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Abstract
Conventional methods for measuring local shear stress on the wetted perimeter of open channels are related to the measurement of the very
low velocity close to the boundary. Measuring near-zero velocity values with high fluctuations has always been a difficult task for fluid flow near
solid boundaries. To solve the observation problems, a new model was developed to estimate the distribution of boundary shear stress from the
velocity distribution in open channels with different cross-sectional shapes. To estimate the shear stress at a point on the wetted perimeter by the
model, the velocity must be measured at a point with a known normal distance to the boundary. The experimental work of some other researchers
on channels with various cross-sectional shapes, including rectangular, trapezoidal, partially full circular, and compound shapes, was used to
evaluate the performance of the proposed model. Optimized exponent coefficients for the model were found using the multivariate Newton
method with the minimum of the mean absolute percentage error (MAPE) between the model and experimental data as the objective function.
Subsequently, the calculated shear stress distributions along the wetted perimeter were compared with the experimental data. The most important
advantage of the proposed model is its inherent simplicity. The mean MAPE value for the seven selected cross-sections was 6.9%. The best
results were found in the cross-sections with less discontinuity of the wetted perimeter, including the compound, trapezoidal, and partially full
circular pipes. In contrast, for the rectangular cross-section with an angle between the bed and walls of 90�, MAPE increased due to the large
discontinuities.
© 2021 Hohai University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Open channel; Boundary shear stress; Viscous shear stress; Velocity distribution; Velocity gradient
1. Introduction

Determining the distribution of boundary shear stress in the
vicinity of bed and banks of natural channels is a task
fundamental to solving various problems in river morphology
and flow restoration. These problems include determination of
the rates of lateral erosion in rivers, sediment transport in
shallow natural channels, and exact relationships between
water depth and discharge in small river flows (Kean et al.,
2009). To study the hydrodynamic forces acting on sedi-
ments, it is necessary to estimate bed shear stress (t0) or shear
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velocity (u*) (Pope et al., 2006). Additionally, determining
boundary shear stress is crucial in estimating cavitation. It can
help river engineers predict river shape; protect river beds,
banks, and flood control structures (Zarrati et al., 2008); and
employ numerical methods. It is therefore important to
calculate the resistance coefficients in rivers. Resistance
coefficients usually utilize the law of resistance in two-
dimensional (2D) or three-dimensional (3D) flow calcula-
tions, which is related to the prediction of local bed shear
stress (Tominaga and Sakaki, 2010). Furthermore, knowledge
of shear stress distribution can assist river engineers in esti-
mating the shapes and dimensions of stable channels (Gholami
et al., 2019). The boundary shear stress distribution is mainly
related to the cross-sectional shape and the formation of
shear stress distribution in straight open channels using velocity distribution,
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secondary flows that exist on the plane perpendicular to the
flow direction (Jin et al., 2004; Blanckaert et al., 2010).

Measurement of bed shear stress using a shear plate or cell
is difficult and requires precise calibration and such mea-
surements are only appropriate for some laboratory studies
(Graham et al., 1992; Rankin and Hires, 2000). In addition,
when bed sediments begin to erode with different sediment
levels, they produce unsatisfactory results (Pope et al., 2006).
These procedures cannot be applied in rivers. Therefore,
boundary shear stress can be determined from the observations
of flow velocity or geometry, and the relationships of these
values with boundary shear stress (Wilcock, 1996).

Many analytical or semi-analytical methods have been
proposed to calculate shear stress distribution (Shiono and
Knight, 1991; Zheng and Jin, 1998; Jin et al., 2004; Yang
and McCorquodale, 2004; Yang, 2005; Tang and Knight,
2008) and to estimate mean boundary shear stress (Guo and
Julien, 2005; Javid and Mohammadi, 2012; Kabiri-Samani
et al., 2012). Lai (2009) developed a 2D depth-averaged nu-
merical method with an unstructured hybrid mesh to simulate
open channel flows.

Many experimental studies have been conducted on the
distribution of boundary shear stress in straight triangular,
square, and rectangular ducts as well as open rectangular and
trapezoidal channels (Tominaga et al., 1989; Knight and
Shiono, 1990; Tominaga and Nezu, 1991; Rhodes and
Knight, 1994; Thomas et al., 2007; Mohammadi, 2008).
Empirical equations for the distribution of shear force at the
cross-sections of trapezoidal and compound channels have
been developed (Rhodes and Knight, 1994). Based on exper-
imental results, Khatua and Patra (2007) used five dimen-
sionless parameters to derive equations for estimating the
percentage of total shear force carried by floodplains in
compound channels. Kean et al. (2009) used a laboratory data
set of velocity and boundary shear stress to test a numerical
method for defining their distributions across the cross-section
of a straight channel. Blanckaert et al. (2010) investigated the
interaction of boundary shear stress and flow variability with
main stream and secondary currents in trapezoidal channels. In
all shapes of cross-sections, the secondary currents reduce the
bed shear stress near the bank and cause heterogeneous bank
shear stress with its maximum close to the bank toe.

Indirect methods of measuring boundary shear stress dis-
tribution are mostly based on velocity measurements.
According to the logarithmic law of velocity, velocity data
must be recorded at different points. Thus, shear stress mea-
surement using the Preston tube may be erroneous due to
velocity measurement near the boundary. It is always difficult
to measure quantities that are very close to zero. Additionally,
in methods for bed shear stress measurement other than the
Preston tube-based methods, it is necessary to extrapolate
recorded data and extend them to the bed. Therefore, the
estimated shear stress includes turbulent and viscous shear
stresses. When turbulent shear stress is used for extrapolation,
estimating the shear stress distribution involves some errors
because the contribution of the viscous shear stress to the total
shear stress tends to increase closer to the bed.
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Many proposed relationships to calculate the shear stress
distribution along the wetted perimeter require geometric
operations such as drawing dividing lines and estimating the
shear stress distribution through complicated relationships
with many parameters. In addition, they include separate
relationships for the bed and sidewalls (Yang and
McCorquodale, 2004; Zarrati et al., 2008; Jin et al., 2004).

This study developed a model to estimate boundary shear
stress by measuring velocity in a region of considerable ve-
locity. This does not require extrapolation, and therefore does
not usually produce the problems that appear in conventional
velocity measurement techniques.
2. Methodology
2.1. Model setup
Flow on a wide flat plate without restraining walls and free
to extend regardless of the thickness of viscous layers is
almost inviscid flow far from the boundary. In boundary layer
flow, total shear stress can be expressed as follows (White,
2011):

t¼mvu

vy
�ru0v0 ¼tL þ tT ð1Þ

where m and r are the dynamic viscosity and density of fluid,
respectively; u is the velocity component in the main flow
direction; v is the velocity component in the y-direction; “'”
denotes fluctuations; “�” denotes the time mean values; and t,
tL, and tT are the total, viscous, and turbulent shear stresses,
respectively. The term �ru0v0 is defined as the turbulent shear
stress along the y-direction normal to the wall. Figs. 1(a) and (b)
show the distributions of viscous and turbulent shear stresses
and velocity as functions of distance from the wall in an open
channel, respectively. Theviscous shear stress is dominant in the
vicinity of the wall (the wall layer), the turbulent shear stress is
dominant in the outer layer, and there is an overlap layer in the
middle, where both viscous and turbulent shear stresses are
significant (White, 2011).

The methods of shear stress distribution estimation from
velocity distribution can be applied to irregular cross-sections
or rivers. These methods do not require complicated mathe-
matical calculations and powerful computers. It is generally
necessary to obtain the velocity data through simple direct
measurements or empirical models, and the velocity data are
used to estimate shear stress. This study developed a new
model to calculate the shear stress distribution along the wetted
perimeter using the velocity distribution at the cross-section.

According to Eq. (1), shear stress estimation encounters
problems in calculating turbulent shear stress due to the
fluctuations of measured velocity. Considering the near-zero
turbulent shear stress at the boundary (Fig. 1(a)), the local
bed shear stress (t) in a smooth open channel at any cross-
sectional location is equal to the viscous shear stress at the
location of the corresponding bed (Fig. 1), and is expressed as
follows:
shear stress distribution in straight open channels using velocity distribution,



Fig. 1. Typical shear stress and velocity distributions in developed turbulent flow near a wall.
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t¼m

�
du

dy

�
w

ð2Þ

where the subscript w refers to the wall. When Eq. (2) is used
to estimate the local boundary shear stress on the wetted
perimeter, it requires measurement of the velocity gradient
close to the wall ((du/dy)w). This is a formidable task because
it is necessary to measure the velocity at some points very
close to the boundary. Instead of using (du/dy)w, the ratio of
velocity to distance (u/y in Fig. 1(b)) was used to estimate the
wall shear stress in this study. The proportion of these two
velocity gradients (x) can be expressed as follows:

x¼ðdu=dyÞw
u=y

ð3Þ

In the schematic turbulent velocity profile (Fig. 1(b)), cotaw
refers to base slope. According to Eq. (3), x can be numeri-
cally estimated as the slope of the velocity gradient at the wall
divided by the mean velocity gradient at a certain distance in
the flow. By substituting ðdu=dyÞw into Eq. (2) with Eq. (3),
the wall shear stress (t) is obtained as follows:

t¼mx
u

y
ð4Þ

In Eq. (4), y is the vertical distance from the bed. However,
the aim of this study was to obtain the shear stress distribution
along the wetted perimeter. Thus, the normal distance from
the boundary (d ) was used to replace y (Fig. 2). According to
Eq. (4), the velocity (u) at point N on the cross-section, its
distance from the wall (d ), and the dynamic fluid viscosity (m)
should be measured, and the only parameter required to
Fig. 2. Specific parameters of proposed model at a cross-section.

Please cite this article as: Malvandi, B., F. Maghrebi, M., Prediction of boundary

Water Science and Engineering, https://doi.org/10.1016/j.wse.2021.03.005
calculate the shear stress at the corresponding point P on the
boundary is x. According to the experimental data, x is not
constant along a unique normal to wetted perimeter at a single
point or on various normals at different points on the wetted
perimeter. Hence, there are several pairs of u and t at a cross-
section, and there is a unique x for each pair. However, there are
no theoretical or empirical methods to obtain x. This study
aimed at finding a general relationship between the velocity (u)
at a point on the cross-section, the distance (d ) from that point
to the boundary, and shear stress (t) at the corresponding point
on the boundary in the form of Eq. (4). To obtain a unique
general relationship for the model, the parameters of the cross-
section, channel, and fluid specifications should be defined.

In an open channel, the mean bed shear stress along the
wetted perimeter (t0) is equal to the integrated values of the
local shear stresses (t) along the wetted perimeter, and it is
obtained by the following equation:

t0¼rgRsf ð5Þ

where g is the gravitational acceleration, R is the hydraulic
radius, and sf is the energy line slope. According to Eq. (5),
shear stress on the wall (t) depends on the fluid density (r), the
area of the flow cross-section (A), the wetted perimeter (P),
and the energy line slope (sf). Eq. (4) is basically reliable when
only one wall is affected by the velocity distribution. However,
for a cross-section with different restricted boundaries, the
effect of other walls must be considered. Independent
geometric cross-sectional parameters such as free water sur-
face length (T ), water depth (H ), and distance along the
wetted perimeter (s) (starting at the left bank on the free
surface) are considered as well. The relationship could be
expressed as follows:

t¼ f
�
m;u; sf ;A;T ;P;r;H; s;d

� ð6Þ

In Eq. (6), all selected variables are independent except A,
which is a function of T and H. Because this relationship varies
from one section to another, A can be numerically independent
in a general equation. For example, the defined function of A
varies at different trapezoidal cross-sections that are dependent
on the wall slope. Using the Buckingham Pi Theorem and
shear stress distribution in straight open channels using velocity distribution,
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substituting x into Eq. (4) with Eq. (6), x can be written as a
function of seven dimensionless parameters:

x¼ t

m

d

u
¼4

�
sf ;

A

TH
;
T

H
;
P

H
;
d

P
;
s

P
;Re

�
ð7Þ

where Re refers to the Reynolds number. It is preferred that x
be considered the products of their exponents. Given that there
are different options for constructing dimensionless variables,
some of them are selected through the trial-and-error method,
and x is defined as follows:

x¼a0s
a1
f

�
A

TH

�a2
�
T

H

�a3
�
P

H

�a4
�
d

P

�a5h s
P

�
1� s

P

�ia6
Rea7 ð8Þ

where a0, a1, a2, a3, a4, a5, a6, and a7 are constants calculated
with the regression method, and the exponents of two variables
ðs =P and 1�s =PÞ are selected identical, because the proposed
formula must be valid in symmetric cross-sections. In the
proposed model, y in Eq. (4) is substituted with d as described
above. For each t, d, and u, the corresponding x can be derived
from the experimental data, and subsequently it is adopted to
calibrate the proposed model as a function of the dimension-
less channel parameters.
2.2. Experimental data
To evaluate the model, open channels with different cross-
sections that have been investigated by many researchers were
considered in this study. As shown in Fig. 3, these channels
include rectangular and trapezoidal channels (Tominaga et al.,
1989), trapezoidal and compound channels (Knight and
Shiono, 1990), and partially full circular channels (Knight
and Sterling, 2000). The model can be verified in the
following channel conditions: (1) velocity distribution
(perhaps in the form of isovel contours) is given at the cross-
section, and (2) shear stress distribution is given along the
wetted perimeter of the cross-section. The properties of these
cross-sections are listed in Table 1.

At several points on each cross-section, velocity and shear
stress are known. For each pair of points at the cross-section
and on the boundary, the values of sf, d, H, T, P, s, A, and
Re are known, and x was calculated by the proposed model
Fig. 3. Rectangular, trapezoidal, compound, and partially full circular
cross-sections for model calibration.
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(Eq. (8)). Therefore, Eq. (8) is a parametric relationship with
eight variables (a0, a1, a2, a3, a4, a5, a6, and a7). These vari-
ables were estimated by minimizing the statistical index, mean
absolute percentage error (MAPE).

The minimization of MAPE for 60% of the recorded data in
all cross-sections (or the mean value of MAPE for them) was
selected as the objective function, and the remaining 40% of
the data were used to validate the obtained relationship. The
solution of this function can be written as follows:

Xnþ1¼Xn � f 0ðXnÞ
f 00 ðXnÞ ð9Þ

where Xn and Xnþ1 are the variables in the nth and (nþ1)th
steps, respectively, with m variables (m ¼ 8 in this study), and
the functions f 0ðXnÞ and f

00 ðXnÞ are the gradient and Hessian of
f ðXnÞ, respectively.

3. Results and discussion

To estimate the eight variables (a0, a1, a2, a3, a4, a5, a6, and
a7) in Eq. (8), it is necessary to consider the effects of initial
values. After some trials, the best values of variables were
selected for the first modeling step, considering the minimum
MAPE value. The initial values of a0 and a2 were assumed to
be 20 and 1, respectively, and the others were assumed to be
zero. Fig. 4 shows the variation of each variable normalized by
its maximum absolute value as a function of the iteration
number and the variation of MAPE. It shows that all variables
reached a constant value after some variations, and MAPE
decreased from 1.0 to 0.069 after more than 200 iterations.
Therefore, according to Eq. (8), the calibrated relationship to
calculate x is the following:

x¼0:001 6s�0:085
f

�
A

TH

��0:693�
T

H

��0:493�
P

H

�1:327�
d

P

�0:928

�
h s
P

�
1� s

P

�i0:102
Re0:896 ð10Þ

where the terms sf, A/(TH), T/H, P/H, and Re were calculated
only once for the channel cross-section, and the two terms d/P
and ðs =PÞð1�s =PÞ were calculated at each point on the
boundary. Additionally, this equation can calculate an arbitrary
point either on the bed or sidewalls without the need for any
cross-sectional geometric treatments. Eq. (10) demonstrates
that P/H was the most effective factor controlling x. Addi-
tionally, x was inversely related to sf. In other words, if sf is
magnified with other factors remaining constant, x tends to
decrease.

Although the mean MAPE value was approximately
0.069, it varied from section to section. Fig. 5 shows the x

values calculated by the proposed model (Eq. (10)) versus the
measured values derived from Eq. (4) using the experimental
data in all cross-sections. In a real situation, the measured
and calculated x values were not identical. A range of 10%
error is shown in Fig. 5. This figure shows that the proposed
model provided good results in most cases, including the
shear stress distribution in straight open channels using velocity distribution,



Table 1

Properties of cross-sections.

Cross-sectional shape No. Reference B (m) H (m) b (m) h (m) D (m) s' T (m) A (m2) P (m) Sf (10
�3) Re (105)

Rectangular S1 Tominaga et al. (1989) 0.40 0.05 0.40 0.02 0.50 0.937 0.637

S2 Tominaga et al. (1989) 0.40 0.10 0.40 0.04 0.60 0.138 0.507

Trapezoidal IB1501_1 Knight and Shiono (1990) 1.50 0.15 1 1.80 0.25 1.92 1.3 3.68

T03 Tominaga et al. (1989) 0.20 0.09 0.97 0.39 0.027 0.46 0.594 0.876

Compound 030702_4 Knight and Shiono (1990) 1.65 0.25 0.75 0.15 1 3.50 0.58 3.70 1.03 5.43

030802_4 Knight and Shiono (1990) 1.65 0.30 0.75 0.15 1 3.60 0.77 3.85 1.02 7.81

Partially full circular Knight and Sterling (2000) 0.12 0.24 0.24 0.02 0.39 1 1.10

Fig. 4. Variation of each variable normalized by its maximum abso-
lute value and variation of MAPE.
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trapezoidal cross-sections, the partially full circular cross-
section, and one of the compound cross-sections, with
MAPE values lower than 6%. This was mainly due to the
nearly continuous wetted perimeter in these cross-sections
without steep or right angles. In a partially full circular
section with no angle or discontinuity in the wetted perim-
eter, the error was less than 10% at all points, and the effects
of different points on the wetted perimeter were different at
each point on the cross-section. The maximum MAPE value
was 11.7%, and it corresponded to the rectangular cross-
section (S2). For some points on this cross-section, the
error was higher than 10%. The highest slope angle around
the wetted perimeter was 90�. This produced a large
discrepancy between the effects of two points near the wetted
perimeter at any point on the cross-section. The good results
shown in S1 (another rectangular cross-section) were only
relevant to the bed because the shear stress distribution data
of the walls were not considered here.

To evaluate the feasibility of the proposed model in
estimating the shear stress distribution, Fig. 6 compared the
measured shear stress distribution using experimental data
against the calculated distribution derived from the proposed
model, and both were normalized by the mean shear stress
along the wetted perimeter (tave). As expected, the greatest
similarity between the measured and calculated shear
stress distributions appeared at the partially full circular
cross-section, and the worst performance occurred at the
Please cite this article as: Malvandi, B., F. Maghrebi, M., Prediction of boundary
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rectangular cross-section (S2) and compound cross-section
(030702_4). As indicated in Fig. 6, for the rectangular
cross-section (S2) located on the wall with s/P < 0.1, the
proposed model failed to estimate the shear stress by
considering the velocity at each point. Similar results were
found at the corner where s/P was approximately 0.16.
However, at other regions of this cross-section, the model
represented approximately accurate estimates of shear stress.
Additionally, at the compound cross-section (030702_4), the
modeling results were significantly different from the
measured data in the case of s/P > 0.4. At the trapezoidal
cross-sections, the calculated results agreed with the obser-
vations. For the compound cross-section (030802_4),
although the proposed model did not exactly capture the
fluctuation of shear stress, the calculated shear stress showed
relatively good agreement with the observations.

The intersection of the bed and wall in a corner simulta-
neously affected the velocity by the two boundaries, and this
caused the poor results at the corners. Eq. (10) is a funda-
mental relationship of the proposed model, and x is a contin-
uous function of s. Thus, the proposed model cannot estimate
the effect of discontinuity of a wetted perimeter at the corners.
The extreme discontinuity of the wetted perimeter at the
corner of rectangular cross-sections (with an angle between
the bed and wall of 90�) is an important factor for the high
MAPE values. The lowest MAPE values were found at the
partially full circular cross-section with no discontinuity in the
wetted perimeter.

Given that shear stress at any point on the boundary can be
estimated from the velocity at different points on the cross-
section, Table 2 lists the error indices for the calculated
mean shear stress values on the wetted perimeter against the
measured values.

Table 2 shows that the lowest values of error indices were
found at the compound (030802_4), trapezoidal (IB1501_1),
and partially full circular cross-sections, and good results of
the correlation coefficient were also found at these cross-
sections. As mentioned earlier, good values of indices for the
rectangular cross-section (S1) were due to ignorance of the
sidewall data.

Finally, the 2D approaches were selected for comparison
with the proposed model. Zarrati et al. (2008) derived semi-
analytical equations for shear stress distribution based on a
simple streamwise vorticity equation including turbulent
shear stress distribution in straight open channels using velocity distribution,



Fig. 5. Calculated x values versus measured x values at seven cross-sections.

Fig. 6. Calculated normalized shear stress distribution derived from proposed model versus measured distribution at seven cross-sections.
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shear stress and secondary Reynolds stress. The analytical
model of Shiono and Knight (1991) includes the effects of
bed-generated turbulence, lateral shear turbulence, and sec-
ondary flows. This method and the analytical model of
Zarrati et al. (2008) were applied to cross-section T03 and
were compared with the experimental data of Tominaga et al.
(1989). Given that this cross-section was also considered in
this study, the distribution of boundary shear stress derived
from the proposed and aforementioned models and the
experimental data are shown in Fig. 7. As indicated in Fig. 7,
although the results of the proposed model were close to the
experimental data, the shear stress values for s/P < 0.15 were
Please cite this article as: Malvandi, B., F. Maghrebi, M., Prediction of boundary
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overestimated in comparison with both analytical models.
For s/P > 0.2 on the wall, the predicted shear stress was
located between those of two analytical models. Although the
proposed model underestimated the shear stress for s/P > 0.4
in comparison with the analytical models, it obtained rela-
tively better results on the bed. The calculated MAPE be-
tween the proposed model and the experimental data was
approximately 6%, and it was slightly higher than that of the
model from Shiono and Knight (1991), which was approxi-
mately 5%. The estimated MAPE for Zarrati et al. (2008) was
close to 10%, which was higher than that of the proposed
model.
shear stress distribution in straight open channels using velocity distribution,



Table 2

Error indices between measured and mean values of shear stress along wetted

perimeter.

Cross-sectional shape No. R MARE RMSE MAE

Rectangular S1 0.9205 0.0358 0.0496 0.0387

S2 0.7550 0.1169 0.1340 0.1030

Trapezoidal IB1501_1 0.8879 0.0433 0.0549 0.0440

T03 0.7134 0.0577 0.0739 0.0617

Compound 030702_4 0.8702 0.0886 0.1384 0.0987

030802_4 0.9416 0.0430 0.0556 0.0427

Partially full circular 0.7882 0.0469 0.0581 0.0452

Note: R is the correlation coefficient, MARE is the mean absolute relative

error, RMSE is the root mean square error, and MAE is the mean absolute

error.

Fig. 7. Boundary shear stress distribution presented by proposed
model, experimental data, and two analytical models in cross-section
T03.
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4. Conclusions

In this study, a practical model was developed to estimate
the boundary shear stress distribution. The proposed model
does not require any complicated calculations. The dimen-
sionless factor (x) was defined as a function of dimensionless
variables of fluid and channel properties, and the proposed
model estimated local boundary shear stresses along the
wetted perimeter only using the viscous shear stress relation-
ship. In this model, the shear stress distribution is related not
only to x but also to the velocity distribution at the cross-
section. The multivariate Newton method was used to find
the constant parameters of the relationship, and the minimum
of the mean MAPE value between the model and the experi-
mental data was selected as the objective function. After more
than 200 iterations, the optimized variables reached constant
values. The main conclusions are as follows:

The error between the calculated and measured x values
was less than 10% in most cases. The mean MAPE value was
6.9%, but MAPE varied across different sections. The largest
MAPE with a value of 11.67% appeared at the rectangular
cross-section with the highest amount of discontinuity in the
wetted perimeter and with an angle between bed and walls of
90�. The lowest MAPE values of 4.3% were found in the cases
of trapezoidal and compound cross-sections with no steep
angles along the wetted perimeters. An MAPE value of 4.69%
Please cite this article as: Malvandi, B., F. Maghrebi, M., Prediction of boundary
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was obtained for the partial full circular pipe flow with no
discontinuity along the wetted perimeter. In the partially full
circular section, x can be accurately estimated by the model
with MAPE values less than 10% at any point. The shear stress
distribution along the wetted perimeter was calculated by the
proposed model for all sections and compared with the
measured distribution derived from the experimental data.
Although there was a slight difference, especially at the walls
and corners of rectangular and trapezoidal cross-sections,
there was a relatively strong agreement between the model
and the experimental data. Comparison between the proposed
model and the 2D analytical methods of Zarrati et al. (2008)
and Shiono and Knight (1991) for cross-section T03 demon-
strated the feasibility of the proposed model.

These findings indicate that the proposed model helps the
operators calculate turbulent shear stress without measure-
ments of velocity fluctuations. Due to the viscous shear stress
relationship, it is necessary to calculate the velocity gradient
by measuring the velocity at several points near the boundary.
However, when this model is adopted, a point at a considerable
distance from the wetted perimeter can only be replaced by
measurement of the flow velocity.
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