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Abstract

In water resource studies, long-term measurements of river streamflow are essential.

They allow us to observe trends and natural cycles and are prerequisites for hydraulic

and hydrology models. This paper presents a new application of the stage-discharge

rating curve model introduced by Maghrebi et al. (2016) to estimate continuous

streamflow along the Gono River, Japan. The proposed method, named single stage-

discharge (SSD) method, needs only one observed data to estimate the continuous

streamflow. However, other similar methods require more than one observational

data to fit the curve. The results of the discharge estimation by the SSD are com-

pared with the improved fluvial acoustic tomography system (FATS), conventional

rating curve (RC), and flow-area rating curve (FARC). Some statistical indicators, such

as the coefficient of determination (R2), root mean square error (RMSE), percent bias

(PBAIS), mean absolute error (MAE), and Kling-Gupta efficiency (KGE), are used to

assess the performance of the proposed model. ADCP data are used as a benchmark

for comparing four studied models. As a result of the comparison, the SSD method

outperformed of FATS method. Also, the three studied RC methods were highly

accurate at estimating streamflow if all observed data were used in calibration. How-

ever, if the observed data in calibration was reduced, the SSD method by R2 = 0.99,

RMSE = 2.83 (m3/s), PBIAS = 0.715(%), MAE = 2.30 (m3/s), and KGE = 0.972

showed the best performance compared to other methods. It can be summarized that

the SSD method is the feasible method in the data-scarce region and delivers a

strong potential for streamflow estimation.
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1 | INTRODUCTION

In river management, obtaining continuous streamflow estimation is

critical since extremely high flows can cause erosion and flood dam-

age (Muste, Ho, & Kim, 2011). Shallow flows, on the other hand, can

affect water quality, harm fish, and reduce human access to water.

Moreover, hydrological models need accurate river flow data to

improve and provide credible predictions. As a result, it is crucial to

establish a method or technology for measuring or estimating

discharge. The stage-discharge rating curve is a simple and common

indirect river flow estimation method (Ocio, Le Vine, Westerberg,

Pappenberger, & Buytaert, 2017). This method can estimate the dis-

charge at high levels using low-level data (especially in poorly gauged

catchments). Rating curves are recommended because direct mea-

surements of high flows are complicated and costly (Clarke, 1999).

Among the different methods for estimating rating curves, the

method with the most accuracy and the least need for observational

data is more valuable.
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Several devices that aid in measuring continuous velocity and dis-

charge have been adopted, namely acoustic/ultrasonic velocity meters

(AVMs/UVMs) and horizontal acoustic Doppler current profilers (H-

ADCPs). AVMs/UVMs, based on the travel time method, can produce

accurate mean velocity measurements along diagonally crossing path-

ways in a channel (Kawanisi, Razaz, Ishikawa, Yano, &

Soltaniasl, 2012). Also, H-ADCPs are increasingly being established

for continuous river monitoring (Cheng et al., 2019). The accuracy of

velocities and discharges given by the H-ADCP placed at the Saint-

Georges gauging station was evaluated in the field by Le Coz, Pierre-

feu, and Paquier (2008). In that study, comparing the H-ADCP veloc-

ity measurements with ADCP data indicated that the measures were

only reliable at near-field distances (60 m out of a 95 m

section width). ADCPs are acoustic instruments that measure the

velocity by the reflection of the sound of a moving particle with a cur-

rent (Gordon, 1989).

Improved streamflow measurements have resulted from the

development of various techniques. For example, Kawanisi et al.

(2012) used the fluvial acoustic tomography system (FATS). This inno-

vative system can detect cross-sectional average velocity and dis-

charges with high frequency to take long-term observations in a

mountainous river. FATS uses the same fundamental principle as

AVMs, based on the “time-of-travel” method. The acoustic signals of

FATS are transmitted via omnidirectional transducers at 10–55 kHz,

with a reciprocal sound transfer between two acoustic stations

located on either side of the river (Kawanisi, Al Sawaf, &

Danial, 2018). FATS, which consists of a pair of transducers, is a low-

cost device that can measure cross-sectional average velocity without

requiring complex postprocessing.

Establishing a stage-discharge relationship (rating curve,

e.g., Herschy, 2009) to convert continuously recorded water levels

into discharge time series is the most popular and easiest way of mon-

itoring streamflow at a gauging station. The power function is a

unique function commonly utilized as a rating curve in river hydraulics

(e.g., Di Baldassarre & Montanari, 2009). It should be noted that this

approach is only viable if the flow is steady; for unstable flows, which

are common in natural streams, this approach is unsatisfactory and

introduces a significant source of errors.

There are several methods for establishing a rating curve. For

example, Manfreda et al. (2020) proposed a new method to exploit

cross-sectional geometry to derive more robust flow rating curves.

Flow velocity and wetted cross-section functions are used in the pro-

posed procedure to estimate flow rating curves. This method may be

suitable as an alternative to the conventional method of determining

rating curves. The results showed that the new approach becomes

advantageous with limited observations.

Studies have been conducted on estimating the stage-discharge

rating curve through data-driven and machine-learning methods. For

example, Sivapragasam and Muttil (2005) suggested using a support

vector machine (SVM) to extrapolate rating curves. They showed that

SVM is better suited for extrapolation than artificial neural networks

(ANNs). Bhattacharya and Solomatine (2000) used ANNs widely used

in various water-related research areas to define stage-discharge

relations. They demonstrated that using ANN is superior to the con-

ventional statistical stage-discharge model. Ghorbani, Khatibi, Goel,

FazeliFard, and Azani (2016) examined the performance of SVM,

ANN, RC, and multiple linear regressions (MLR) in estimating river dis-

charge time series. Various performance measures have been used to

evaluate the results, indicating that SVM and ANN perform better

than conventional RC and MLR models. Compared to RC and MLR,

SVM and ANN predict peak values with greater reliability. In practice,

however, these conventional models perform well for many problems.

The utility of the fuzzy neural network modeling method in deter-

mining the stage-discharge relationship was investigated by Deka and

Chandramouli (2003). They also showed that the fuzzy neural network

model's performances were better than the neural network model and

conventional rating curve approach. Shukla et al. (2022) evaluated

adaptive neuro-fuzzy inference systems (ANFIS), ANN, and wavelet-

based artificial neural networks (WANN) for estimating discharge.

They found that ANFIS outperformed ANN- and WANN-based dis-

charge estimation models. All the papers that used machine learning

methods needed a lot of measured discharge data to model the rating

curve. Therefore, in this paper, these methods are not used because

they are not feasible in data-scarce regions.

A model that could estimate the stage-discharge rating curve in

open channels and rivers was proposed by Maghrebi, Ahmadi, Attari,

and Maghrebi (2016). In this method, each water stage and discharge

pair is considered the reference data for generating the entire stage-

discharge relationship in any desired water depth. In addition, having

geometrical and hydraulic data at different levels is necessary for esti-

mating the rating curve. Here hydraulic and statistical methods are

applied simultaneously.

This study investigates a new application of the stage-discharge

rating curve (SSD) method, introduced by Farsoudeh and Maghrebi

(2018), for continuous flow estimation. This study was carried out in

the Gono River, Japan. This research aims to evaluate the perfor-

mance of the proposed stage-discharge rating curve for estimating

continuous streamflow. Some statistical measures, including R2 (coef-

ficient of determination), root mean square error (RMSE), percent bias

(PBIAS), mean absolute error (MAE), and Kling-Gupta efficiency (KGE),

have been used to evaluate the performance of the SSD. The pro-

posed model is further evaluated compared to the FATS, power func-

tion rating curves (RC), and flow-area rating curve (FARC).

2 | MATERIALS AND METHODS

2.1 | Study area

The Gono River survey site is in Miyoshi City, Japan (see Figure 1).

The confluence of the Basen and Saijo rivers forms the Gono River.

The observation site is about 3.6 km downstream of the river conflu-

ences. The river is 115 m wide, and the slope of the bed near the

observation site is 0.11%, with a Manning roughness of 0.03 based on

the water surface profile (Al Sawaf, Kawanisi, Kagami, Bahreinimo-

tlagh, & Danial, 2017).

2 MAGHREBI ET AL.
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2.2 | Water level measurement

HOBO U20 temperature-depth loggers were mounted to the

two transducers and used to measure the water level and tem-

peratures (Kawanisi et al., 2018). Streamflow was estimated

using the cross-sectional average velocity and water level data.

The processing unit was connected to the internet to read data

in real time.

Figure 2 shows the water level data between October 30, 2015

and August 10, 2016 to estimate the hydrograph. Submersible level

transmitters collected water levels every 30 s (Acculevel ACL-10-A;

Keller America; Kawanisi et al., 2018).

F IGURE 1 Study area and experimental site: (a) map of the river network; (b) the location map shows the position of the transducers, the
acoustic Doppler current profiler transect, and the Ozekiyama gauging station; (c) stream velocity vector configuration; (d) studied cross-section.
H denotes height (stage) in m (Kawanisi et al., 2018) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Water level data from October 30, 2015 to August 10, 2016

MAGHREBI ET AL. 3
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2.3 | ADCP streamflow measurements

Streamflow data were collected utilizing a moving-boat ADCP from

July 2015 to March 2016 to get the measured discharge data. Two to

four transects were used to estimate each streamflow. ADCP mea-

surements were performed using a Workhorse Monitor ADCP

(1,228.8 kHz) or a Teledyne RDI (Poway, California) StreamPro ADCP

(2,457.6 kHz). In shallow water, the StreamPro ADCP was deployed;

the depth of the cells was 0.1 m, and the depth of the first cell was

0.19 m. The Workhorse Monitor ADCP was set up with a 0.25 m cell

size and a 0.68 m initial cell depth.

2.4 | Continuous streamflow measurement
by FATS

With the newly improved FATS frameworks, two precise timing sig-

nals are provided by GPS receivers. A timing pulse (1 Hz) ensures that

two frameworks run simultaneously. Another 10 MHz signals is

employed as the FATS base clock to transmit and receive high-

precision signals, which possess long-term frequency accuracy and

stability. These enhancements make the prior FATS system more reli-

able and run for extended periods. Obtaining automatic real-time data

flow has been made easier by integrating an automatic data transfer

function and an Internet connection (Kawanisi et al., 2018). The FATS

processing unit is also connected to water level sensors to estimate

the cross-section of the flow. As a result, flow data can be recorded

for long periods with high time resolution (at regular intervals).

Kawanisi et al. (2018) demonstrated that FATS is a practical and

powerful approach to measuring continuous streamflow at high-

frequency levels. Their paper introduced improved FATS, a method

that can be used to automatically measure streamflow for a long

period with high temporal resolution. Finally, with decreasing water

depth, the relative error in the FATS increased, and the highest error

under low-flow conditions was 14%. An advanced application of FATS

involves deploying an array of acoustic stations using different M-

sequence codes and reconstructing a depth-averaged flow velocity

distribution pattern (Razaz, Kawanisi, Kaneko, & Nistor, 2015).

A geometry view of the Gono River is shown in Figure 1d, along

with two omnidirectional transducers (T1 and T2). On December

25, 2015, the bed level between the two transducers was measured

by an autonomous unmanned boat using a single-beam echo sounder

and GPS. Although the cross-section along the transmission line is

oblique, different from that in usual discharge measurements, no fur-

ther correction is required. The choice of these sections results in a

lower error in discharge estimation because the distance is much lon-

ger and the flow velocity component along the sonar ray is smaller, so

the accuracy of measurement and estimations is increased. A slight

deviation in real-time results in a lower error rate when dealing with

large distances. Using a section perpendicular to the flow direction is

not possible in the FATS technique.

Continuous streamflow measurements were carried out using

FATS from October 30, 2015 to August 10, 2016. The Gono River

was crossed diagonally by two omnidirectional broadband transducers

(T1 and T2), as shown in Figure 1. The distance between these trans-

ducers was 294 m. Both transducers transmitted the acoustic pulses

simultaneously every 30 s. The streamflow Q is calculated as follows:

Q¼A Hð Þtanθ�um, ð1Þ

where A(H) is the cross-sectional area along the transmission line of T1–

T2 and is obtained from a stage-area relation, H is the stage, um is the

section-averaged velocity along the acoustic path, and θ is the flow

angle. As seen in Figure 1b, the angle between the ray path and the

streamline is θ. The average value of θ was approximately 15.2�

(Kawanisi, Bahrainimotlagh, Al Sawaf, & Razaz, 2016). Although the

actual cross-sectional area increased beyond the two transducers, it can

be seen from Figure 1b that the area out of the transducers is covered

with submerged weeds, algae, and moss. Hence, their contribution to dis-

charge conveyance through these areas is very much limited. Acoustic

data were collected on both sides of the river and then transferred to a

processing unit, where average velocities were computed automatically.

2.5 | Conventional RC

A stage-discharge rating curve describes a relationship between the

water level (stage) of a channel cross-section and the discharge at that

section (Herschy, 2009). As a result, it reduces the cost and time asso-

ciated with taking discharge measurements. If the discharge values

are plotted against the stages, a relationship represents the effects of

various channel parameters and flows (Ajmera & Goyal, 2012). The

power function is a simple model extensively used as a rating curve in

river hydraulics (with specific physical justifications):

Q¼ c1 h� c2ð Þc3 , ð2Þ

where Q is discharge, c1, c2, and c3 are calibration constants and h is

the water stage. The constants were estimated using the least-squares

method. In this method, at least three measured discharge data are

required.

2.6 | Flow-area rating curve

Basic streamflow monitoring involves measuring the average flow

velocity (V), typically with several distributed point measurements,

and evaluating the associated cross-sectional wetted area (A). Using

both datasets and using the averaged flow velocity as a regression

function, Manfreda (2018) proposes that the rating curve can be

determined as follows:

Q¼V Hð Þ�A Hð Þ: ð3Þ

In the equation, V and A represent the relationship between mean

flow velocity and wetted area as a function of depth (H). These

4 MAGHREBI ET AL.
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functions can be fitted using existing observations and field surveys.

The flow-area model calibrates the above functions separately and

then multiplies them to obtain the discharge. The geometric relation-

ship can be obtained using topographic surveys. Recent advances in

topographic surveys, such as modern portable GPS, laser scanners,

and photogrammetry, can be helpful for this method (Manfreda

et al., 2020).

2.7 | Proposed stage-discharge model

This study introduces a new method for estimating the rating curve

that uses hydraulic parameters and only one pair of measured dis-

charge and stage data as calibration. Although this method is more

complicated than the power function, managers and decision-makers

can use it in areas lacking measured data because only one measured

discharge data for calibration is needed. Because of this, the method

is called single stage-discharge (SSD) method. In other words, measur-

ing low-flow (low water level) data as a reference point makes it possi-

ble to estimate the high flow. The proposed method cannot be used

in ungauged basins since at least one observational data is required.

The following is how to extract the SSD model.

According to Farsoudeh and Maghrebi (2018), the discharge is a

function of the following parameters at any water level in the channel:

Q¼Aa1Pa2Pa3t Ua4
SPMn

a5Sa60 , ð4Þ

where Q is the discharge, A is the cross-sectional area, P is the wetted

perimeter of the flow section, Pt is the sum of P and the width (T) of

the water surface (Pt = P + T), n is the Manning roughness, S0 is the

bed slope, and USPM is the cross-sectional mean flow velocity in the

streamwise direction, introduced by Maghrebi (2006). a1 to a6 are the

calibration parameters.

In the field of hydraulics, Maghrebi (2006) utilized the Biot–Savart

law to quantify the impact of the wetted perimeter on the velocity at

any point on the channel cross-section. A triangular mesh was first

placed on the cross-section of the channel, as shown in Figure 3, to

determine isovel contours. The wetted perimeter was then split into

infinitesimal components ds, and the impact of ds on the velocity du

at the triangle element's centroid was determined as follows:

du¼ f rð Þ�c1 ds, ð5Þ

where c1 is a boundary roughness-dependent constant, du is velocity

deviation, and f(r) is the velocity function. Maghrebi and Ball (2006)

recommend a seventh root power-law relationship for a natural river's

velocity function. The average velocity of the cross-section (USPM) can

be determined as follows:

USPM ¼

ð
A

ð
boundry

c� r
1
7 � sinθ ds dAð

A
dA

, ð6Þ

where c is a coefficient related to the roughness of the wall, shape,

and dimensions of the cross-section, θ is the angle between

r (distance from the boundary to the desired point) and ds, and dA is

the area of each triangular mesh.

The general form of the relationship, according to Equation (4), is

as follows:

Qe

Qr
¼ Ae

Ar

� �a1 Pe
Pr

� �a2 Ptð Þe
Ptð Þr

� �a3 USPMð Þe
USPMð Þr

� �a4 ne
nr

� �a5 S0ð Þe
S0ð Þr

� �a6

: ð7Þ

Subscripts r and e stand for the referenced and estimated values,

respectively. In Equation (7), the impact of S0 is neglected in the compu-

tational process because of the remaining constant at all water stages.

The exponent a5 is adjusted to �1 to simplify and speed up the compu-

tations and reflect the inverse relationship between the discharge and

Manning's roughness. If the Manning roughness coefficient (n) is homo-

geneous, the influence of n on the computing process is ignored

because it is the same at all levels. It is significant to note that the USPM

in Equation (7) acts as the average velocity parameter. Because of the

continuity equation, its power is maintained constant, that is, a4 = 1.

Thus, it is only necessary to evaluate a1, a2, and a3. Using the multivari-

ate Newton method, the difference between the exact and estimated

values (Q, H) is minimized to optimize the values for a1, a2, and a3. The

initial step in determining exponent values is to collect data from obser-

vational (measured) and theoretical (Manning's equation) rating curves

for various cross-sections. The most authentic relationship, as shown

by Farsoudeh and Maghrebi (2018), is related to the lowest values of

the normalized root mean square error (NRMSE; Equation 8). It can be

achieved by minimizing the summation of NRMSEs for both rectangular

and compound channels, as specified below:

NRMSE¼
1
N

PN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

Qr
Ae
Ar

� �a1 Pe
Pr

� �a2 Ptð Þe
Ptð Þr

� �a3 USPMð Þe
USPMð Þr

� �1
� �

i

� Qrð Þi
� �s

Qrð Þmax � Qrð Þmin

:

ð8Þ
F IGURE 3 Effect of boundary elements on an arbitrary point at
the cross-section
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where N is the number of measured discharge data, Qr is the observa-

tional or theoretical discharge, and Qe is the estimated discharge.

After the optimization, the final relation has been suggested by Far-

soudeh and Maghrebi (2018) as follows:

Qe ¼Qr
Ae

Ar

� �0:97 Pe
Pr

� ��1:27 Ptð Þe
Ptð Þr

� �0:83 USPMð Þe
USPMð Þr

� �
: ð9Þ

In order to estimate discharge by Equation (8), all of the effective

hydro-geometric parameters are required to be calculated at all water

stages. In other words, for an arbitrary open channel, one should cal-

culate the following parameters: A = A(H), P = P(H), Pt = Pt(H), n = n

(H), and USPM = USPM(H). Furthermore, only one pair of measured dis-

charge and stage data is required to estimate the entire rating curve.

In general, the following steps should be followed to obtain the stage-

discharge rating curves:

1. The single measured discharge (reference point) is known at a

referenced water level, Hr. Any arbitrary measured discharge data

can be from the lower, middle, or upper stages.

2. The mean cross-sectional velocity USPM is calculated at the refer-

ence level and other stages (Maghrebi, 2006).

3. Geometric parameters such as A, P, Pt, and equivalent roughness

n (by the experimental equations; Vatanchi & Maghrebi, 2019) are

calculated for reference and the estimated levels.

4. Discharge can be computed by replacing the predicted values in

Equation (9).

5. The stage-discharge curve is generated by connecting the com-

puted values of Qe at various levels. Also, water level data can esti-

mate the streamflow within the desired period. Figure 4 shows the

flowchart of the proposed methodology.

As well as the homogeneous bed roughness, the steady flow con-

dition was one of the SSD model limitations. Also, in this study, the

effect of river curvature was ignored.

2.8 | Performance criteria

In order to clarification of the proposed model performance, some of

the statistical measures, including the RMSE, the R2, PBIAS, MAE, and

KGE based on the estimated discharge Qe and the measured discharge

data Qr are described as the following:

R2 ¼

PN
i¼1

Qrð Þi� Qr

	 

i

� �
Qeð Þi� Qe

	 

i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Qrð Þi� Qr

	 

i

� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Qeð Þi� Qe

	 

i

� �2s
2
66664

3
77775

2

, ð10Þ

RMSE m3=s
	 
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Qrð Þi� Qeð Þi
� �2

N

vuuut
, ð11Þ

PBIAS %ð Þ¼

PN
i¼1

Qrð Þi� Qeð Þi
� ��100

PN
i¼1

Qrð Þi
, ð12Þ

MAE m3=s
	 
¼

PN
i¼1

jQp�Qmj
N

, ð13Þ

KGE¼1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�1ð Þ2þ Qe

Qr

�1

� �2

þ CVe

CVr

� �2

vuut , ð14Þ

where Qr is the measured discharge (ADCP) as reference points, and

Qe is the estimated discharge by the proposed model, FATS, RC, and

flow area. Qr and Qe are the mean measured and estimated discharge,

respectively. r is the correlation coefficient, and CV is the coefficient

of variation.

The square root of the average square of all of the errors is called

RMSE (Elbeltagi et al., 2022). As a scalar-dependent measure of accu-

racy, RMSE can only compare prediction errors between models or

variables and not between two different variables (Singh et al., 2022).

RMSE lies between 0 to ∞.

R2 help to determine whether the estimated and observed data

are associated statistically (collinearity; Singh et al., 2022). In statistics,

R2 refers to the ratio of explained variation to total variation. Values

F IGURE 4 Flowchart of methodology
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of 0.5 or greater are generally considered acceptable; the higher the

value, the less error variance (Singh et al., 2022). It is sensitive to out-

liers and insensitive to additive and proportional differences between

observed and estimated data (Singh et al., 2022).

The optimal value of PBIAS, expressed as a percentage, is 0.0,

which indicates an accurate model. In the model, positive values indi-

cate underestimation bias, while negative values indicate overestima-

tion bias (Gupta, Sorooshian, & Yapo, 1999). In PBIAS, it is determined

whether the observed data is larger or smaller than the estimated

data; it measures the average tendency of observed data to differ

from estimated data (Gupta et al., 1999). Data deviations are reported

as a percentage by PBIAS after they have been evaluated.

In MAE, errors are measured only in magnitude, without consider-

ation of their direction. The accuracy of a model increases with

decreasing MAE. High errors caused by outliers are not penalized by

MAE (Chicco, Warrens, & Jurman, 2021). Sometimes the significant

errors coming from the outliers are treated the same as low errors.

KGE (Gupta, Kling, Yilmaz, & Martinez, 2009) is based on a

decomposition of NSE into its constitutive components (correlation,

variability bias, and mean bias) and addresses several perceived short-

comings in NSE. It is increasingly used for model calibration and evalu-

ation (Liu, 2020). KGE = 1 indicates perfect agreement between

estimations and observations, and negative KGE values indicate poor

model performance (Knoben, Freer, & Woods, 2019).

A model with a higher R2 and KGE value and lower RMSE, PBAIS,

and MAE values decree a relatively better model for streamflow esti-

mation (Vishwakarma et al., 2022).

3 | RESULTS AND DISCUSSION

This section deals with the development and results of the Gono Riv-

er's SSD, FATS, RC, and FARC methods. The qualitative performance

evaluation of the models was achieved by visual observations such as

time series and box plots, and quantitative assessments were carried

out using different statistical and hydrological performance indices.

3.1 | The application of the proposed model (SSD)
in continuous streamflow

The parameters in Equation (9) have to be estimated by exploiting the

information coming from the knowledge of the cross-section

(Figure 1d). In Figure 5a, the variation of these parameters is shown.

The values of Amax, Pmax, (Pt)max, and (USPM)max are the maximum

values of these parameters at the maximum stage (Hmax). In the Gono

River, the maximum value of the stage based on the measured stage

data is Hmax = 3 m. The values of Amax, Pmax, (Pt)max, and (USPM)max are

737 m2, 341 m, 682 m, and 30 m/s, respectively. Therefore, A, P, Pt,

and USPM can be calculated at any arbitrary stage. In Figure 5a, the

diagrams for P and Pt do not coincide, and a slight difference exists.

Therefore, the stage-discharge rating curve can be plotted using

efficient parameters and Equation (9). As shown in Figure 5b, the pro-

posed rating curve has been estimated based on three different and

arbitrary reference points to show the performance of the model in

three different stages. It should be mentioned that only one reference

point is needed in this model.

In the next step, by considering the measured discharge at each

stage and time as a reference point on the streamflow and its related

effective parameters, discharges at other levels and times can be cal-

culated using Equation (9). Our intention is to estimate streamflow

using only one measured discharge (reference point) at a given stage

and time. The desired reference points are selected, that is, P1, P5,

and P10, to evaluate the performance of the model at different

stages. Figure 6 shows the Gono River hydrograph based on three

desired reference points from (Figure 6a) P1, (Figure 6b) P5, and

(Figure 6c) P10. According to Figure 5, it can be observed that there is

a discrepancy between the results based on the different reference

points. For example, SSD based on P5 is overestimated in comparison

P1 and P10.

Table 1 is presented to quantify the model performance and com-

pare the statistical quantities of R2, RMSE (m3/s), PBIAS (%), MAE

(m3/s), and KGE based on 10 reference points (from P1 to P10) in the

Gono River. The R2 values are about 0.998 and the same for the

F IGURE 5 (a) Variation of the relative values of A, P, Pt, and USPM. (b) The single stage-discharge model based on three different reference
points
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model based on all reference points. There is a range of 2.81 to

10.3 m3/s for all RMSE values. When P7 was used as reference data

for model estimation, the RMSE was highest. P7 has the lowest stage

in the available observational data, and probably due to not consider-

ing the roughness of the bed, the estimation error has increased with

the help of this observational data. Approximately �10 to 10 is the

range of the PBIAS criterion, with negative values causing overestima-

tion and positive values causing underestimation. The least positive

value of this criterion is related to the SSD based on P4. Also, the

model based on the P5 reference point shows the highest MAE, possi-

bly due to measurement error. The lowest and highest MAE is 2.20

and 7.14 (m3/s), respectively. Regarding the KGE criterion, it can be

concluded that the model based on P4 has the best performance

(KGE = 0.972), whereas the model based on P5 has the worst perfor-

mance (KGE = 0.895).

Therefore, as seen in Table 1, the model estimation based on

most observed data shows similar performance based on the different

error criteria. The reference data, which probably has a measurement

F IGURE 6 Hydrographs of measured and simulated flows using the single stage-discharge method based on (a) P1, (b) P5, and (c) P10
reference points in the Gono River

TABLE 1 The performance metrics results of the SSD method based on different reference points

Point R2 RMSE (m3/s) PBIAS (%) MAE (m3/s) KGE

P1 0.998 3.91 �1.78 2.20 0.968

P2 0.998 5.63 �4.10 3.22 0.951

P3 0.998 2.81 0.98 2.32 0.971

P4 0.998 2.84 0.72 2.30 0.972

P5 0.998 8.84 10.13 7.14 0.895

P6 0.998 4.01 �1.93 2.21 0.967

P7 0.998 10.30 �9.50 6.70 0.901

P8 0.998 4.32 �2.38 2.33 0.964

P9 0.998 4.14 �2.13 2.24 0.966

P10 0.998 3.39 3.18 2.71 0.958

Abbreviations: KGE, Kling-Gupta efficiency; MAE, mean absolute error; PBIAS, percent bias; RMSE, root mean square error.
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error or is near the river bed, causes more errors in the streamflow

estimation.

3.2 | Results of previous studies

After studying the proposed model's performance, it is time to com-

pare it with the previous studies that have been done. Two methods,

FATS and RC, have been carried on in the Gono River.

Figure 7a shows the relationship between water depth (H) and

the moving-boat ADCP discharge estimates. The power function of

Equation (2) is fitted to all the available ADCP datasets to establish

the RC. The R2 value is 0.998, which indicates a proper performance.

FATS, RC, and ADCP are all used to measure temporal variations

of streamflow in Figure 7b. The performance of both methods

(R2 > 0.99) is appropriate; however, the RC model is overestimated

compared to the FATS. RC estimates peak discharge at 650 m3/s,

while FATS estimates 430 m3/s.

3.3 | The application of the FARC in continuous
streamflow

In this model, suitable curves must first be fitted between mean

velocity-depth and wetted area-depth. According to observed data,

the mean velocity-depth (Figure 8a) and wetted area-depth

(Figure 8b) relation is selected from the power function (Manfreda

et al., 2020). The R2 value in both velocity-depth (R2 = 0.96) and wet-

ted area-depth (R2 = 0.99) relation shows a robust linear relationship

between the observed and estimated values. The product of the mean

velocity-depth and the wetted area-depth functions leads to estimat-

ing the discharge and rating curve. The product of the mean velocity-

depth and wetted area-depth functions leads to estimating the dis-

charge. Figure 8c illustrates the continuous streamflow estimation by

the FARC method. As can be seen, the model's performance is accept-

able, and the R2 value is about 0.998. The peak flow estimation by this

model is about 660 m3/s which is higher than RC.

3.4 | Model comparison and discussion

In order to quantify the error between FATS, RC, FARC, and SSD

methods, a relative error is calculated in Table 2. The error is calcu-

lated with ([Qe � QADCP]/QADCP) � 100. The estimated discharge (Qe)

of FATS, RC, and FARC methods is in Table A1. Also, the results of

relative errors of the SSD model based on all reference points are in

Table A2. In Table 2, just the SSD model based on P4 is mentioned.

As shown in Table 2, the maximum and minimum relative errors

in the proposed model based on P4 are about 11 and �0.7%, respec-

tively. It should be noted that the model error based on P4 in the

F IGURE 7 (a) Rating curve established by moving-boat acoustic Doppler current profiler measurements, and (b) time series of streamflow
estimated by fluvial acoustic tomography system and rating curve
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measured discharge data P4 is zero, so it is not considered. The maxi-

mum relative errors in FATS, RC, and FARC models are about 28, 24,

and 21%, respectively, and the minimum ones are about �0.7, �0.95,

and 1.61%, respectively.

The comparison of studied models based on five performance

criteria is presented in Table 3. R2 values for all studied models are

greater than 0.996, indicating good performance based on this

criterion. As can be seen in Table 3, the least RMSE and MAE are

related to the SSD method; however, the lowest PBIAS is related to

the flow-area method. Furthermore, the flow-area method outper-

forms other methods based on the KGE criterion. After that, RC

shows the proper performance based on PBIAS and KGE indices.

The FATS is not shown proper performance compared to other

models.

F IGURE 8 Fitted functions between (a) mean velocity-depth and (b) wetted area-depth; and (c) time series of streamflow estimated by flow-
area rating curve

TABLE 2 Relative errors of FATS, RC, FARC, and SSD models

Point Date Time QADCP (m3/s)

Relative error (%)

SSD based on P4 FATS RC FARC

1 December 22, 2015 13:00 70.96 2.59 �2.17 �4.90 �5.77

2 December 25, 2015 13:22 65.91 5.36 �0.68 �2.21 �2.92

3 January 11, 2016 12:45 33.10 �0.70 �11.68 6.58 4.32

4 January 13, 2016 16:20 34.60 – 11.33 5.40 3.40

5 January 15, 2016 16:45 37.46 �8.55 4.60 �3.33 �5.06

6 January 17, 2016 16:45 25.60 2.68 19.60 14.05 11.66

7 January 17, 2016 19:15 24.00 11.28 28.53 23.68 21.13

8 January 27, 2016 14:00 51.30 3.08 �8.45 �0.95 �2.34

9 February 16, 2016 13:10 124.67 2.97 4.39 �2.96 �3.06

10 March 9, 2016 22:10 237.63 �2.32 2.88 0.75 1.61

Abbreviations: ADCP, acoustic Doppler current profiler; FARC, flow-area rating curve; FATS, fluvial acoustic tomography system; RC, rating curve; SSD,

single stage-discharge.
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The box plot of the observed and estimated discharge is depicted

in Figure 9. The RC model captured the extreme values better than

the other models. However, all the studied models demonstrated a

more remarkable ability to capture the peak discharge values. The

FATS method showed the least efficacy in estimating high values.

For evaluating the best estimate with the least data, it is assumed

that observations are not available higher than 1 m from the riverbed.

Therefore, they should not be used as calibration. Rating curve models

are tested using observational data higher than 1 m from the riverbed.

As a result, five observational data are used as calibrations, and five

are used as testing. The percentage of relative error in the test step is

presented in Table 4. Calibration is carried out at observation points

P3 to P7 since they are all below the H = 1 m, and the other points

are used for tests. It can be seen that the SSD model shows an excel-

lent performance than the other two models. As the stage increases,

the relative error of the RC and FARC increases and reaches the maxi-

mum values of 287 and 281%, respectively. However, the maximum

estimation error based on the SSD method equals 5.36%.

The performance of the upper assumption results is presented in

Table 5. As can be seen, the RC and FARC methods are susceptible to

the number of observation data and show a significant error. In con-

trast, there is no change in the results of the proposed method com-

pared to the previous state.

Therefore, the three studied methods for estimating the rating

curve are acceptable if sufficient observational data is available at the

lower and upper levels. However, when observational data is available

only from lower stages, discharge estimation with two methods is

subject to a lot of error. Despite this, SSD has no sensitivity. Conse-

quently, this method can provide a reasonable discharge estimate

even in areas with scarce data and only using lower-stage data.

4 | CONCLUSIONS

Accurate streamflow estimation is necessary for efficient water man-

agement and hydrological modeling. This study evaluated the pro-

posed model rating curve (SSD model) to estimate streamflow based

on only one observed data in the Gono River. The comparative results

of the SSD model, FATS, RC, and FARC models' potential to estimate

the streamflow were investigated. To examine the performance of the

proposed model, some statistical measures, including the R2, RMSE,

PBIAS, MAE, and KGE criteria, are used. Overall, according to three

statistical measures, the SSD model estimation based on all reference

points is excellent and acceptable. The evaluation of the model perfor-

mance revealed that the SSD method outperformed the FATS for esti-

mating the streamflow of the Gono River. The SSD method is

comparable to RC and FARC if all observed data is used for calibra-

tion. However, if the number of observation data for calibration is

reduced (observations that the stage is less than 1 m), the perfor-

mance of RC and FARC methods significantly reduces compared to

the SSD method. Therefore, in the SSD method, observation data at

lower levels are sufficient for proper flow estimation. While in the

other two methods, it is necessary to have observational data at

higher levels.

The presentation of the performance of the new relationship

shows that the proposed expression has an appropriate capability in

estimating continuous streamflow. The most significant advantage of

the proposed method is its practicality in deprived areas where there

is not enough measured data. Therefore, this method can assist man-

agers in improving the robustness of water management decisions

and research in hydrology in regions with few gauging for calibration.

This research can be developed by considering the heteroge-

neous roughness coefficient because the effect of bed roughness is

not considered in this study. Moreover, the proposed model does not

consider the unsteady conditions of the flow, so its effects can be

considered a continuation of the current paper. Geometrical data in

this research were derived from field measurements, so using remote

sensing data instead of them creates a new approach to the research.

TABLE 3 Comparison of different
models for streamflow estimation

Model R2 RMSE (m3/s) PBIAS (%) MAE (m3/s) KGE

SSD based on P4 0.998 2.838 0.715 2.30 0.972

FATS 0.996 4.512 2.784 4.00 0.972

RC 0.998 2.937 0.674 2.55 0.982

FARC 0.998 3.044 0.221 2.74 0.997

Abbreviations: FARC, flow-area rating curve; FATS, fluvial acoustic tomography system; KGE, Kling-

Gupta efficiency; MAE, mean absolute error; PBIAS, percent bias; RC, rating curve; RMSE, root mean

square error; SSD, single stage-discharge.

F IGURE 9 The box plot displays the observed and estimated
discharge distribution for the four models
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In future research, it might be a good idea to use machine learning

methods rather than the proposed model considering hydraulic and

geometric parameters.
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APPENDIX A

TABLE A1 Estimated discharges of ADCP, FATS, RC, and FARC

Point Date Time QADCP (m
3/s) QFATS (m

3/s) QRC (m3/s) QFARC (m3/s)

1 December 22, 2015 13:00 70.96 69.42 71.76 66.87

2 December 25, 2015 13:22 65.91 65.46 67.50 63.99

3 January 11, 2016 12:45 33.10 29.24 32.12 34.53

4 January 13, 2016 16:20 34.60 38.52 33.88 35.77

5 January 15, 2016 16:45 37.46 39.18 33.44 35.56

6 January 17, 2016 16:45 25.60 30.61 24.65 28.58

7 January 17, 2016 19:15 24.00 30.85 25.84 29.07

8 January 27, 2016 14:00 51.30 46.96 51.59 50.10

9 February 16, 2016 13:10 124.67 130.14 127.01 120.86

10 March 9, 2016 22:10 237.63 244.48 220.27 241.45

TABLE A2 Relative errors of SSD method based on different reference points

QADCP (m
3/s)

Relative error of SSD based on

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

70.96 – �2.31 2.86 2.59 12.18 �0.10 �7.8 �0.50 �0.31 5.1

65.91 2.75 – 5.63 5.36 15.2 2.59 �5.3 2.12 2.38 7.94

33.10 �3.16 �5.45 – �0.70 8.6 �3.3 �10.8 �3.71 �3.5 1.73

34.60 �2.64 �4.94 0.09 – 9.17 �2.78 �10.3 �3.20 �2.98 2.28

37.46 �10.8 �12.92 �8.31 �8.55 – �10.9 �17.8 �11.3 �11.1 �6.31

25.60 0.13 �2.23 2.95 2.68 12.27 – �7.7 �0.47 �0.22 5.19

24.00 8.53 5.96 11.6 11.28 21.69 8.36 – 7.90 8.14 14.00

51.30 0.53 �1.85 3.35 3.08 12.72 0.38 �7.4 – 0.17 5.61

124.67 0.42 �1.96 3.23 2.97 12.59 0.27 �7.5 �0.21 – 5.49

237.63 �4.74 �6.7 �2.06 �2.32 6.81 �4.88 �12.2 �5.32 �5.08 –
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