-biased probability density function.

For any observed case in the cross-sectional sampling with follow-up, we
have the triple (A,R ∧ C, δ) related to the lifetime X in the presence of right-
censoring, where A, R and C, are the current age (also known as the backward
recurrence time), the residual lifetime (also forward recurrence time) and the
residual censoring time, respectively. Also, δ is the censoring indicator variable
defined by δ := I(R ≤ C). It is worth noting that the residual censoring time is
the remaining time from the recruitment until being censored. Moreover, it is a
reasonable assumption in most real situations to consider C is independent of
(A,R). Since our sample is consists of both censored and uncensored observa-
tions, denote the observed subject X by Y if it is uncensored and by Z once it
is censored, and consequently Y = A + R and Z = A + C. Bear in mind that,
although C is independent of (A,R), the complete lifetime observed Y and the
censoring time observed Z are not independent and Cov(Y,Z) > 0, which im-
plies that the censoring mechanism is informative in a prevalent cohort study
with follow-up [4]. In other words, subjects should survive until the recruitment
to be observable in the sampling procedure under study, and then the remain-
ing of their lifetimes (R) may be randomly censored (see Figure 2). Therefore,
the Kaplan-Meier estimator does not result in a NPMLE for the length-biased
distribution here. Alternatively, [37] derived a NPMLE for the common lifespan
distribution function of the n independent and identically distributed stationary
renewal processes. It is proven that prevalent cohort cases under the station-
arity assumption and observations of n independent and identically distributed
stationary renewal processes started a long time ago have the same NPMLE.
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Fig 2. Informative Censoring Structure.

The NPMLE of G is introduced in the next section.
To complete the preliminary definitions in this section, we need to present

distributions of Y , Z and the recurrence times here. The joint distribution of A
and R has the following representation [37, 15],

fA,R(a, r) = fX′(a + r)
μX′

.

Let p indicate the probability of censoring for each recruited subject during the
period of follow-up, p := P (δ = 1). For the remaining censoring time C, define
FC(c) := P (C ≤ c), then SC(c) = 1 − FC(c). Denote the respective letters C
and U for censored and uncensored subjects. Define

GU (y) := P (A + R ≤ y|δ = 1) = 1
p

∫ y

0

g(s)
s

∫ s

0
SC(r)drds,

and

GC(z) := P (A + C ≤ z|δ = 0) = 1
1 − p

∫ z

0
FC(s)

∫ ∞

s

u−1dG(u)ds.

Suppose gU and gC are the respective probability density functions correspond-
ing to GU and GC . In addition, let fr indicate the probability density function
of backward/forward recurrence time [11]. Then, fr has representation:

fr(x) = 1
μX′

(
1 − FX′(x)

)
=
∫ ∞

x

s−1G(ds). (2)

2.2. Overview: Definitions and NPMLE

Let n indicate the number of subjects observed at the recruitment time. Our
sample includes the independent vectors (Ai, Ri ∧ Ci, δi) for i = 1, 2, . . . , n. In
terms of Y and Z, the sample consists of the random variables Y1, . . . , YN1 and
Z1, . . . , ZN2 , where the number of uncensored subjects (N1) and censored cases
(N2) are random, that is a disparity between the model under study in this
article and n independent renewal process and multiplicative censoring [8]. Let
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n1 and n2 be the values realized for the respective random variables N1 and N2.
Let (ai, ri ∧ ci, δi) indicate the values realized for the vector (Ai, Ri ∧Ci, δi) for
i = 1, . . . , n. Denote y1, . . . , yn1 and z1, . . . , zn2 for the uncensored and censored
realized values. Thus, the full likelihood function is as follows,

L =
n∏

i=1

(
fA,R(A = ai, R = ri)

)δi (
P (A = ai, R > ci)

)1−δi

=
n∏

i=1

(
fX′(yi)
μX′

)δi
(∫ ∞

ci

fA,R(ai, r)dr
)1−δi

∝
n∏

i=1

(
G(yi)

)δi (∫ ∞

zi

s−1G(ds)
)1−δi

. (3)

Let 0 < t1 < t2 < · · · < tk denote the distinct sample values realized for
the sample

{
(y1, . . . , yn1) ∪ (z1, . . . , zn2)

}
. Consequently, k ≤ n1 + n2 = n due

to possibility of multiplicities in data sets in real applications. Let Ĝ denote
Vardi’s estimator which maximises the likelihood L. [37] derived this estimator
for the multiplicative censoring model, but its validity for the underlying model
was noted by [8]. Given Ĝ, the NPMLE of FX′ has representation

F̂ (x) = μ̂X′

∫ x

0
t−1Ĝ(dt). (4)

where

μ̂−1
X′ =

∫ ∞

0
x−1Ĝ(dx).

In the rest of this article, we conduct a study on the unbiased cumulative
hazard function and the unbiased survival function from censored prevalent co-
hort survival data. We consider these quantities as the functionals of G. For
this objective, it is necessary to introduce the process to which the empirical
process Bn :=

√
n(Ĝ − G) converges asymptotically. Let B indicate the limit-

ing process of Bn. We also need to define the spaces on which Bn and B act.
Let D0[a,∞] denote the space of all Cadlag functions u(·) on [a,∞] vanishing
at a. The uniform norm ‖ · ‖[a,b] is defined by ‖u‖[a,b] := supa≤x≤b

∣∣u(x)
∣∣. The

space D0[0, b] endowed with the uniform topology, the topology induced by the
uniform norm, is a Banach space. This implies that the space of bounded linear
operators on D0[0,∞] denoted by L(D0[0,∞],D0[0,∞]) is a Banach algebra.
The other fact about D0[0,∞] that we need is that cadlag functions have count-
ably many jumps [24]. This assures that cadlag functions are Riemann integrable
on bounded intervals. The stochastic process B is then defined by

B := F−1(V ), (5)

where F−1 is the inverse of F , and F : D0[0,∞] → D0[0,∞] is an invertible
linear operator with representation

F := G1 + G2
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such that
G1(u)(x) := p

∫
0<y≤x

gU (y)
g(y) u(dy)

G2(u)(x) := (1 − p)
∫

0<z≤x

z

(∫
z≤s

u(s)
s2 ds

)
d

[(
fr(x)
fr(z)

− 1
)

gC(z)
fr(z)

]
,

and u ∈ D0[0, b]. In addition, V is defined as follows

V (x) := p1/2B1

(
GU (x)

)
+ (1 − p)1/2 fr(x)

∫
0<t≤x

B2

(
GC(t)

)
d

1
fr(t)

+
(

p

1 − p

)1/2 (
GU (x) −G(x)

)
Z, (6)

where B1 and B2 are independent Brownian bridges, and the random variable
Z ∼ N(0, 1) is independent from B1 and B2.

2.3. Assumptions

The condition defined by set J below does not actually impose any restriction to
our results as long as FC(0) = 0. However, we are considering the possibility of
the situation when we cannot follow-up on a proportion of cases recruited right
after the recruitment with probability P (C = 0) = FC(0) > 0. The information
on such cases only comes from the current age A. Furthermore, since A and R
are identically distributed under stationarity, FC(0) > 0 can also be considered
as the share of uncensored observations with missing onset times. Besides, this
condition was initially introduced by [8] and used to show that their results for
Ĝ under prevalent cohort setup generalize those by [38] under multiplicative
censoring. Our methodology inherits this generalization and can thus be used
to derive uniform confidence bands under multiplicative censoring setup as well.

Let denote τ := inf{x : G(x) = 1}, assume that τ < ∞ and identify β =
FC(0) ≥ 0. Define

J :=
{
x ≤ τ :

(
2

α(x) − 1
1 − β

)
β < 1

}
,

where α(x) := 1
x

∫ x

0 SC(s)ds = pgU (x)/g(x). It is of note that J = [0, τ ] if β = 0.
Bear also in mind that α(x) is a decreasing function with limx→0 α(x) = 1− β.
Thus, a necessary condition in order to x ∈ J is that β < 1/2. Moreover, it is
apparent that α(x) ≥ SC(x) and as a consequence a sufficient condition x ∈ J
is that FC(x) < 1/2. For the interpretation of a condition similar to J see [6],
although the alternative condition used by [6] is more restrictive than J here.
The condition imposed by x ∈ J is not restrictive because β, the mass of the
residual censoring distribution at 0, would be very small in practice. If β = 0.01
for example, then a sufficient condition for x ∈ J is that FC(x) ≤ 0.98.
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Theoretical results presented in this article have been derived under one of
the assumptions below. While the assumption (A1) was initially used by [5], the
assumption (A2) was employed by [6] first.

Assumption (A1). A sequence of real numbers γn1,n2 meets the assumption
(A1) if ∑

n1,n2

G
(
γn1,n2

)
< ∞,

where the summation is taken over the subsample sizes n1 and n2 taken jointly
to infinity so that p̂ :=

∑n
i=1 δi/n → p.

To sidestep problems concerning a singularity at the origin, we select a se-
quence of positive real numbers γn1,n2 fulfilling (A1) and estimates Ĝ assigning
zero probability below γn1,n2 . Thus, the existence of such distribution functions
Ĝ is of critical importance. Claim 1 below reveals such estimates Ĝ exist. But
we first need the score equation corresponding to the likelihood function (3)
derived in (2.1) of [5].

Claim 1. Let assumption (A1) hold. Then, for all sufficiently large n1 and n2,
the score equation has a solution Ĝ such that Ĝ(x) = 0 for all x < γn1,n2 .

Claim 1 here coincides with Claim 1 in [5] and, therefore, its proof is omitted.
Claim 1 indicates that the sequence γn1,n2 helps us to control the behavior of
Ĝ for large n1 and n2 to avoid problems related to a singularity at the origin.
It is not tricky to find γn1,n2 since X is continuous and so G(0) = 0. For
instance, an obvious selection of γn1,n2 satisfying the aforementioned criteria is
γn1,n2 = G−1(1/nν) where ν > 1 and G−1 is the inverse function of G. However,
our results in Section 3 indicates that γn1,n2 ought to satisfy the following added
constraint.

γ−1
n1,n2

√
log logn

n
−→ 0, (7)

which means γn1,n2 cannot go to zero as fast as (log logn/n)1/2 goes. In the
above example (i.e. γn1,n2 = G−1(1/nν)), the choice of ν and the behaviour
of G are hence very essential in order for γn1,n2 to satisfies (7). Hence, the
condition (7) limits our results to those distribution functions G falling to zero
fast enough. For example, it can be shown that such a sequence of γn1,n2 exists
when G is a member of the Gamma family of distribution functions with shape
parameter k > 2. That in return means assumption (A1) holds for the target
populations FX′ in the Gamma family of distribution functions with k > 1.
Similarly, it is observed that (A1) is met for Weibull family of distribution
functions with shape parameter k > 1 as the target distribution functions.

Assumption (A2). We say the length-biased distribution G satisfies as-
sumption (A2) if there exists a γ > 0 such that for all x < γ we have G(x) = 0.

Assumption (A2) states that we can be assured of survival of subjects for some
mere length of time after the initiating event, which is a reasonable assumption
in examples of practical importance. If we can assume such γ > 0 exists, we can
simply choose γn1,n2 = γ/2, and consequently assumption (A1) is not required.
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Hence, assumption (A1) is less strict than (A2). For example, any distribution
function truncated between [0, γ], for arbitrary γ, satisfies assumption (A2).

3. Asymptotic study

In this section, we introduce the NPMLEs of the hazard function and the sur-
vival function. We study the asymptotic behaviour of the NPMLE of the hazard
function here. The asymptotic properties of the NPMLE of the survival func-
tion were first studied by [6]. Having reviewed the results given in [6], we prove
the uniform strong consistency of the estimator of the survival function un-
der a weaker assumption, which extends the consistency for distributions with
domains defined over [0, τ ].

3.1. Cumulative hazard function

Let define Λ as the cumulative hazard function of the unbiased population of
interest as follows

Λ(x) :=
∫ x

0

FX′(dt)
1 − FX′(t) =

∫ x

0

G (dt)
t
∫∞
t

s−1G(dt)
(8)

where x ∈ [0, τ). After that, the NPMLE of Λ has representation

Λ̂(x) :=
∫ x

0

F̂X′(dt)
1 − F̂X′(t)

=
∫ x

0

Ĝ (dt)
t
∫∞
t

s−1Ĝ(dt)
,

where x ∈ [0, tk) and tk is the maximum of observations. The uniform strong
consistency of Λ̂ has been studied in the next theorem.

Theorem 1. Suppose that assumption (A1) is satisfied. For any b ∈ J , it is
derived that, as n → ∞,

‖Λ̂ − Λ‖[0,b]
a.s.−→ 0.

Additionally, it is obtained for any b ∈ J and b ≤ τ−ε that, if assumption (A1)
is satisfied, as n → ∞,

‖Λ̂ − Λ‖[0,b] = O

(
FX′(γn1,n2)

1 − FX′(γn1,n2)
+ γ−1

n1,n2

√
log logn

n

)
a.s.

and if assumption (A2) holds, then, as n → ∞,

‖Λ̂ − Λ‖[0,b] = O

(√
log logn

n

)
a.s.

Proof. See Proofs.
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Define U1
n :=

√
n
(
Λ̂ − Λ

)
. In the following theorem, asymptotic weak con-

vergence of Un is presented.

Theorem 2. Under assumption (A2), it is proven for any b ∈ J that, as
n → ∞,

U1
n

W−→ U1 in D0[0, b],

where U1 denotes a mean zero Gaussian process with covariance function

Cov
(
U1(x1), U1(x2)

)
=
∫ ∞

0

∫ ∞

0
Cov

(
B(t),B(s)

)
I1
x1

(dt)I1
x2

(ds)

and B is defined in (5). In addition, U1 has representation

U1(x) :=
∫ ∞

0
I1
x(t)B(dt),

where
I1
x(t) := Kx(t, t) −

∫ t

0
Kx(t, s)Λ(ds)

and

Kx(t, s) :=
{

μX′

t
(
1 − FX′(s)

)
}
I[0,x](s).

Proof. See Proofs.

Although our results are here driven under the stationarity assumption, one
can mimic the proofs presented to obtain asymptotic results and confidence
bands under other scenarios as long as the intensity of the incidence process is
known [1, 9]. This, however, requires two separate steps. First, a new master
equation should be used in [8], see Section 8. In addition, it entails modification
of the representations (14-15) in Proofs and, thus, some subsequent steps. The
same can be done in the case of survival function in the next section.

3.2. Survival function

Let define S := 1 − FX′ as the survival function of the target population of
interest. Following that, the NPMLE of the S for any x > 0 is given by

Ŝ(x) = 1 − F̂ (x) = μ̂

∫ ∞

x

t−1Ĝ (dt) ,

where F̂ is presented in (4). In a study on the unconditional NPMLE of the
unbiased survival function, [6] showed that under assumption (A2), as n → ∞,

‖Ŝ − S‖[0,b] = O

(√
log logn

n

)
a.s. (9)
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Additionally, let U2 denote a mean zero Gaussian process with representation

U2(x) :=
∫ ∞

0
I2
x(t)B(dt)

and covariance function

Cov
(
U2(x1), U2(x2)

)
=
∫ ∞

0

∫ ∞

0
Cov

(
B(t),B(s)

)
I2
x1

(dt)I2
x2

(ds),

where B is given in (5) and

I2
x(t) := μX′

{
I[x,∞](t) − S(x)

t

}
.

By defining U2
n :=

√
n
(
Ŝ − S

)
, [6] also derived that, under assumption (A2),

U2
n

W−→ U2 in D0[0, b], (10)

as n → ∞, for any b ∈ J .
We first study the uniform strong consistency of the unbiased survival func-

tion under assumption (A1) in the below theorem. By extending the uniform
strong consistency of the NPMLE of S for distributions satisfying assumption
(A1), the theorem relaxes the restriction (A2), under which (9) was derived.

Theorem 3. Suppose that assumption (A1) holds. Then, it is derived for any
b ∈ J that, as n → ∞,

‖Ŝ − S‖[0,b] = O

(
FX′(γn1,n2) + γ−1

n1,n2

√
log logn

n

)
a.s.

Proof. See Proofs.

Although the weak convergence for the empirical process U2
n was proved by

[6], it could not be used in practice to obtain confidence bands since B does
not have an explicit and tractable form. We propose two statistics in Section 5
that asymptotically does not rely on an unknown parameter. Based on these
statistics, we derive confidence bands for the cumulative hazard function and
the survival function. To surmount the obstacle associated with the intractable
forms of the proposed statistics, we derive a computational method to obtain the
behaviour of the stochastic integrals U i, for i = 1 and 2, and thus constructing
the confidence bands in practice. However, we first study asymptotic efficiency
of the proposed NPMLEs in the following section.

4. Asymptotic efficiency

From this point onwards, let denote θ1 and θ2 for the respective statistical func-
tionals Λ and S (i.e. θ1 ≡ Λ and θ2 ≡ S). Similarly, let define θ̂1 ≡ Λ̂ and
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θ̂2 ≡ Ŝ. Given the representations (1) and (8), it is easy to find the form of
functionals φi such that φi(G) = θi, and hence φi(Ĝ) = θ̂i, for i = 1 and 2.
Having considered the asymptotic efficiency of Ĝ given in [8], the probing ques-
tion we try to address in this section is that whether the asymptotic efficiency
of Ĝ is carried over into the efficiency of φi(Ĝ) as well. The following theorem
prove the asymptotic efficiency of θ̂i in estimating θi, for i = 1, 2.

Theorem 4. Let G : [0, τ ] → [0, 1] be the distribution function of the random
variable X, and η denote a constant such that 1−G(η) ≥ ε > 0 for some ε > 0.
Under assumption (A2):

i) The NPMLE θ̂1 is asymptotically efficient estimator of θ1 over [0, η].
ii) The NPMLE θ̂2 is asymptotically efficient estimator of θ2 over [0, τ ].

Proof. See Proofs.

5. Uniform confidence bands

The theoretical results presented in Section 3 may be applied to establish uni-
form confidence bands for the statistical functionals under study. For this pur-
pose, we need to propose a nonparametric statistics whose asymptotic distribu-
tion does not rely on any unknown parameter. For the Gaussian processes U i, de-
fine (σi

n(x))2 as uniform consistent estimators of (σi(x))2 := Cov(U i(x), U i(x)).
Inspired by a common method used for likelihood-based confidence bands [45,
47, 29], let define

Si
n(x, θi) := U i

n(x)
σi
n(x) , (11)

where i = 1 and 2. Then, the stochastic processes Si
n are nonparametric statistics

that can be applied to derive confidence bands for θi. For this objective, we need
to present the following theorem here.

Theorem 5. Under assumption (A2), it is derived that, as n → ∞,

Si
n(·, θi) W−→ Si(·, θi) in D0[0, b],

where b ∈ J and

Si(x, θi) := U i(x)
σi(x) .

Proof. See Proofs.

Considering Theorem 5, we can obtain through the continuous mapping the-
orem that, as n → ∞,

sup
x∈[0,b]

∣∣∣Si
n(x, θi)

∣∣∣ D−→ sup
x∈[0,b]

∣∣∣Si(x, θi)
∣∣∣ , (12)
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where D−→ indicates convergence in distribution. Hence, an asymptotic 100(1−
α)% confidence band for the statistical functional θi is inferred as follows:

Cθi =
{
θ̄i(x) :

∣∣∣Si
n(x, θ̄i(x))

∣∣∣ ≤ qiα, x ∈ [0, b]
}
,

where qiα is the upper α-quantile of the distribution of supx∈[0,b]
∣∣Si(x, θi)

∣∣. It is
then concluded that, as n → ∞,

P
(
θi ∈ Cθi

)
−→ 1 − α.

In Section 8, we discuss in details how to draw paths from the stochastic pro-
cess B. The behaviour of B can be employed to obtain the distribution of
supx∈[0,b]

∣∣Si(x, θi)
∣∣, and thus reaching qiα for different values of α and corre-

sponding i = 1, 2. Furthermore, we define two uniform consistent estimators for
σi, indicated by σi

n and σi∗
n , in Simulation.

The following Corollary presents the limiting distribution of Si, for i = 1, 2,
at any fixed point.
Corollary 1. For any x0 ∈ J , we have, as n → ∞,

Si
n(x0, θ

i(x0))
D−→ Z,

where the random variable Z follows the standard normal distribution.
Proof. See Proofs.

Using Corollary 1, an asymptotic 100(1 − α)% confidence interval for the
mean residual life function at x0 ∈ J is given by

Cθi(x0) =
{
θ̄i(x0) :

∣∣∣S1
n(x0, θ̄

i(x0))
∣∣∣ ≤ zα/2

}
,

where zα/2 is the upper (α/2)-quantile of the normal standard distribution. It
follows from Theorem 1 that, as n → ∞,

P
(
θi(x0) ∈ Cθi(x0)

)
−→ 1 − α.

6. Approximating the distribution of supSi

Given the intractable form of the stochastic processes Si, i = 1, 2, it is tricky to
obtain the distributions of ‖Si‖[0,b] := supx∈[0,b] |Si

n(x, θi)| analytically. Indeed,
although the linear operator F is invertible, the inverse operator F−1 does
not have a closed form, and consequently deriving an explicit expression for B
defined in (5) is not possible. However, we here propose a computational method
that can be applied to approximate the distribution of ‖Si‖[0,b]. We attain this
objective in three phases. Initially, we discuss the problem of simulating paths
from the process B = F−1(V ) by means of a numerical method. After that, the
generated paths of B are used to obtain paths of the stochastic integrals U i,
i = 1, 2. Finally, we propose an algorithm that can be employed to approximate
Si and then the distributions of ‖Si‖[0,b].
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6.1. Paths of the stochastic process B

The important question that we seek to address in this subsection is how to
computationally draw paths from the stochastic process B defined in (5). To
reach this objective, the first step is to draw paths from V given in (6). For
this purpose, assume a target population FX′ and consider the corresponding
length-biased distribution G defined in (1) along with an arbitrary censoring
distribution FC . We compute the values of V (x) and thus B(x) = F−1(V (x))
for x ∈ {0, x1, . . . , xm, τ}, where m denotes the number of grids considered.
Without loss of generality, suppose that 0 < x1 < . . . < xm < τ , and set
x0 = 0, xm+1 = τ . By simulating a standard normal variable Z and Brownian
bridges B1 and B2 defined in (6) at the respective points GU (xl) and GC(xl),
we can obtain the value of V (xl) for l = 0, 1, . . . ,m+ 1. Given the values of the
sample path V (xl) for l = 0, . . . ,m + 1, the reset of the procedure to obtain
B(xl) = F−1V (xl) is to consider the nonlinear equations F

(
u(xl)

)
= V (xl) for

l = 0, . . . ,m + 1 and deal with the linear operator F as a function of unknown
variables u(x0), . . . , u(xm+1), finding its inverse at points V (x0), . . . , V (xm+1).
For this aim, an appropriate numerical method is required that could be used
to solve the system of m + 1 nonlinear equations.

Figures 3 compares the behaviour of V and the corresponding B for two se-
lectively different stochastic paths under two levels of censoring, 15% and 40%.
Having assumed Gamma distribution with the respective parameters shape and
rate equal to 4 and 2 as the target population, we obtained the corresponding
functions for G, g and fr. Given the share of censoring 15% (p = 1 − 0.15),
we derived distribution functions GC and GU . To generate V defined in (6),
we simulated two independent Brownian bridges B1 and B2 along with a ran-
dom variable Z from the standard normal distribution. We plugged all these
quantities in (6) to complete generation of V . The corresponding B = F−1 (V )
was calculated via the procedure explained in the above paragraph. The re-
spective paths of V and B are plotted in the upper-left diagram in Figure 3.
Then, we changed the level of censoring to 40% (p = 1− 0.40) and obtained the
corresponding V and B exhibited in the upper-right diagram in Figure 3. The
procedures were repeated to simulate different paths from V , shown in lower-left
and -right diagrams in Figure 3. Comparing all plots, it was seen that V and B
followed almost similar trends, although B had larger scale in comparison to V .
There were minimal disparities between V and B under 15% censoring. How-
ever, the differences between two stochastic processes were revealed to increase
markedly as the percentage of censoring rose to 40%. The fluctuations in V and
B have slightly increased by increasing the proportions of censoring.

6.2. Asymptotic quantiles

Having generated paths from the stochastic process B, we need to draw the
corresponding paths from the stochastic integrals S. The stochastic integrals U i
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Fig 3. Paths of the stochastic processes V .

are Gaussian processes that may be approximated by means of the equation

U i(x) = lim
m→∞

Ũ i
m, (i = 1, 2),

where

Ũ i
m(x) :=

m+1∑
l=1

Ii
x(xl)

[
B(xl) − B(xl−1)

]
and {xl : l = 0, 1, . . . ,m + 1} is the partition of [0, τ ] defined earlier in this
section. Moreover, the limit is taken in quadratic mean over all the partitions
such that, as m → ∞,

max
1≤l≤m+1

(xl − xl−1) −→ 0.
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The limiting distributions of supS could closely be approximated through the
following procedure. First, we need to draw N paths from the stochastic process
B, and employ them to obtain the corresponding paths from the stochastic
integral U i. Suppose that {Ũ i

m,j(x);x ∈ [0, τ ]}Nj=1 indicates N sample paths
simulated from the stochastic integrals U i, where m is the number of grids used
to approximate U i. For each 1 ≤ l ≤ m, let σ̃i

N (xl) denote the sample standard
deviation of Ũ i

m,1(xl), Ũ i
m,2(xl), . . . , Ũ i

m,N (xl). Define

S̃i
N,m,j := max

1≤l≤m

Ũ i
m,j(xl)
σ̃i
N (xl)

, (i = 1, 2),

where j = 1, . . . , N . Afterwards, define q̃iN,m,α as the empirical upper α-quantile
of S̃i

N,m,1, S̃i
N,m,2, . . . , S̃i

N,m,N . Following [25], it is then derived that

lim
N→∞

lim
m→∞

P
(
Si
n(·, ·) ≤ q̃iN,m,α

)
= P

(
Si
n(·, ·) ≤ qiα

)
.

Hence, q̃iN,m,α provides a close approximation of qiα for sufficiently large numbers
of generated paths N and grids m. By choosing values N = 1000 and m = 100
to approximate the distribution of ‖Si‖[0,τ ], our simulations indicated that the
values of q̃iN,m,α remains unchanged against changes in underlying distribution
function and level of censoring. The computational time for N = 1000 and
m = 200 in a basic computer (CPU: Intel Core i7-7700) using nleqslv package
in R for solving systems of m equations and parallel programming was about 5
minutes to reach the distributions of ‖S1‖[0,τ ] and ‖S2‖[0,τ ], simultaneously.

7. Variance function approximation

In order to estimate confidence bands Cθi , we also need to derive σi
n used in (11)

for i = 1, 2. The right side of (12) is distribution free, and therefore can be
approximated via the procedure discussed in Section 6 based on any parametric
distribution. Given the intractable forms of U i for i = 1, 2, it is not feasible to
derive explicit forms for σi, and thus the procedure in Subsection 6.2 can be
used which necessitates generating paths from U i. However, we cannot directly
apply such a procedure for σi

n because it requires unknown parameters of the
population of interest. However, if there are stochastic processes Û i that do not
rely on any unknown parameter and almost surely uniformly converges to U i,
the variance of Û i may be applied in practice instead. The objective of this
section is to introduce such Û i. For this aim, we need to find a process that
almost surely uniformly converges to B = F−1(V ) as for the first step.

Suppose that f̂r is the estimator of fr reached by plugging in the Vardi’s
estimator in (2). Let ĜU and ĜC denote the classical empirical distributions of
GU and GC based on separate samples Y1, . . . , YN1 and Z1, . . . , ZN2 . Recall p̂
defined in Section 2.3. Let define V̂ as follow,

V̂ (x) := p̂1/2B1

(
ĜU (x)

)
+ (1 − p̂)1/2 f̂r(x)

∫
0<t≤x

B2

(
ĜC(t)

)
d

1
f̂r(t)
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+
(

p̂

1 − p̂

)1/2 (
ĜU (x) − Ĝ(x)

)
Z,

where the random normal variate Z and the Brownian bridges B1 and B2 are
defined in (6). The below theorem is then followed.

Theorem 6. For any b ∈ J , it is proved that, as n → ∞,

‖V̂ − V ‖[0,b]
a.s.−→ 0.

Proof. See Proofs.

To propose a process that almost surely converges to B, the following esti-
mators should be defined. Let ĝU and ĝC denote the kernel density estimators
of gU and gC as introduced by [27]. The weak and strong uniform consistency of
ĝU and ĝC were studied in [22, 28]. Define the kernel density estimator of g by

ĝ(x) := 1
h

∫ ∞

0
K

(
x− t

h

)
Ĝ(dt), (13)

where K is some kernel function, h is bandwidth and Ĝ is the Vardi’s estimator.
The asymptotic behavior of ĝ under multiplicative censoring was studied by [5].
The following theorem proves the uniformly strong consistency of ĝ for data
collected in prevalent cohort studies under stationarity of incidence processes.

Theorem 7. Suppose that h is a sequence of positive bandwidths tending to 0 as
n → ∞. Let K be a continuous function supported on (−1, 1) with

∫
K(s)ds = 1

and total variation VK < ∞. Then, as n → ∞,

‖ĝ − g‖[0,τ ]
a.s.−→ 0.

Proof. See Proofs.

Let β̂ be the proportion of cases censored right after the recruitment including
the subjects that are not followed as discussed in Subsection 2.3. Define

Ĝ1(u)(x) :=
∫

0<y≤x

(
(1 − β̂)I[0,t1)(y) + p̂

ĝU (y)
ĝ(y) I[t1,tk](y)

)
u(dy),

Ĝ2(u)(x) := (1 − p̂)
∫

0<z≤x

z

(∫
z≤t

u(t)
t2

dt

)
d

⎡
⎣( f̂r(x)

f̂r(z)
− 1
)

ĝC(z)
f̂r(z)

⎤
⎦ .

We can then define the following linear operator, F̂ : D0[0,∞] → D0[0,∞],

F̂ := Ĝ1 + Ĝ2.

F̂ and V̂ can be employed to propose a process that almost surely uniformly
converges to B. In the next two theorems, we assume ĝ used in Ĝ1 is a uniformly
consistent estimator of g, and thus the conditions of Theorem 7 hold.
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Theorem 8. Let define B̂ := F̂−1(V̂ ). For any b ∈ J and sufficiently large n,

‖B̂ − B‖[0,b]
a.s.−→ 0.

Proof. See Proofs.

Let Îi
x denote the estimator of Ii

x obtained by substituting F̂ , Λ̂, Ŝ and μ̂X′

for F , Λ, S and μX′ in Ii
x, for i = 1, 2. A process almost surely uniformly

converging to U i is given by

Û i(x) :=
∫ ∞

0
Îi
x(t)B̂(dt).

Theorem 9. For any b ∈ J and sufficiently large n, it is derived under as-
sumption (A1) that

‖Û i − U i‖[0,b]
a.s.−→ 0.

Given Theorem 8, the proof of Theorem 9 is straightforward and so is omitted.
Let denote (σ̂i(x))2 := Cov(Û i(x), Û i(x)). Since processes U i are mean zero
Gaussian processes, it can be shown that

‖(σ̂i)2 − (σi)2‖[0,τ ] ≤
∫ ∥∥∥(Û i)2(·, ω) − (U i)2(·, ω)

∥∥∥
[0,τ ]

dP (ω),

and hence, it is derived by means of the dominated convergence theorem and
Theorem 9 that (σ̂i)2 almost surely uniformly converges to (σi)2.

However, given the intractable forms of the stochastic integrals Û i, we can
adopt the procedure given in Subsection 6.1 to simulate paths from the stochas-
tic process B̂. Having generated paths from the process B̂, the stochastic inte-
grals Û i can be approximated similar to the procedure given in Subsection 6.2.
Let {Û i

m,j(x);x ∈ [0, τ ]}Nj=1 denote N paths simulated from the stochastic inte-
grals Û i, where m is the number of grids employed to approximate Û i. For 1≤ l ≤
m, let σ̂i

N (xl) denote the sample standard deviation of Û i
m,1(xl), . . . , Û i

m,N (xl).
Then, σ̂i

N (xl) almost surely uniformly converges to σi.

8. Simulation

In this section, we conduct a comprehensive simulation study to illustrate the
performance of NPMLEs and confidence bands and determine the empirical
coverage probabilities of the proposed confidence bands (Cθi , i = 1, 2) for small
sample sizes. To simulate censored survival data emanating from a prevalent
cohort under stationarity assumption of incidence, we first generated indepen-
dent and identically distributed pairs of (X ′

i, T
′
i ), i = 1, . . . , n′, where the failure

times X ′
i were simulated form the target population. The uniform distribution

U(0, τ ′) was considered for truncation times T ′
i to guarantee the stationarity

assumption. In each scenario, the value of the parameter τ ′ was chosen such
that τ ′ > max1≤i≤n′(X ′

i). In addition, the value of n′ in each repetition was se-
lected large enough (n′ > n) to make sure that n subjects were observed. Only
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n random cases from those pairs of (X ′
i, T

′
i ) satisfying the condition X ′

i > T ′
i

were kept in the cohort, forming our prevalent cohort observations (Xi, Ti). The
censoring variables Ci, i = 1, . . . , n, were generated from a uniform distribution
U(0, τ ′′), where τ ′′ in each scenario was considered such that the desired censor-
ing percentage was reached on average for large number of repetitions, ensuring
p̂ → p almost surely. Having imposed censoring, we considered Ti + min(Ri, Ci)
for i = 1, . . . , n as our observations, where Ri = Xi − Ti.

To approximate the variance functions, we considered generating N = 300
paths from Û i to compute σ̂i

N for i = 1, 2. The computational time to simul-
taneously reach σ̂1

N and σ̂2
N was just above 90 seconds for a personal computer

(CPU: Intel Core i7-7700), which dived to a sixth after using parallel program-
ming in R. In order to estimate ĝ, ĝU and ĝC , the Epanechnikov kernel function
were used. The Silverman’s rule-of-thumb was used to obtain bandwidths h for
ĝU and ĝC . As for the bandwidth of ĝ defined in (13), we have developed a
cross-sectional procedure in an unpublished manuscript that may be used for
censored prevalent cohort survival data. However, having approximated the op-
timal bandwidths one time, we considered a fixed value for h for each target
population. One can also use the optimal bandwidth introduced in [5] for ĝ.

One of the objectives of simulation studies was to graphically evaluate the
general adequacy of the estimators and elucidate the potential impact of in-
creasing the censoring rate on their performance. For this purpose, two families
of distribution functions, namely Weibull and Gamma, were considered with
different choices of shape parameter k and scale parameter λ as the target pop-
ulations of interest. To illustrate how the procedures perform, we considered the
sample size n = 400, nominal level of confidence 95% and two levels of censoring
15% and 40% corresponding to p = 1 − 0.15 = 0.85 and p = 0.6, respectively.
Bear in mind that the number of censored objects in each iteration was random
although p̂ → p almost surely.

Figures 4 and 5 illustrate how the procedures performed for the target popu-
lations Weibull with parameters k = 3 and λ = 0.5 (Weibull (3, .5)) and Gamma
with parameter k = 4 and λ = 3 (Gamma (4, 3)). Two diagrams at the top ex-
hibit results for the cumulative hazard function while the two figures at the
bottom show that for the survival function. Figures 4 and 5 also compare the
performance of procedures under 15% censoring (two diagrams on the left) with
that under 40% censoring (two figures on the right). The diagrams consisted
in 100 iterations. The true cumulative hazard and survival curves were plotted
in solid black lines. The average NPMLEs out of 100 repetitions were plotted
with bullet points. All the 100 confidence bands estimated in each repetition
of each setting were plotted in gray solid lines, shaping the gray clouds around
the true curves. In each scenario, the average of upper-bound and lower-bound
of the confidence bands out of 100 iterations were calculated separately and
drawn using black dash-dotted lines. We found the NPMLEs proposed perform
generally very well. As seen in the figures, the average of estimates of θ1 and
θ2 for both target distributions located on the true curves perfectly under both
levels of censoring. Although narrower and more precise, Cθ1 for scenarios with
15% censoring touched the true hazard functions at the end in a few cases. All
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Fig 4. Estimation for the cumulative hazard function and survival function for target popu-
lation W (3, 0.5) after adjustment for length-bis: True curves.

the observed NPMLEs θ̂i were smooth, that have not been shown in the fig-
ures due to space limitations, although there were more fluctuations under 40%
censoring.

According to Figures 4 and 5, the confidence bands for the cumulative hazard
function (Cθ1) became wider steadily by increasing in time. In contrast, despite
an initial and marked surge, the widths of bands for the survival functions (Cθ2)
remained almost constant as the time increased before gradually narrowed at
the end. In all sampling scenarios, the upper and lower limits of the confidence
bands Cθ1 and Cθ2 touched the true curve in the left tails. It was observed
that the proportions of the proposed confidence bands covering completely the
hazard functions θ1 in 15% censoring setting were between 94−97%, while those
for survival functions θ2 were slightly less by roughly 1% in three out of four
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Fig 5. Estimation for the cumulative hazard function and survival function for target popu-
lation G(4, 3) after adjustment for length-bis: True curves.

scenarios. All confidence bands were very smooth and tight. However, compared
to 15% censoring scenarios, confidence bands became wider and fluctuated more
in scenarios with 40% censoring.

The other aim of simulation studies was to inspect the performance of the
confidence bands proposed for small sample sizes. For this objective, we consid-
ered sample sizes n = 400, 600 and 800 from two target populations W (2, 3)
and G(3, 0.5). We also imposed three separate levels of censoring of 15%, 30%
and 40% on data, representing minor, moderate and severe censoring. Also, the
nominal level of confidence 95% was contemplated. The performance of the con-
fidence bands were evaluated based on 1000 iterations of each case. The coverage
probabilities were calculated as the proportion of confidence bands covering the
real curve out of 1000 repetitions. It is worth mentioning that the real set of
CSHA data that we analyse in Section 9 includes 826 cases with two types of
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dementia with censoring proportion just under 30%. Additionally, [10] reported
that CSHA data could be modelled by Weibull distribution function. Accord-
ingly, we have considered simulation scenarios that are properly aligned with
our real data structure.

In addition to σ̃i
N proposed in Section 7, we introduce a bootstrap method

as an alternative method to estimate σi. By having qiα (i = 1, 2), all we need for
Cθi is θ̂i and the bootstrap estimator given bellow. Therefore, one may find the
bootstrap estimator easy to apply as the bootstrap method facilitates the proce-
dure for estimating variance functions. Let (A∗

j , R
∗
j ∧C∗

j , δ
∗
j ), for j = 1, . . . , n, be

independent and identically distributed observations resampled from the orig-
inal and fixed sample (A1, R1 ∧ C1, δ1), . . . , (An, Rn ∧ Cn, δn). Let Ĝ∗ and θ̂i∗

denote the Vardi’s estimator and the NPMLE of θi based on the bootstrap sam-
ple (A∗

j , R
∗
j ∧C∗

j , δ
∗
j ), where j = 1, . . . , n and i = 1, 2. Define U i∗

n :=
√
n(θ̂i∗−θ̂i).

By replicating the above resampling procedure B times, σi∗
n is defined as the

sample standard deviation of U i∗
1n, . . . U

i∗
Bn. Under assumption (A2), we have the

uniform integrability property and therefore σi∗
n is a uniform strong consistent

estimator of σi. For the rest of this section, we considered B = 500 in our
resampling procedures.

As seen in Figures 4 and 5, Cθi tended to touch θi in the left tails for i = 1, 2.
An obvious reason is that the confidence bands cannot cover the true parameters
beyond the range of data, i.e. (t1, tk). It is also not surprising if σ̂i

N and σi∗
n can-

not perform well in the tails. Estimation is even less efficient for small quantiles
under length-bias owing to under-representation of small values of failure times,
whereas estimation for large quantiles is noticeably more efficient due to over-
representation of large values of survival times under length-biased sampling,
which thus helps to avoid the estimation problems in the right tail. Therefore, we
ignored any negligible intersection between θ1 and Cθ1 within the margin [0, p05]
for sample size n = 400 in our computations to obtain the coverage probabilities,
where p05 is the 5th-lower percentile of the target distribution. This problem
gradually disappears as the sample size increases since t1 → 0 almost surely. To
show that, the margins that we considered correspondingly for n = 600 and 800
were narrowed gradually to about [0, p04] and [0, p03], respectively. Our numer-
ical results also indicated that Cθ1 performs slightly better than Cθ2 in the left
tail. To compute the coverage probabilities of Cθ2 , the corresponding edges that
we should consider were wider by a narrow margin of 1%, approximately.

Table 1 summarises the empirical coverage percentages observed for the pro-
posed confidence bands Cθi in covering the true parameters θi, for i = 1, 2. Gen-
erally, it was seen that both confidence bands performed well for all sample sizes
using σ̂i

N . Considering Cθ1 using σ̂1
N , the share of bands truly covered the hazard

function accounted for 93.81 − 94.91% for Weiblull distribution, while that for
Gamma distribution were merely different with a range of 93.71− 95.21%. The
coverage probability of Cθ1 grew minimally when the censoring level increased,
except for Weibull distribution with n = 400. In comparison to σ̂1

N , the coverage
probabilities of Cθ1 using σ1∗

n were distinctly lower under 15% and 30% censoring
when n = 400, but the performance of Cθ1 improved gradually as the sample
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Table 1

Empirical Coverage Probabilities of Confidence Bands (in %).

W(2, 3) G(3, 0.5)
θi Size Censoring σi∗

n σ̂i
N σi∗

n σ̂i
N

i = 1 400 0.15 91.82 94.31 91.92 93.71
0.30 91.02 93.61 92.42 94.81
0.40 90.62 94.31 91.32 94.51

600 0.15 94.21 93.81 93.81 93.81
0.30 93.21 94.41 94.31 94.61
0.40 92.42 94.71 93.11 95.21

800 0.15 93.51 94.31 93.01 94.11
0.30 93.42 94.61 92.51 94.31
0.40 91.42 94.91 91.62 94.51

i = 2 400 0.15 91.42 93.21 92.31 93.21
0.30 91.42 94.41 92.22 93.31
0.40 90.12 94.51 91.52 94.51

600 0.15 92.51 94.11 94.91 93.51
0.30 92.81 94.61 92.92 94.81
0.40 92.02 95.51 92.81 95.01

800 0.15 93.01 94.11 95.11 94.31
0.30 91.72 94.81 93.61 95.71
0.40 91.02 95.71 91.92 95.01

size increased, ranging from 91.02 to 94.31%. Contrastingly, the coverage prob-
ability remained relatively unchanged under 40% censoring, forming noticeably
lower coverage probabilities between 90.12 − 92.81%.

Turning to Cθ2 using σ̂2
N , the percentages of the confidence bands covering the

true survival function accounted for 93.21 to 95.71. There was not any meaning-
ful difference in the performance of Cθ2 under two different target populations.
The coverage rate of Cθ2 using σ̂2

N surged marginally by increasing the censoring
proportion. By comparison with σ̂2

N , Cθ2 using σ2∗
n showed almost acceptable

results under 15% and 30% censoring although the performance of the former
was still markedly better, as the coverage probabilities in most of the scenarios
were closer to 95%. In contrast, Cθ2 using σ2∗

n performed poorly for 40% censor-
ing as the coverage probabilities deviated significantly from the nominal level.
Our numerical results exposed that the bootstrap method was inadequate for
estimating the variance function close to the minimum of data.

All in all, although both performed very well, Cθ1 exhibited slightly better
results in terms of coverage probabilities and coverage of θ1 close to the origin
while Cθ2 formed tighter estimation on the right tail. By increasing the sample
size, the confidence bands were capable of covering θi close to the origin. Larger
sample sizes also resulted in considerably narrower bands and thus more pre-
cise estimation. Estimating confidence bands using σ̂i

N revealed more accurate
results compared to σi∗

n . Confidence bands using σ̂i
N could preserve the confi-

dence level well. In contrast, the procedures based on σ∗i
n could not maintain the

nominal level over the same ranges in scenarios with higher levels of censoring
in particular. Following a comment by the first reviewer, we scrutinized all the
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steps of our simulation process under different sampling settings and we realized
that the obstacle in the performance of the confidence bands using σ∗

n is that the
bootstrap variance does not perform well for small values of time. The bootstrap
method may still be used if we have large enough samples or we can disregard
inefficiencies of the bootstrap variance for survival times close to the minimum
of observations. It is of note that while we proved Theorem 5 under assumption
(A2), which is not a restrictive condition in examples of practical importance,
the target distributions that we considered did not satisfy this assumption.
Accordingly, the proposed confidence bands were found to be robust against
violation of assumption (A2) for distributions satisfying assumption (A1).

9. Real data application

The Canadian Study of Health and Aging is a nationwide multicentre epidemi-
ological study in geriatrics, including dementia and other health problems in
elderly population of Canada commenced in 1991. Over the first phase of the
study, 10,263 subjects of age 65 years or older among a random sample selected
throughout Canada accepted to participate and be screened for dementia. Those
who were diagnosed with dementia were split into three separate categories,
namely probable Alzheimer’s disease, possible Alzheimer’s disease and vascular
dementia. The date of onset of dementia for the subjects under study were col-
lected from responsible carers. The prevalent cases cross-sectionally recruited
were then followed over time until 1966 when the primary phase ended. The
date of death or censoring for the subjects within the cohort were recorded dur-
ing the period of follow-up study. Individuals who were still alive at the end of
study were considered to be censored. The collection of data comprised 823 sub-
jects with dementia. As the diagnosis of dementia was made on prevalent cases,
the challenge posed was that the data formed a non-representative sample of the
target population of interest. It could be reasonably assumed that the incident
rate of dementia remained constant, and thus the stationarity assumption held
and the collected data were length-biased. The data was initially studied by
[42]. Thereafter, several authors have analysed the CSHA data from different
perspectives. The validity of the stationarity assumption was inspected and ver-
ified by [1, 6, 9]. Of 823 subjects followed in the study, there were 20 individuals
who had survived for almost 20 years or more. We excluded these subjects from
the set of data as it is very unlikely that these subjects had dementia. Over the
course of the follow-up study, just above 22% of the cases recruited were cen-
sored. The share of censored subjects remained relatively constant among the
subcategories of dementia. We used survival times (in month) along with the
corresponding censoring indicators for our analysis. We applied the method pro-
posed in Section 7 with N = 500 generated paths to approximate the variance
functions σ̂i

N (i = 1, 2) for all the confidence bands presented in this section.
Figure 6 compares the NPMLEs of the cumulative hazard function (left)

and the survival function (right) between different subgroups of dementia. De-
spite fluctuations, the hazard rate, also known as the mortality rate in medical
sciences, of possible Alzheimer’s was remained relatively unchanged until the
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Fig 6. NPMLEs of the cumulative hazard functions and the survival functions after adjust-
ment for length-bis for cases with different types of dementia observed in CSHA: Possible
Alzheimer’s Disease.

end as the slope of the curve was constant. Vascular dementia accounted for the
highest rate of mortality among different types of dementia for 145 months after
the onset of dementia, reaching the cumulative hazard of about 3.5. Thereafter,
the subjects with vascular dementia experienced lower mortality rate as the
curve was outstripped by possible Alzheimer’s at around month 170 and later
by probable Alzheimer’s at the end. The NPMLE of probable Alzheimer’s stood
at last for almost first 200 months. The slope of the curve indicated cases in this
group had the least mortality rate for 190 months when there was a substantial
rise possibly because of natural causes of death in higher ages. Turning to the
NPMLEs of the survival function, the overall trends of the estimated survival
chance were aligned with those of the hazard rates. In spite of variations in first
months, the probable and possible Alzheimer’s had the respective first and sec-
ond highest survival chance throughout the period of dementia, while vascular
dementia had the least survival probability among these groups.

Figure 7 illustrates the NPMLEs along with the 95% confidence bands esti-
mated for the cumulative hazard function and the survival function on CSHA
on dementia including all subgroups. According to the hazard function diagram
(left), the hazard rate were the lowest during the first 20 months after the on-
set of dementia. Afterwards, the hazard rate increased significantly and stood
at the same level for the next 125 months as the slope of the curve remained
almost constant in this period. After that, those subjects surviving roughly 145
months after the diagnosis of dementia, had experienced lower mortality rate
until the month 180, approximately, when the hazard rate abruptly and dra-
matically increased. This was understandable to see the effect of the natural
causes of demise due to aging in subject who survived beyond a certain point.
Despite variations, this trend remained unchanged until the end. Considering
the survival function diagram (right), the survival chance for subjects declined
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Fig 7. 95% Confidence band and the NPMLE of the cumulative hazard function (left) and
the survival function (right) for cases with dementia studied in CSHA after adjustment for
length-bias: Confidence bands.

slowly for the first roughly 20 month before dropping sharply over the next
more than 50 months. That was followed by a gradual fall until the end, hitting
zero at about month 220. Furthermore, by locating the points on the NPMLE
of survival curve intersecting lines survival probability (p) equal to 0.75, 0.5
and 0.25, we found the corresponding quartiles. According to our calculations,
25% of the cases at least died during the first 25.4 months after diagnosis with
dementia (q1 = 25.4), while only almost the same share of subject survived be-
yond 76 months (q3 = 76). The second quartile, also known as the median of
the sample, was equal to q2 = 46.6 months. The confidence band for the haz-
ard function widened steadily as the time increased, while that for the survival
function dropped gradually. That was predictable because as the number of sur-
vivors decreases over time, the hazard rate vary more by each death observed,
leading the variance of the NPMLE of the hazard function to grow.

The confidence bands presented in Figure 7 provide us with interval estima-
tions for the lines θ1 and θ2. That in return may be applied to carry out the
hypothesis tests H0 : θ1 = θ1

0 and H0 : θ2 = θ2
0 at the 5% significance level, for

the Canadian elderly population with dementia. The confidence bands enable us
to draw comparison between progression of dementia in different populations or
to identify disease risk factors and assess the interventions in follow-up studies.

Figure 8 graphically presents 95% confidence bands for subjects in two sepa-
rate groups of dementia, Alzheimer’s disease and vascular dementia. The figure
also illustrates confidence bands for Alzeimer’s cases compartmentalised accord-
ing to the clinical diagnoses of probable Alzheimer’s and possible Alzheimer’s.
Comparing the NPMLE and the band for Alzheimer’s with those for vascular
dementia, the cases in the latter were revealed to experience a dramatically
higher mortality rate. Accordingly, while the curve for cases with vascular de-
mentia reached a peak of above 3.5 cumulative risk about 140 months after the
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Fig 8. 95% Confidence bands of the hazard functions for CSHA subjects from two main groups
of dementia, Alzheimer’s Disease.

diagnosis, that for the subjects with dementia gradually increased, hitting the
same high after 175 months approximately. Then, although the hazard rate for
vascular dementia decreased considerably, the curve for Alzheimer’s continued
the same trend for another 20 months before showing a remarkable increase in
mortality rate for cases surviving beyond nearly 195 months due probably to
the natural causes of death.

10. Proofs

To study the asymptotic behavior of the cumulative hazard function, the fol-
lowing representations are required. For any x ∈ [0, tk),

Λ̂(x) − Λ(x) =
∫ x

0

(
Ĝ−G

)
(dt)

t
∫∞
t

s−1Ĝ(ds)
−
∫ x

0

∫∞
t

s−1
(
Ĝ−G

)
(ds)∫∞

t
s−1Ĝ(ds)

Λ(dt). (14)
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Also, for any x ∈ [0, τ),

Λ̂(x) − Λ(x) =
∫ x

0

(
Ĝ−G

)
(dt)

t
∫∞
t

s−1G(ds)
−
∫ x

0

∫∞
t

s−1
(
Ĝ−G

)
(ds)∫∞

t
s−1G(ds)

Λ̂(dt). (15)

Proof of Theorem 1. In view of (15), it is obtained by employing integration by
parts for any arbitrary x ∈ [0, τ) that∣∣∣Λ̂(x) − Λ(x)

∣∣∣ ≤ J1n(x) + J2n(x) + J3n(x). (16)

where

J1n(x) =

∣∣∣∣∣∣∣
∫ x∧γn1,n2

0

(
Ĝ−G

)
(dt)

t
∫∞
t

s−1G(ds)

∣∣∣∣∣∣∣ ,

J2n(x) =

∣∣∣∣∣∣∣
∫ x

γn1,n2

(
Ĝ−G

)
(dt)

t
∫∞
t

s−1G(ds)
I[γn1,n2 ,τ)(x)

∣∣∣∣∣∣∣
and

J3n(x) =

∣∣∣∣∣∣∣
∫ x

0

⎛
⎜⎝ t−1

(
Ĝ(t) −G(t)

)
+
∫∞
t

(
Ĝ(s) −G(s)

)
d
( 1
s

)
∫∞
t

s−1G(ds)

⎞
⎟⎠ Λ̂(dt)

∣∣∣∣∣∣∣ .
To deal with J1n(x), we have

J1n(x) ≤
∣∣∣∣∣
∫ γn1,n2

0

μX′G(dt)
t
(
1 − FX′(t)

)
∣∣∣∣∣ ≤ FX′(γn1,n2)

1 − FX′(γn1,n2)
.

Turning to J2n(x), it is derived that

J2n(x) ≤
∣∣∣∣∣ Ĝ(x) −G(x)
x
∫∞
x

s−1G(ds)
I[γn1,n2 ,τ)(x)

∣∣∣∣∣+
∣∣∣∣∣ μX′G(γn1,n2)
γn1,n2

(
1 − FX′(γn1,n2)

)
∣∣∣∣∣

+

∣∣∣∣∣∣∣
∫ x

γn1,n2

∣∣∣Ĝ(t) −G(t)
∣∣∣∫∞

t
s−1G(ds)

d

(
1
t

)
I[γn1,n2 ,τ)(x)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∫ x

γn1,n2

∣∣∣Ĝ(t) −G(t)
∣∣∣

t2
(∫∞

t
s−1G(ds)

)2G(dt)I[γn1,n2 .τ)(x)

∣∣∣∣∣∣∣∣
≤

∥∥∥Ĝ−G
∥∥∥

[0,τ)

(
I[0,τ)(x)

1 −G(x)

){
2τ + 1
γn1,n2

+ ‖Λ‖[0,τ)

}
.
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To deal with J3n(x), we need to prove the following relation in advance∣∣∣∣∣
∫∞
x

t−1(G− Ĝ)(dt)∫∞
x

t−1Ĝ(dt)

∣∣∣∣∣ ≤ 2
(
τ − γn1,n2

γn1,n2

)∣∣∣∣∣I[γn1,n2 ,tk)(x)
1 − Ĝ(x)

∣∣∣∣∣ ‖Ĝ−G‖[0,τ)

+ τ

⎧⎪⎪⎨
⎪⎪⎩
∣∣∣∣
∫ γn1,n2

x

1
t
G(dt)

∣∣∣∣+
∣∣∣∣∣∣∣
∫∞
γn1,n2

t−1
(
Ĝ−G

)
(dt)

1 − Ĝ(x)

∣∣∣∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭ I[0,γn1,n2 )(x)

≤ τ

(
FX′(γn1,n2)

μX′

)
+ 2
(
τ − γn1,n2

γn1,n2

)∣∣∣∣∣ I[0,tk)(x)
1 − Ĝ(x)

∣∣∣∣∣ ‖Ĝ−G‖[0,τ). (17)

Given the definition of J3n(x), it can be shown that

J3n(x) ≤τI[0,tk)(x)
∫ x

0

⎛
⎜⎝ t−1

∣∣∣Ĝ(t) −G(t)
∣∣∣+∫∞

t

∣∣∣Ĝ(s)−G(s)
∣∣∣ s−2ds

t
∫∞
t

s−1G(ds)
(
1 − Ĝ(t)

)
⎞
⎟⎠Ĝ(dt)

+τI[tk,τ)(x)

×
∫ x

0

⎛
⎜⎝ t−1

∣∣∣Ĝ(t) −G(t)
∣∣∣+ ∫∞

t

∣∣∣Ĝ(s) −G(s)
∣∣∣ s−2ds

t
∫∞
t

s−1Ĝ(ds)
(
1 −G(t)

)
⎞
⎟⎠ I[0,tk)(t)Ĝ(dt)

≤ τ‖Ĝ−G‖[0,τ)

(
I[0,tk)(x)
1 − Ĝ(x)

)∫ x

γn1,n2

2
t2
∫∞
t

s−1G(ds)
Ĝ(dt)

+τ‖Ĝ−G‖[0,τ)

(
I[tk,τ)(x)
1 −G(x)

)∫ x

0

2I[0,tk)(t)
t2
∫∞
t

s−1Ĝ(ds)
Ĝ(dt)

≤ 2τ
‖Ĝ−G‖[0,τ)

γn1,n2

(
I[0,tk)(x)
1 − Ĝ(x)

)⎧⎪⎪⎨
⎪⎪⎩
∣∣∣∣∣∣∣
∫ x

γn1,n2

(
Ĝ−G

)
(dt)

t
∫∞
t

s−1G(ds)

∣∣∣∣∣∣∣+ Λ(x)

⎫⎪⎪⎬
⎪⎪⎭

+τ‖Ĝ−G‖[0,τ)

(
I[tk,τ)(x)
1 −G(x)

)

×
∫ x

0

2I[0,tk)(t)
t2
∫∞
t

s−1G(ds)

(
1 +

∫∞
t

s−1(G− Ĝ)(ds)∫∞
t

s−1Ĝ(ds)

)
Ĝ(dt)

≤ 2τ
‖Ĝ−G‖[0,τ)

γn1,n2

(
I[0,tk)(x)
1 − Ĝ(x)

){
‖J2n‖[0,τ) + ‖Λ‖[0,τ)

}

+2τ
‖Ĝ−G‖[0,τ)

γn1,n2

(
I[tk,τ)(x)
1 −G(x)

)⎧⎪⎪⎨
⎪⎪⎩
∣∣∣∣∣∣∣
∫ x

γn1,n2

(
Ĝ−G

)
(dt)

t
∫∞
t

s−1G(ds)

∣∣∣∣∣∣∣+ Λ(x)

⎫⎪⎪⎬
⎪⎪⎭

×

⎛
⎝1 +

∥∥∥∥∥
∫∞
x

t−1(G− Ĝ)(dt)∫∞
x

t−1Ĝ(dt)

∥∥∥∥∥
[0,τ)

⎞
⎠
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≤ 2τ
‖Ĝ−G‖[0,τ)

γn1,n2

(
I[0,tk)(x)
1 − Ĝ(x)

+
(
1 + o(1)

) I[tk,τ)(x)
1 −G(x)

)

×
{
‖J2n‖[0,τ) + ‖Λ‖[0,τ)

}
a.s.,

where the last inequality is obtained by using (17). Considering (16), it is easy
now to check that for any b ∈ J

‖Λ̂ − Λ‖[0,b] ≤ ‖J1n‖[0,b] + ‖J2n‖[0,b] + ‖J3n‖[0,b]. (18)

Following that, owing to Theorem 1 of [8] alongside (16)–(18), it is obtained for
any b ∈ [0, τ) and b ∈ J that

‖Λ̂ − Λ‖[0,b] = sup
0≤x≤b

∣∣∣Λ̂(x) − Λ(x)
∣∣∣ a.s.−→ 0.

Moreover, it is derived for any b ∈ J and b ≤ τ − ε that, if assumption (A1)
holds,

‖Λ̂ − Λ‖[0,b] = O

(
FX′(γn1,n2)

1 − FX′(γn1,n2)
+ γ−1

n1,n2

√
log logn

n

)
a.s.

Accordingly, it is seen that under assumption (A2)

‖Λ̂ − Λ‖[0,b] = O

(√
log logn

n

)
a.s.,

where b ∈ J and b ≤ τ − ε, and thus the desired results are concluded.

Proof of Theorem 2. Considering (14), it is obtained by using Theorem 1 that

Λ̂(x) − Λ(x) =
(
1 + op(1)

) ∫ x

0

(
Ĝ−G

)
(dt)

t
∫∞
t

s−1G(ds)

−
∫ x

0

∫∞
t

s−1
(
Ĝ−G

)
(ds)∫∞

t
s−1Ĝ(ds)

Λ(dt). (19)

uniformly over [0, b], where b ∈ J . To prove Theorem 2, we investigate the
limiting behavior of the right side of (19) in two separate parts. As for the first
part, let define the operator P1 : D0[γ,∞] → D0[γ,∞] with representation

P1(f)(x) := f(x)
x

−
∫ ∞

0
f(t)I[γ,x)(t)d

(
1
t

)
−
∫ ∞

0

f(t)I[γ,x)(t)
t2
∫
s≥t

s−1G(ds)
G(dt),

where f ∈ D0[γ,∞]. P1 can be derived to be a bounded linear operator. To
show that,

‖P1‖ = sup
f :‖f‖≤1

‖P1(f)‖[γ,∞] ≤
{

2
γ

+ Λ(τ)
γ

}
< ∞,
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and so P1 is a bounded linear operator. As a consequence, by substituting
μX′Bn/

(
1 − F (·)

)
for f in P1 and employing Theorem 2 of [8], it is reached

through integration by parts that∫ ∞

0
I1
x(t, t)Bn(dt) W−→

∫ ∞

0
I1
x(t, t)B(dt), (20)

where Bn and B where defined in Section 2.2.
Turning to the second part of the proof, let define the linear operator P2 such

that P2 : D0[γ,∞] → D0[γ,∞] with representation

P2(f)(x) :=
∫ ∞

0
Hx(t)f(dt),

where f ∈ D0[γ,∞] and Hx is presented by

Hx(t) := 1
t
I[x,τ)(t).

It then follows that

sup
γ≤x≤a

∣∣∣∣
∫ ∞

0
Hx(t)f(dt)

∣∣∣∣ ≤ sup
γ≤x≤a

∣∣Hx(t)f(t)
∣∣+ sup

γ≤x≤a

∫ ∞

0

∣∣∣∣Hx(t)f(t)
t

∣∣∣∣ dt
≤

{
sup

γ≤x≤a

∣∣Hx(t)
∣∣+ sup

γ≤x≤a

∫ ∞

0

∣∣∣∣Hx(t)
t

∣∣∣∣ dt
}
‖f‖[0,b].

Accordingly,

‖P2‖ = sup
f :‖f‖≤1

‖P2(f)‖[γ,∞]

≤
{

sup
γ≤x≤a

∣∣Hx(t)
∣∣+ sup

γ≤x≤a

∫ ∞

0

∣∣∣∣Hx(t)
t

∣∣∣∣ dt
}

< ∞, (21)

that implies that P2 is a bounded linear operator. On the other hand, given
Theorem 3, we have ∣∣∣μ̂−1

X′ Ŝ(·)
∣∣∣ P−→

∣∣∣μ−1
X′S(·)

∣∣∣ (22)

uniformly over [0, b], where b ∈ J . Hence, (21) and (22) together imply that

gn
W−→ g in D0[0, b], (23)

where b ∈ J ,
gn(x) := μ̂X′

Ŝ(x)

∫ ∞

0
Hx(t)Bn(dt)

and
g(x) = μX′

S(x)

∫ ∞

0
Hx(t)B(dt).
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Additionally, consider P3 : D0[γ, τ ] → D0[γ, τ ] such that

P3(f)(x) :=
∫ ∞

0
f(t)I[0,x)(t)Λ(dt),

and f ∈ D0[γ, τ ]. It is apparent that ‖P3‖ ≤ ‖Λ‖[0,τ ], and so P3 is also a bounded
linear operator. Following that, let identify f with gn in P3. Then, given (23),
it is observed that

P3 (gn) W−→ P3 (g) in D0[γ, b], (24)

where b ∈ J . Given (19), (20) and (24), it is revealed by means of integration
by parts that

U1
n

W−→ U1 in D0[γ, b],

where b ∈ J and U1 is defined in Theorem 2, and so the desired result is
achieved.

Remark 1. It was possible to use the Hadamard differentiability we prove latter
in this section or apply G-Dosker classes given in [33] to prove the weak conver-
gence presented in Theorem 2. However, such methods could not prove the weak
convergence over the whole interval that the distribution function defined on.
Also, the P-Glivenko-Cantelli classes could be applied to prove uniform strong
consistency presented in Theorem 1. However, it would not prove result over the
whole interval [0, τ).

Proof of Theorem 3. To prove the strong uniform consistency of Ŝ, it is derived
under assumption (A1) for any x ∈ [0, τ) that
∣∣∣Ŝ(x) − S(x)

∣∣∣ ≤
∣∣∣∣
∫ ∞

x

μX′

t

(
Ĝ−G

)
(dt)
∣∣∣∣+
∣∣∣∣Ŝ(x)

∫ ∞

0

μX′

t

(
Ĝ−G

)
(dt)
∣∣∣∣

≤
(
1 + I[0,γn1,n2 ](x)

){
FX′(γn1,n2) + 2μX′

‖Ĝ−G‖[0,τ)

γn1,n2

}

+I[γn1,n2 ,τ)(x)2μX′
‖Ĝ−G‖[0,τ)

γn1,n2

. (25)

Accordingly, the desired result is concluded from (25) along with Theorem 1 of
[8].

Proof of Theorem 4. Let Dφ1 denote the set of all nondecreasing cadlag func-
tions f̄ : [0, η] → R with f̄(0) = 0 and 1 − f̄(η) ≥ ε > 0 for some ε > 0. Under
assumption (A2), we initially show that the map φ1 : Dφ1 ⊂ D0[0, η] → D0[0, η]
that is defined by φ1(G) = θ1 in Section 4 is Hadamard differentiable. For this
purpose, it is sufficient to prove the Hadamard differentiablity of the following
maps:

G → FX′ → (FX′ , 1 − FX′) →
(
FX′ ,

1
1 − FX′

)
→
∫ η

0

dFX′

1 − FX′
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Given the inverse of the representation (4), the Hadamard differentiablity of the
first map can be shown under the assumption (A1). The differentiablity of the
second and third maps is easy to prove, while that for the last map follows from
Lemma 20.10 of [34]. By definition of θ1, the Hadamard differentiablity of φ1 is
inferred by using the chain rule along with differentiablity of the each of the for
maps given above.

Turning to θ2, let Dφ2 denote the set of all nondecreasing cadlag functions
f̄ : [0, τ ] → [0, 1] with f̄(0) = 0 and f̄(τ) = 1. Recall the map φ2 which was
defined by φ2(G) = θ2 in Section 4. The Hadamard differentiablity of the map
φ2 : Dφ2 ⊂ D0[0, τ ] → D0[0, τ ] under assumption (A2) is derived using analogous
arguments to those used in the above paragraph:

G → 1 − FX′ .

Hence, it is proved that θ̂i = φi(Ĝ) for i = 1 and 2, are two Hadamard differen-
tiable maps of the Vardi estimators Ĝ on the respective domains [0, η] and [0, τ ].
Following that, by employing Theorem 25.47 of [34], the proof is complete.

Proof of Theorem 5. Owing to the fact that σi
n is uniformly a strong consistent

estimator of σi, the desired result for i = 1 is achieved by Theorem 2 in this
paper along with Theorem 18.10 of [34]. Given (10), an analogous argument can
be used to prove the theorem for i = 2.

Proof of Corollary 1. Given Theorem 5 along with the definition of Si(x0, θ
i(x0))

and σi(x0), it is apparent Si(x0, θ
i(x0)) follows the standard normal distribu-

tion.

Proof of Theorem 6. To prove this theorem, we need the following representa-
tion. ∣∣∣V̂ (x) − V (x)

∣∣∣ := ∣∣∣∣(p̂1/2 − p1/2
)
B1

(
ĜU (x)

)∣∣∣∣
+

∣∣∣∣∣p1/2
[
B1

(
ĜU (x)

)
−B1

(
GU (x)

)]∣∣∣∣∣
+ (1 − p)1/2

[(
1 − p̂

1 − p

)1/2

f̂r(x) − fr(x)
]∫

0<t≤x

B2

(
ĜC(t)

)
d

1
f̂r(t)

+ (1 − p)1/2 fr(x)

⎧⎨
⎩
∫

0<t≤x

B2

(
ĜC(t)

)
d

[
1

f̂r(t)
− 1

fr(t)

]

+
∫

0<t≤x

[
B2

(
ĜC(t)

)
−B2

(
GC(t)

)]
d

1
fr(t)

}

+
[(

p̂

1 − p̂

)1/2
−
(

p

1 − p

)1/2
](

ĜU (x) − Ĝ(x)
)
Z

+
(

p

1 − p

)1/2 [(
ĜU (x) −GU (x)

)
−
(
Ĝ(x) −G(x)

)]
Z. (26)
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Using Glivenko–Cantelli lemma, it is easy to check that ĜU and ĜC are uniformly
consistent estimators of the respective distribution functions GU and GC . It is
then proved through Theorem 1.4.1 of [12] that, as n → ∞,∥∥∥B1(ĜU ) −B1(GU )

∥∥∥
[0,b]

a.s.−→ 0. (27)

and ∥∥∥B2(ĜC) −B2(GC)
∥∥∥

[0,b]

a.s.−→ 0. (28)

Given (26), the proof is completed by employing (27) and (28) along with the
uniformly strong consistency of the estimators Ĝ, f̂r, ĜU , ĜC , and the strong
consistency of p̂ for G, fr, GU , GC , and p, respectively.

Proof of Theorem 7. To show that ĝ is a uniformly consistent estimator of g,
we need to define the following density function first,

gK(x) := 1
h

∫ ∞

0
K

(
x− t

h

)
G(dt).

The kernel density estimator ĝ is proved to be a uniformly consistent estimator
of gK . For this aim, we have

∣∣ĝ(x) − gK(x)
∣∣ =

∣∣∣∣∣ 1h
∫ ∞

0

(
Ĝ(t) −G(t)

)
dK

(
x− t

h

)∣∣∣∣∣
≤ ‖Ĝ−G‖[0,τ ]VK ,

and hence, as n −→ ∞,
‖ĝ − gK‖[0,τ ]

a.s.−→ 0. (29)
Besides, considering the continuity, and thus the uniform continuity, of the den-
sity function g on [0, τ ], the dominated convergence theorem can be applied to
derive that, as n −→ ∞,

‖gK − g‖[0,τ ]
a.s.−→ 0. (30)

The proof is therefore completed by having (29) and (30).

In order to prove Theorem 8, we need to present the following lemmas first.
The first lemma shows that F̂ is a bounded and invertible linear operator with
a bounded inverse.

Lemma 1. If b ∈ J , then for all sufficiently large enough n,

i) F̂ is a bounded linear operator on D0[0, b] such that

‖F̂‖ ≤ 1 a.s.

ii) F̂ , under the conditions of Theorem 7, is an invertible linear operator on
D0[0, b] with

‖F̂−1‖ ≤ (2/α(b) − 1/(1 − β))
1 − 2(2/α(b) − 1/(1 − β))β a.s.,

where β and the function α are defined in Section 2.3.
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Proof. i) First, let define α̂(x) := (1− β̂)I[0,t1](x)+I[t1,tk](x)p̂ĝU (x)/ĝ(x). Then,

∣∣α̂(x) − α(x)
∣∣ ≤
∣∣∣∣∣(p̂− p)g

U (x)
g(x)

(
g(x) − ĝ(x)

ĝ(x) + 1
)

×
(
ĝU (x) − gU (x)

gU (x) + 1
)
I[t1,tk](x)

+ p
gU (x)
g(x)

⎡
⎣(g(x) − ĝ(x)

ĝ(x) + 1
)(

ĝU (x) − gU (x)
gU (x) + 1

)
I[t1,tk](x) − 1

⎤
⎦
∣∣∣∣∣∣

+
∣∣∣(1 − β̂) − α(x)

∣∣∣ I[0,t1](x).

Given the uniform consistency of ĝU and ĝ in Theorem 7, it is revealed that

‖α̂− α‖[0,b]
a.s.−→ 0,

as n → ∞, where b ∈ J . Besides,

Ĝ1 (u) (x) =
∫

0<y≤x

α̂(y)u(dy).

Since ĝ and ĝU are functions of bounded variations and always positive on the
domin of α̂, it is then resulted that α̂ is also a function of bounded variations.
Given that α̂ is a uniform consistent estimator of α, using integration by parts,
we have for sufficiently large n that

‖Ĝ1‖ ≤ (1 − β) a.s.

On the other hand, it can be shown by employing the integration by parts that

∣∣∣Ĝ2(u)(x)
∣∣∣ =(1 − p̂)

∣∣∣∣∣∣
∫

0<z≤x

(
1 − f̂r(x)

f̂r(z)

)(∫
z≤s

u(s)
s2 ds

)
ĝC(z)
f̂r(z)

dz

+
∫

0<z≤x

(
1 − f̂r(x)

f̂r(z)

)
ĝC(z)
f̂r(z)

(
u(z)
z

)
dz

∣∣∣∣∣∣
≤
(

1 − p̂

1 − p

)∥∥∥∥∥∥1 +
(
fr − f̂r

f̂r

)∥∥∥∥∥∥
[0,∞]

∥∥∥∥∥∥1 +
(
ĝC − gC

gC

)∥∥∥∥∥∥
[0,∞]

‖u‖[0,∞]

×

∣∣∣∣∣∣β + (1 − p)
∫

0<z≤x

z

(∫
z≤s

1
s2 ds

)
d

⎡
⎣(1 − f̂r(x)

f̂r(z)

)
gC(z)
fr(z)

⎤
⎦
∣∣∣∣∣∣ .

Hence, considering the uniformly strong consistency of f̂r and ĝC , it is derived
for sufficiently large n that

‖Ĝ2‖ ≤ 2β a.s.
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which completes the proof of part i).
ii) Turning to the second part of the lemma, we have

Ĝ−1
1 (u) (x) =

∫
0<y≤x

I[0,tk](y)
α̂(y) u(dy).

In consequence, it is derived under the conditions of Theorem 7 via Theorem C
of [30] and an argument similar to that used in i) that, for sufficiently large n,

‖Ĝ−1
1 ‖ ≤

(
2

α(b) − 1
1 − β

)
a.s.

Note that L(D0[0, b],D0[0, b]) is a Banach algebra, and thus F̂ is invertible
almost surely for large n. Actually,

F̂ = Ĝ1(I + Ĝ−1
1 Ĝ2)

and hence
F̂−1 = (I + Ĝ−1

1 Ĝ2)−1Ĝ−1
1 .

It is then follows for sufficiently large n that

‖F̂−1‖ ≤ ‖(I + Ĝ−1
1 Ĝ2)−1‖‖Ĝ−1

1 ‖
≤ (2/α(b) − 1/(1 − β))

1 − 2β(2/α(b) − 1/(1 − β)) , a.s.

Lemma 2. Suppose that b ∈ J , it is then derived for sufficiently large n that

‖F̂−1 −F−1‖ a.s.−→ 0.

Proof. On the one hand, we have

∣∣∣Ĝ1 (u) (x) − G1 (u) (x)
∣∣∣ =
∣∣∣∣∣
∫

0<y≤x

α̂(y)u(dy) −
∫

0<y≤x

α(y)u(dy)

∣∣∣∣∣
≤‖u‖[0,∞]

∣∣α̂(x) − α(x)
∣∣+
∣∣∣∣∣
∫

0<y≤x

u(y) (α− α̂) (dy)

∣∣∣∣∣ .
Given the characteristics of both α and α̂, it is obtained that

‖Ĝ1 − G1‖ a.s.−→ 0. (31)

Besides, it is derived that

∣∣∣Ĝ2(u)(x)−G2(u)(x)
∣∣∣≤|p− p̂|

∣∣∣∣∣∣
∫

0<z≤x

(
1− f̂r(x)

f̂r(z)

)(∫
z≤s

u(s)
s2 ds

)
ĝC(z)
f̂r(z)

dz

+
∫

0<z≤x

(
1 − f̂r(x)

f̂r(z)

)
ĝC(z)
f̂r(z)

(
u(z)
z

)
dz

∣∣∣∣∣∣
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+(1 − p)

∣∣∣∣∣∣
∫

0<z≤x

(∫
z≤s

u(s)
s2 ds

)(
fr(x)
fr(z)

− f̂r(x)
f̂r(z)

)
gC(z)
fr(z)

dz

+
∫

0<z≤x

(
fr(x)
fr(z)

− f̂r(x)
f̂r(z)

)
gC(z)
fr(z)

(
u(z)
z

)
dz

∣∣∣∣∣∣
+(1 − p)

∣∣∣∣∣∣
∫

0<z≤x

(∫
z≤s

u(s)
s2 ds

)(
1 − f̂r(x)

f̂r(z)

)[
ĝC(z)
f̂r(z)

− gC(z)
fr(z)

]
dz

+
∫

0<z≤x

(
1 − f̂r(x)

f̂r(z)

)[
ĝC(z)
f̂r(z)

− gC(z)
fr(z)

](
u(z)
z

)
dz

∣∣∣∣∣∣
≤

⎡
⎢⎣
∣∣∣∣p− p̂

1 − p̂

∣∣∣∣ ‖Ĝ2‖ + (1 − p)

⎛
⎝β‖S − Ŝ‖[0,∞] +

∥∥∥∥∥ ĝ
C

f̂r
− gC

fr

∥∥∥∥∥
[0,∞]

⎞
⎠
⎤
⎥⎦ ‖u‖[0,∞].

Following that, we have
‖Ĝ2 − G2‖ −→ 0. (32)

Given (31) and (32), it is derived that

‖F̂ − F‖ −→ 0. (33)

Furthermore, it is concluded using Proposition 2.3 on Page 11 of [46] that

‖F̂−1 −F−1‖ ≤ 2‖F‖2‖F̂ − F‖.

The above representation along with (33) and Lemma 1 complete the proof.

Given Lemma 1 and 2, we can now present the proof of Theorem 8.

Proof of Theorem 8. To prove this theorem, it can be shown that

‖F̂−1(V̂ ) −F−1(V )‖[0,b] ≤
∥∥∥F̂−1

∥∥∥ ‖V̂ − V ‖[0,b] +
∥∥∥F̂−1 −F−1

∥∥∥ ‖V ‖[0,b].

Given the above inequality, the proof is therefore completed by employing
Lemma 1 and 2, along with Theorem 6.
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