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Abstract: This article deals with the issue of inventory management of one 
identical product in a manufacturers’ network. Manufacturers use lateral 
transshipments between each other in response to uncertainties in yield and 
demand to maximise the total profit. The demand of each manufacturer is 
considered random as a non-identical continuous probability distribution and 
their corresponding yield follows some possible scenarios. The objective of our 
model is to determine the optimal production amount and lateral transshipments 
in order to maximise the total profit considering the proceeds from sale of 
goods and salvage of remaining product and the cost of production, lateral 
transshipments, and shortages. The problem is modelled as a nonlinear 
constrained programming and the optimal solution is obtained by  
Karush-Kuhn-Tucker approach. Sensitivity analysis of uncertainty parameters 
based on a numerical example showed that the utility of using lateral 
transshipment policy increases with increasing the uncertainty in production 
yield. 

Keywords: inventory management; yield uncertainty; lateral transshipment. 

Reference to this paper should be made as follows: Ashjaee, A., Pirayesh, M. 
and Dehghanian, F. (2023) ‘Inventory management of manufacturers with yield 
uncertainty and lateral transshipment’, Int. J. Industrial and Systems 
Engineering, Vol. 44, No. 3, pp.351–368. 

Biographical notes: Arash Ashjaee has been working in a financial 
organisation as an expert for one and a half years. He received his BSc and 
MSc in Industrial Engineering from Ferdowsi University of Mashhad in 2015 
and 2017, respectively. His area of his interests are supply chain management, 
inventory control and operational research. 

Mohammadali Pirayesh is currently an Associate Professor in the Industrial 
Engineering Department at Ferdowsi University of Mashhad, Mashhad, Iran. 
He received his BSc, MSc and PhD in Industrial Engineering from Sharif 
University of Technology, Tehran, Iran, in 2000, 2002 and 2007, respectively. 
His current research interests include inventory control and supply chain 
management. 

 



   

 

   

   
 

   

   

 

   

   352 A. Ashjaee et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Farzad Dehghanian is an Associate Professor in the Industrial Engineering 
Department at Ferdowsi University of Mashhad, Mashhad, Iran. He received 
his BSc in Industrial Engineering from Sharif University of Technology and 
MSc from Iran University of Science and Technology. For PhD, he worked on 
sustainable supply chain network design at Amirkabir University of 
Technology. His research areas are mainly supply chain management and 
sustainable development. 

 

1 Introduction 

In the real world, we are always faced with factors that are impossible to predict 
precisely. Therefore, decision makers have always sought solutions to minimise adverse 
effects of these uncertainties on the predetermined goals of enterprises. Manufacturing 
enterprises face high rate of uncertainties and cannot be sure about the demand of the 
next period or be confident in their production according to their planning. The demand 
of a manufacturing firm, depending on the purchasing power of customers and the 
competitive environment of the market can vary from one period to another. In addition, 
in these firms, two incidents of no production or production less than which has been 
planned may occur. Some reasons such as stop supplying of raw materials,  
non-acceptance of the material’s quality delivery delay in addition to events such as 
flood, fire, earthquake and war can cause the manufacturing plant or fully cut off 
production. On the other hand, some factors such as machine failure and the variability of 
workers’ performance can reduce production amount from which has been planned. For 
example, Alsobhi et al. (2018) investigated the issue of supply disruption due to 
transportation hazards and poor packaging and proposed a mathematical model to 
minimise total costs including damage, shipping and packaging costs and at the same 
time reducing the risk of supply disruption. In addition, Nikabadi et al. (2021) introduced 
a model of mix integer programming (MIP) in the issue of resilient supply portfolio 
selection under disruption risks by minimising the disturbance conditional value at risk is 
optimised and solved it with two meta-heuristic algorithms: harmony search and 
imperialist competition. The results showed that the value of the objective function is 
nearly same in the two algorithms. Saithong and Luong (2020) derived an optimal 
inventory policy for one retailer under a (r, S) replenishment structure when supply 
disruption may occur and demand is stochastic. In addition, Hu et al. (2020) analysed the 
coupling influence of multiple disruptions on the supply chain system by coupling utility 
model of multiple disruption which constructed based on the two functions of utility and 
degree of coupling and showed that the intensity coefficient of disruption is more 
significant than its frequency one. 

In conventional models, when manufacturers face an unexpected inventory deficit, 
they only have two options: postpone customer demand, if possible, or lose the demand. 
However, there are several ways to cope on these uncertainties, including the immediate 
provision of goods from another source (Deiranlou et al., 2021), the reservation of goods 
from a certain source (Mohammadivojdan et al., 2021), and using lateral transshipment 
(Li et al., 2020) when there is a manufacturers’ network with centralised decision-making 
structure. Lateral transshipment means sending products from manufacturer with surplus 
inventory in hand to other one which faces shortage in his inventory in order to maximise 
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usage of system’s inventory. In this paper, in the case of uncertainties in the production 
yield and demand of manufacturers with centralised decision-making structure, we utilise 
the lateral transshipment which can prevent payment of excessive purchases or 
reservations from other sources, and manufacturers can use their inventory to balance the 
demand and commodities in the entire network. 

2 Literature review 

The issue of using lateral transshipment in the face of uncertainty in yield and demand 
has been considered by researchers in recent years. In most of their work, the purpose of 
the research was to determine the optimal inventory and lateral transshipment policies in 
a way that minimises the total cost of system. From the perspective of the time of lateral 
transshipment, the literature can be divided into two subsets: proactive and reactive. 
Reactive lateral transshipment occurs after that uncertain parameters, such as demand are 
determined in order to cope with shortages, while proactive lateral transshipment occurs 
at the fixed determined points in the time to confront potential shortage in the system 
between firms of same echelon. In the context of proactive transshipment, Diks and  
De Kok (1996) presented consistent appropriate share rationing policy (CAS) for a 
system that has multiple retailers and legible lead time. In this policy, the goal is to 
balance the inventory of system by maintaining the share of each echelon from the total 
inventory planned for system. Banerjee et al. (2003) and Burton and Banerjee (2005) 
compared transshipment inventory equalisation policy (TIE) against transshipment based 
on availability policy (TBA). TIE a proactive policy that balances the number of supply 
and transshipment days for each retailer or distributor, while TBA policy is a reactive 
policy in which transshipments are initialised based on the shortage quantity of retailers. 
The results showed that TBA policy is merely more effective in preventing shortages, 
while TIE policy has a lower total cost. Tiacci and Saetta (2011) considered a system 
with two retailers and a central warehouse as a supplier in the presence of random 
demand. In this research, they used a heuristic method for determining the value and time 
of lateral transshipment, as well as the optimal parameters of the (s, S) replenishment 
policy. Dan et al. (2016) considered a supply chain with two retailers and a dominant 
manufacturer who is responsible for determining wholesale and transshipment prices 
before the start of the sales season. In this study, they assumed that demand is random 
and divided the sales season into two periods, at the beginning of the first period, the 
retailers independently determine the quantity of orders from the manufacturer and at the 
beginning of the second period, in a competitive environment, according to available 
inventory and realised demand, retailers determine the amounts of proactive 
transshipment between each other. 

Recently, Meissner and Senicheva (2018) studied a centralised multi-retail location 
inventory system for one identical product under order-up-to-level replenishment policy 
in the case of some finite proactive transshipment opportunities in each order cycle. 
Every retailer faces with random demand and if they cannot satisfy that, there is no 
chance for backorders and demand is lost. The research objective was to find optimal 
transshipment policy in order to maximise the total profit of the network in a finite time 
horizon. They proposed a dynamic programming approach which could theoretically 
obtain optimal decisions by using Bellman’s equation. However, an approach to optimal 
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policy was practically found impossible for large size of the problem. So, they presented 
a forward approximate dynamic programming to find near-optimal decisions and they 
showed that it performs much better in comparison to pervious methods in the literature. 
Also, Feng et al. (2018) investigated the replenishment and lateral transshipment 
decisions in two-retailer inventory system in which two kind of lateral transshipment are 
allowed: emergency lateral transshipment (ELT) and preventive lateral transshipment 
(PLT). They proved that in both cases unique Nash equilibrium is existed and PLT 
solution converges to newsvendor one when transshipment price increases. 

In the field of reactive transshipment, Robinson (1990) considered an inventory 
system with multiple retailers and periods given the assumption that transshipment time 
is negligible. The results of the research showed that the optimal solution can be obtained 
only for a system that has either multiple identical retailers or just two non-identical ones. 
Herer and Tzur (2001) studied the problem of an inventory system with two retailers 
when they are faced with a deterministic but dynamic demand over the time. They sought 
to determine optimal decisions for ordering and lateral transshipment in definite horizon 
time. They also investigated the key features of the system that conduct the framework 
for solving the problem in polynomial time. In the following, Herer and Tzur (2003) 
expanded the problem in the presence of several retailers. Hu et al. (2007) considered an 
inventory system with a decentralised decision-making structure which consists of  
two manufacturers who are faced with uncertainties in yield and demand and they can 
benefit from transshipment between each other. The researcher’s goal was to determine 
the price of transshipment in such a way that persuades them to coordinate with each 
other for making overall optimal decisions. The results of the study showed that it is not 
possible to determine this kind of price in all cases. Hu et al. (2008) studied a system with 
two manufacturers in a multi-period condition, any manufacturer in each period is faced 
with uncertainty in yield and demand. To counteract this uncertainty, the authors 
presented an optimal inventory policy that included lateral transshipment after that 
demand and yield was exactly known. Olsson (2009) was looking for an optimal (R, Q) 
replenishment policy while considering possibility of transshipment and complete 
pooling assumption. One of Olson’s interesting findings was that even in the presence of 
two retailers with similar characteristics, optimal policy is not symmetric. Özdemir et al. 
(2013) studied a supply chain involving several retailers receive their products from a 
capacitated supplier. The retailers can also use lateral transshipment between each other 
to satisfy more of their random demand. For ordering policy, it is assumed that retailers 
use order-up-to  policy. They found that the behaviour of the system is dependent on the 
supplier’s capacity. Lee and Park (2016) investigated two retailers and one uncertain 
supplier in the case of using transshipment and existence uncertainty in the supplier’s 
capacity which can be limited or unlimited. They expanded the problem in both 
centralised and decentralised decision-making structures. In a decentralised structure, in 
the face of limited capacity, the supplier assigns the order of each retailer according to 
proportional allocation rule. This situation causes inflating retailers’ order due to 
rationing game. They showed that in the optimal solution, if the supplier’s limited 
capacity and transshipment prices between retailers are low, the order amounts will not 
be inflated. In the recent years, Shao (2018) proposed the optimal dynamic transshipment 
policies for a decentralised dual manufacturing system comprising of one disrupted and 
one another requested manufacturer which can produce up to its capacity over T periods. 
They investigated the problem for both independent and competitive market scenarios 
and characterised the optimal transshipment policies. The results indicated that the 
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transshipment conditions in the competitive scenario are not as strict as those in the 
independent one. In the case of closed-loop supply chain network design, Jabbarzadeh  
et al. (2018) investigated the reactive lateral transshipment strategy with operational and 
disruption risks. Dehghani and Abbasi (2018) proposed a new transshipment policy for 
one echelon blood supply chain as a kind of perishable items with two service centres 
based on the age of the oldest item in the system and proved that it could be reduced the 
total inventory cost in comparison to actual case in Australian hospitals. Van Wijk et al. 
(2019) characterised the structure of lateral transshipment policy as a threshold type for 
two inventory location of spare part which face multiple demand classes by using 
stochastic dynamic programming. 

In this paper, we consider a set of manufacturers in which they are uncertain in the 
amount of production and demand and use lateral transshipment between each other to 
deal with these uncertainties. Due to the existence of time-consuming process in 
production, the lateral transshipments are proactive and should be specified at the 
beginning of the period so that each manufacturer knows the planned quantities for 
production. 

The main contribution of this paper is investigating lateral transshipment as an 
approach to deal with uncertainties in production yield and demand. Hence, we focus to 
contribute the utility of using lateral transshipment policy in the uncertainty environment. 
The objective is to determine the optimal production amount and lateral transshipments in 
order to maximise the total profit considering the proceeds from sale of goods and 
salvage of remaining product and the cost of production, lateral transshipments, and 
shortages. The problem is modelled as a nonlinear constrained programming. With regard 
to the concavity of objective function and convexity of solution space, the  
Karush-Kuhn-Tucker conditions (K-K-T) is used to obtaining the global optimal solution. 

The paper is organised as follows. Following the introduction in Section 1, the 
problem definition and mathematical model are presented in Section 2. An exact method 
for solving the problem will be described in Section 3. The numerical results are 
presented in Section 4. Finally, conclusions and suggestions for future research are 
discussed in Section 5. 

3 Problem definition and mathematical model 

In this study, a network of manufacturers (Figure 1) with centralised decision-making 
structure in the presence of uncertainty in the yield of production and demand is 
considered. They produce one identical product in a single period and their demands are 
different. The production yield for each manufacturer is considered independently 
uncertain which means that the final production amount can be less than which has been 
planned due to some factors such as failure in supply of raw materials, non-acceptance of 
them and etc. 

In this problem, some possible scenarios for production yield of each manufacturer 
are considered, which, from their combination, the yield scenario set for the 
manufacturers network is obtained, In other words, all manufacturers theoretically has n 
scenarios for their production yield which means that all yield scenarios for 
manufacturers network equal to 2n. In order to cope with these uncertainties, 
manufacturers use lateral transshipment between each other to increase their overall 
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profit. In fact, the goal is to determine the optimal production quantity and lateral 
transshipments in order to maximise the profit of entire network considering profits and 
cost including sales and salvage profits and the production, lateral transshipment and 
shortage costs. 

Figure 1 Manufacturers network with lateral transshipments (see online version for colours) 
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Consider I as the set of manufacturers that can be counted by i index. We assume that the 
salvage price per unit (Li) is lower than the production cost per unit (ci) for each 
manufacturer, equation (1), So that manufacturers have incentives to meet their demand 
preferably from their inventory in hand. Also, for transshipment cost between 
manufacturers (sij), triangular inequality is established, which means that the cost of 
direct lateral transshipments is always less than the indirect one. In other words, no 
manufacturer is being used as an intermediate centre for lateral transshipment between 
the two others, equation (2). 

;i iL c i I< ∀ ∈  (1) 

, ,ij ik kjs s s i j k I< + ∀ ∈  (2) 

In this article, it is also considered the logical assumptions of complete pooling policy for 
inventories presented by Tagaras (1989), equations (3)–(6). This means that each 
manufacturer with excess inventory uses its full capacity to cope with inventory shortages 
in other ones. In these inequalities, ri and πi represent the sales price and shortage cost per 
unit in ith manufacturer, respectively. Equation (3) expresses that for all manufacturers 
production cost is less than supply costs from the others which implies that no 
manufacturer meets all its demand from the manufacturers. In equation (4), sij + ci – cj 
represents net cost of lateral transshipment from ith manufacturer to the jth one and  
rj – cj + πj represents net shortage cost in manufacturer j. Obviously, to justify the lateral 
transshipment, its net cost must be less than the shortage cost. Equations (5) and (6), in 
the situation where two manufacturers at the same time face excess or shortage in their 
inventory, show that net lateral transshipment cost between them is greater than the 
differences in salvaging prices and shortage costs respectively. Therefore, the lateral 
transshipment between them is not profitable anymore. 
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; ,j i ijc c s i j I< + ∀ ∈  (3) 

; ,ij i j i j j js c c L r c π i j I+ − − < − + ∀ ∈  (4) 

; ,j ij i j iL s c c L i j I< + − + ∀ ∈  (5) 

; ,j j j ij i j i i ir c π s c c r c π i j I− + < + − + − + ∀ ∈  (6) 

To formulate the problem sets and indices, parameters, and variables will be defined as 
follows. 

3.1 Sets and indices 

I Set of manufacturers. 

n Number of manufacturers. 

i, j, k, l Index of manufacturer i, j, k, l ∈ {1, …, n}. 

ih  Number of exclusive scenarios for production yield of ith manufacturer. 

Hi Set of exclusive scenarios for production yield of ith manufacturer. 

hi Index of exclusive scenarios for production yield of ith manufacturer 
{1, , }.i ih h∈ …  

3.2 Parameters 
ci Production cost per unit in ith manufacturer. 

Li Salvage price per unit in ith manufacturer. 

πi Shortage cost per unit in ith manufacturer. 

ri Sales price per unit in ith manufacturer. 

sij Lateral transshipment cost from ith manufacturer to jth one. 
( )
i

i
hp  Probability of hith scenario of production yield for ith manufacturer. 

( )
i

i
hy  Production yield of ith manufacturer when hith scenario for its production yield 

occurs. 

fi(ui) Probability density function of demand for ith manufacturer. 

Fi(ui) Cumulative distribution function of demand for ith manufacturer. 

σi Standard deviation of normal distribution for ith manufacturer’s demand. 

μi Mean of the normal distribution for ith manufacturer’s demand. 

iyσ  Standard deviation of ith manufacturer’s production yield random variable. 

iyμ  Mean of ith manufacturer’s production yield random variable. 
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3.3 Variables 

Qi Production quantity of ith manufacturer (decision variable). 

1 nijh hX …  Amount of lateral transshipment from ith manufacturer to jth one when h1th 
scenario for the first manufacturer up to hnth scenario for nth one occur (decision 
variable). 

Z Expected value of manufacturer network profit. 
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 (8) 

s.t. 

1
( )

1 1; , ,n i

i
ijh h i n nh

j i

X y Q i I h H h H
≠

≤ ∀ ∈ ∀ ∈ ∀ ∈ … …  (9) 

1 1 10; , , , , ,nijh h n nX i j I h H h H≥ ∀ ∈ ∀ ∈ ∀ ∈… …  (10) 

0;iQ i I≥ ∀ ∈  (11) 

Equation (8) is the objective function of the problem that shows the expected value of 
profit of manufacturer network. The first and second phrases state the revenue of each 
manufacturer when demand is more or less than stock in hand, respectively. The third and 
fourth phrases indicate the proceeds from salvaging non-sold goods and cost of shortage 
at the end of the period for each manufacturer, respectively. The fifth and sixth phrases 
express the lateral transshipment and production costs. Constraint (9) guarantees that the 
lateral transshipment of a manufacturer is not more than its production yield. 
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4 Solving procedure 

We solve the problem based on derivative approach. First, the concavity of objective 
function is proven. 

Preposition: The objective function (Z) is strictly concave. 

Proof: Assume that X = {x1, x2, …, xn} is a vector of n variables. f(X), function of vector 
X, is strictly concave if and only if inequality (13) holds for all X vector values (Simon 
and Blume, 1994): 

0t
XXH X <  (12) 

In which Xt and XX are translation and Hessian matrix of vector X, respectively. 
In our problem, variable vector is 11 121 1 ( 1)[ ].nn n n h hX Q Q X X −= … …… …  Based on 

inequality (12) the expected value of objective function (Z) is concave if and only if 
equation (13) is negative for all feasible values of decision variables. 

1
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All coefficients of equation (13) are positive for all feasible values of decision variables, 
except the last term, which always takes a negative value because in the logic of all 
markets, the selling price is always higher than the salvage one. The product of positive 
values in a negative one is always negative. Therefore, the concavity of objective 
function is proved. 

With regard to the concavity of objective function and convexity of solution space, 
the K-K-T conditions are used to obtaining the global optimal solution. 1 nijh hλ …  is the 
Lagrange multipliers of constraints which set the limit of transshipment amount amongst 
manufacturers [set of constrains (9)]. In addition, λi and 1 nijh hλ …  are Lagrange multipliers 
of constraints related to non-negativity of production quantity [set of constrains (11)] and 
lateral transshipment decision variables [set of constrains (10)] respectively. Based on  
K-K-T approach, optimal production quantity, lateral transshipments and Lagrange 
coefficients can be easily achieved using GAMS software by solving the system of 
equations (14)–(24). In other words, the optimal solution is obtained by any feasible 
solution of relevant nonlinear programming structure in GAMS software. Although, as 
the number of manufacturer increases, the size of the problem increases exponentially, 
and hence, the problem cannot be solved within any acceptable time. The solving 
procedure time for a problem with four manufacturers is about four hours. 
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5 Numerical example 

There are three manufacturers with normal distribution for demand and two scenarios 
including optimistic and pessimistic for production yield. For all manufacturers, the 
production yield in pessimistic and optimistic scenarios is 40% ( )

1( )iy  and 80% ( )
2( )iy  

with occurrence probability of 0.3 ( )
1( )ip  and 0.7 ( )

2( ),ip  respectively. 
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Table 1 Cost, income and demand distribution parameters 

Manufacturer Production 
cost ($/unit) 

Salvage 
price ($/unit) 

Shortage 
cost ($/unit) 

Sales price 
($/unit) 

Demand distribution 
parameters 

μi (unit) σi (unit) 
1 500 170 20 1,100 200 65 
2 525 150 22 1,200 200 25 
3 550 160 25 1,150 200 45 

Table 2 Lateral transshipment cost between manufacturers ($/unit) 

To 
From 

1 2 3 

1 0 177 183 
2 177 0 173 
3 183 173 0 

Table 1 includes the cost and revenue parameters along with demand distribution 
parameters. The cost of lateral transshipment between manufacturers is shown in Table 2. 
Table 3 Production yield scenarios of manufacturers network 

Manufacturer 
Production yield scenarios 

(0.027)** 
1* 

(0.063)  
2 

(0.063)  
3 

(0.147)  
4 

(0.063)  
5 

(0.147)  
6 

(0.147)  
7 

(0.343)  
8 

1 40% 40% 40% 40% 80% 80% 80% 80% 
2 40% 40% 80% 80% 40% 40% 80% 80% 
3 40% 80% 40% 80% 40% 80% 40% 80% 

Notes: *Scenario number. 
**Scenario probability. 

The production yield scenarios for manufacturers network that derive from combination 
of production yield scenarios of each manufacturer is given in Table 3. 
Table 4 Optimal production quantity and total profits of manufacturers for the proposed model 

Z Q1 Q2 Q3 
303,523.01 351.63 284.08 297.95 

Table 5 Optimal production quantity and total profits of manufacturers with no lateral 
transshipment 

Z Q1 Q2 Q3 
287,429.04 309.16 275.14 286.45 

Table 4 shows the optimal production quantity and expected value of manufacturer 
network profit. To illustrate the benefit of using lateral transshipments, we again solve 
the problem under the condition of no transshipments. Table 5 indicates the optimal 
solution of this case. 
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By comparison with the results of Tables 4 and 5, one can conclude that using lateral 
transshipment, total profit of manufacturers increases from 287,578.97 to 303,614.9, 
which indicates an increase of 5.6%. Also, production quantity in all manufacturers in the 
case of lateral transshipment is more than no-transshipment condition which can be 
interpreted due to lateral transshipments opportunity between manufacturers across the 
network. 

In Tables 4 and 5, we can see Q1 > Q3 > Q2, this refer to the standard deviation of 
demand probability distribution which is σ1 > σ3 > σ2. In other word, more uncertainty in 
the demand of manufacturer results in more production quantity. 
Table 6 Optimal quantity of transshipments between manufacturers 

To 
manufacturer 

From 
manufacturer 

Production yield scenarios 
1 2 3 4 5 6 7 8 

2 1 27.87 0 0 0 67.73 61.59 0 0 
3 1 0 0 0 0 41.07 0 59.2 0 
1 2 0 0 0 19.45 0 0 0 0 
3 2 0 0 36.35 0 0 0 17.84 0 
1 3 0 0 0 24.94 0 0 0 0 
2 3 0 62.08 0 0 0 23.45 0 0 

Table 6 demonstrates the optimal quantity of lateral transshipment between 
manufacturers under different scenarios of production yield. In scenario 8, no 
manufacturer delivers any commodity to the others due to occurrence of optimistic 
scenario for production yield of all manufacturers. In other scenarios, the lateral 
transshipment is always accomplished only from one manufacturer that its production is 
matching with optimistic yield scenario to the one that its pessimistic yield scenario has 
occurred. In scenario 1, the total lateral transshipment quantities are the least in 
comparison to other scenarios in which transshipments are provided because in this 
scenario production yield of all manufacturers is in pessimistic status. Also, in scenario 1, 
the lateral transshipment is carried out on behalf of manufacturer 1, due to low 
production cost and high demand uncertainty in this manufacturer. 

6 Sensitivity analysis 

In this section, the sensitivity analysis of objective function and utility of using lateral 
transshipment policy with respect to the cost and income parameters, as well as to 
parameters related to uncertainty of production and demand are investigated. 

The sensitivity analysis of the objective function with respect to the cost and income 
parameters is presented in Table 7. It can be concluded that the objective function is 
highly sensitive to the production cost and sales price and in contrast, it is low sensitive 
to the shortage and lateral transshipment costs and the salvaging price. In the other words, 
with similar lateral transshipment costs, objective function is insensitive by decreasing or 
increasing shortage cost or salvaging price. therefore, these factors are approximately 
neutral. 
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Table 7 Sensitivity analysis of the objective function 

Parameter 
Percentage change 

ci πi sij ri Li 

–20% 22.76% 0.08% 0.53% –40.88% –0.9% 
–10% 11.16% 0.04% 0.26% –20.63% –0.46% 
10% –10.76% –0.04% –0.26% 20.91% 0.47% 
20% –21.14% –0.08% –0.51% 42.02% 0.97% 

Table 8 Sensitivity analysis of the objective function and utility of using lateral transshipments 

Percentage change in σi 

Percentage change 
–20% –10% 10% 20% 

Objective function 2.59% 1.33% –1.37% –2.79% 
Utility of lateral transshipment policy 5.95% 5.78% 5.41% 5.22% 

Table 8 shows sensitivity analysis of the objective function and utility of using lateral 
transshipment policy when standard deviation of the demand probability distribution for 
all manufacturers (σi) is changed. As can be seen, by increasing the standard deviation, 
the objective function will be reduced due to an increase of uncertainty in the 
manufacturers’ demand and utility of using lateral transshipment remains constant which 
means that benefit of lateral transshipment policy is not sensitive to the demand 
uncertainty. 
Table 9 Sensitivity analysis of the objective function 

( )
1

iy  –20%  0%  20% 
( )
2
ip  

( )
2
iy  

–20% 0% 20%  –20% 0% 20%  –20% 0% 20% 

–20% 2.9% 0.0% –2.3%  4.5% 2.8% 1.6%  5.7% 4.9% 4.4% 
0% 1.5% –2.7% –6.2%  2.9% 0.0% –2.3%  4.2% 2.3% 0.9% 
20% 0.4% –4.8% –9.2%  1.7% –2.2% –5.5%  2.9% 0.0% –2.3% 

Table 9 shows sensitivity analysis of the objective function due to changing in probability 
of all manufacturers’ optimistic yield scenario ( )

2( )ip  in addition to production yield in 

both pessimistic and optimistic scenarios for all manufacturers ( ) ( )
1 2( , )i iy y  which directly 

affects on production uncertainty base on equation (25). 

( )2( ) ( )

1

;
i

i ii i

i

h
i i

y yh h
h

σ y μ p i I
=

= − ∀ ∈  (25) 
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Considering the results achieved in Table 9, the following conclusions can be mentioned: 

• By decreasing the probability of optimistic yield scenario the objective function will 
be reduced due to increase of uncertainty in the production based on equation (25). 

• With increasing production yield in pessimistic scenario, the objective function 
increases due to reduction in uncertainty of production quantity. On the contrary, 
with increasing the production yield in optimistic scenario, the objective function 
decreases due to an increase in production uncertainty based on equation (25). 

• The objective function is not sensitive to the simultaneous changes in production 
yield in both optimistic and pessimistic scenarios, because in this condition, the 
coefficient of variation for production yield random variable for all manufacturers 
remains constant based on equations (7) and (25). 

• The highest amount of objective function occurs in a situation where the production 
yield in optimistic scenario are at their lowest level and on the contrary, the 
production yield in pessimistic scenario and probability of optimistic scenario are at 
their highest level. Because in this situation production uncertainty is the least based 
on equation (19). The lowest amount of objective function occurs exactly when 
opposite of the above mentioned conditions are established. 

Table 10 Sensitivity analysis of using lateral transshipment policy 

( )
1

iy  –20%  0%  20% 
( )
2
ip  

( )
2
iy  

–20% 0% 20%  –20% 0% 20%  –20% 0% 20% 

–20% 8.1% 5.3% 2.6%  4.3% 3.1% 1.6%  1.5% 1.2% 0.7% 
0% 11.0% 7.0% 3.3%  8.1% 5.3% 2.6%  5.0% 3.6% 1.8% 
20% 12.8% 7.9% 3.8%  10.5% 6.7% 3.2%  8.1% 5.3% 2.6% 

The effects of changing in parameters associated with production uncertainty on the 
utility of using lateral transshipment are investigated in Table 10. In other words, the 
percentage increase in manufacturers’ profit per different levels of production uncertainty 
parameters will be analysed. According to the results obtained in Table 10, the following 
conclusion can be deduced: 

• The utility of using lateral transshipments increases with reduction in probability of 
optimistic yield scenario due to the increase in production uncertainty based on 
equation (25). 

• With the increase in production yield of pessimistic scenario, the utility of using 
lateral transshipments decreases given the fact that production uncertainty is reduced 
based on equation (25). On the other hand, with the increase in production yield of 
optimistic scenario, the benefit of using lateral transshipments is increased, which 
can be explained by increasing the production uncertainty based on equation (25). 

• The benefit of using lateral transshipments is not sensitive to simultaneous changes 
in production yield of both optimistic and pessimistic scenarios, meaning that it does 
not change with their simultaneous increment or decrement, because in this 
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condition, coefficient of variation for production yield random variable for all 
manufacturers remains constant based on equations (7) and (25). 

• The greatest benefit of using lateral transshipment policy occurs in a situation where 
the probability of optimistic scenario for production yield and production yield in 
pessimistic scenario are at their lowest level and on the contrary, production yield in 
optimistic scenario is at its highest level. Because in this situation, production 
uncertainty is increased the most based on equation (25). The least benefit of using 
lateral transshipment policy occurs exactly when the opposite of the above 
mentioned conditions are established. 

7 Conclusions and future studies 

In this paper, considering the significant effect of uncertainty on the production space, a 
set of manufacturers managed by an enterprise facing with uncertainties in the production 
and demand was considered. The main contribution of the paper is investigating lateral 
transshipment as an approach to deal with uncertainties which can prevent payment of 
excessive purchases or reservations from other sources, and manufacturers can use their 
inventory to balance the demand and commodities in the entire network with centralised 
decision-making structure. The problem was modelled according to the continuity of the 
demand probability distribution function in the form of a nonlinear constrained 
programming. Then, based on the K-K-T conditions, optimal quantities of planned 
production and lateral transshipments were achieved by GAMS software. In the 
following, in order to validate the model, a numerical example consist of three 
manufacturers facing with normal distribution for their demand and with the assumption 
of existence two optimistic and pessimistic scenarios for production yield was studied. 
Finally, based on this example, the effects of parameter changes on manufacturers’ profit 
and utility of using lateral transshipments were investigated. The results indicated a 
reduction in manufacturers’ profit with increasing uncertainty in the production and 
demand amount. In addition, they showed that the benefit of lateral transshipment policy 
increases with respect to growth in production uncertainty, but does not change 
significantly by variation in demand uncertainty. Based on the results for more than four 
manufacturers, the problem cannot be solved in acceptable time. Hence, in future studies 
a heuristic algorithm can be developed to cope on this defect, Also, the problem can be 
extended by considering continuous form of probabilistic distribution for production 
yield and studying the problem in the presence of several periods for production. Also, 
considering the concept of risk aversion by adding the constraints of response and service 
levels for each manufacturer can increase the value of the problem. 
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