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Abstract 
     In this paper, quasi three-dimensional (quasi-3D) hyperbolic shear deformation theory 

is used for the free vibration analysis of functionally graded nanoplates by using the 

isogeometric analysis (IGA) approach and nonlocal elasticity theory. The quasi-3D 

theory using five independent unknowns satisfies the free transverse shear stress 

conditions on the top and bottom surfaces of plate and so a shear correction factor is 

not needed. The displacement field takes into account both shear deformation and 

thickness stretching effect and the equations are derived based on physical neutral 

surface position. The IGA approach can easily formulate C1 continuous elements by 

using Non-Uniform Rational B-Spline (NURBS) functions. Numerical results are 

compared with other solutions. 
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1. Introduction 

In recent years, many research studies have been carried out to predict the behavior of 

nanostructures. The continuum mechanics approach which provides more simplicity and 

efficiency than molecular dynamics approach, is widely used to study the mechanical behavior 

of nanostructures. The local (classical) continuum theories do not model the behavior of 

nanoscale structures properly. In order to consider small scale effects in nanoscale structures, 

different size-dependent continuum mechanics models have been developed such as the couple 

stress theory [1,2], gradient theory [3], nonlocal elasticity theory [4-6], strain gradient theory 

[7,8], modified couple stress theory [9], modified strain gradient theory [10] and surface energy 

theory [11]. Many publications show that the nonlocal elasticity theory considering small scale 

effects can well predict the behavior of nanostructures. Aghababaei and Reddy [12] used third 

order shear deformation plate theory for the bending and vibration of nanoplates. Ansari and 
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et al. [13] presented nonlocal plate model for the free vibration of single-layered graphene 

sheets. Malekzadeh and et al. [14] utilized nonlocal elasticity theory for the free vibration of 

orthotropic nanoplates. Jomehzadeh and Saidi [15] presented the three dimensional vibration 

analysis of nanoplates. Hosseini-Hashemi and et al. [16] presented an exact analytical approach 

for the free vibration of Mindlin rectangular nanoplates. Daneshmehr et al. [17] utilized 

nonlocal elasticity theory for the free vibration analysis of nanoplates. Sarrami-Foroushani and 

Azhari [18] used finite strip method to analyze the rectangular nanoplates based on refined 

plate theory. Ansari and et al. [19] presented the three dimensional vibration analysis of 

nanoplates on elastic foundations. Ilkhani et al. [20] used wave propagation approach for the 

free vibration of thin rectangular nanoplates. Most of the studies in functionally graded (FG) 

nanoplates are based on the classical and first order shear deformation theories and a few 

studies are available using other shear deformation theories.  

To analyze plate structures, many theories have been presented. The classical plate theory 

(CPT) gives acceptable results for thin plates. The first order shear deformation theory (FSDT) 

which accounts for transverse shear deformation effects, requires a shear correction factor to 

satisfy the free transverse shear stress conditions on the top and bottom surfaces of plate. To 

avoid the use of shear correction factor, many higher order shear deformation theories 

(HOSDT) have been proposed such as third order shear deformation theory (TSDT) [21], 

sinusoidal shear deformation theory (SSDT) [22,23], hyperbolic shear deformation theory 

(HSDT) [24-31] and so on [32]. In order to reduce the number of unknowns in HOSDT, the 

refined plate theory (RPT) model was proposed by Senthilnathan et al. [33]. The RPT divides 

transverse displacement into bending and shear components and by making further 

assumptions, decreases the number of unknowns in displacement field. 

There are several numerical methods to solve problems. Hughes et al. [34] introduced 

isogeometric analysis (IGA) approach which represents the exact geometry of problem by the 

use of Non-Uniform Rational B- Spline (NURBS). The IGA approach can easily form C1 

continuous elements by using B-splines or NURBS approximations. However the IGA 

approach has been widely used to analyze various problems, there are only a few studies which 

analyze nanostructures. Natarajan et al. [35] presented the free vibration analysis of 

functionally graded nanoplates based on FSDT. Nguyena et al. [36] utilized the IGA approach 

to analyze functionally graded nanoplates. 

In this paper quasi-3D hyperbolic shear deformation theory is used for the free vibration 

analysis of functionally graded nanoplates by using the IGA approach and nonlocal elasticity 

theory based on physical neutral surface position. The following section presents the equations 

of nonlocal elasticity theory. In section 3 quasi-3D hyperbolic shear deformation theory is 

introduced for FG nanoplates based on physical neutral surface position. In section 4, the 

equations of nanoplate theory is provided based on NURBS basis functions. In section 5, 

numerical results and discussions are provided. Finally, this paper is closed by conclusions.  

 

2. Nonlocal elasticity theory 

According to the nonlocal elasticity theory, the stress at a reference point x is a function of 

strain field at every point in the body. The stress is defined as [4-5] 
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(1 − 𝜇∇2)𝜎𝑖𝑗

𝑛𝑙 = 𝜎𝑖𝑗
𝑙                                                                        (1a) 

 

𝜇 = (𝑒0𝑎)
2                                                                            (1b) 

 

∇2=
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
                                                                      (1c) 

 

Here, 𝜎𝑖𝑗
𝑛𝑙 and 𝜎𝑖𝑗

𝑙   are nonlocal and local stress respectively. 𝜇 is nonlocal parameter which 

represents the small scale effect. 𝑒0 is a constant determined for each material type and a is an 

internal characteristics length. 

 

3. Quasi-3D refined plate theory for FG nanoplates 

1-3- Physical neutral surface 

The neutral surface position of FG plates may not coincide with its middle surface due to the 

lack of symmetry. If the origin of the coordinate system is located on the neutral surface 

position, FG plates can be easily analyzed with the isotropic plate theories. zms and zns  planes 

are considered to determine the neutral surface position of FG plates as shown in Fig. 1. 

 

 
 Fig. 1: Geometry of functionally graded plates. 

 

Consider a FG rectangular plate with length a, width b and constant thickness h. The position 

of the neutral surface (C) can be calculated by the use of the equilibrium equation as  

 

𝐶 =
∫ 𝐸(𝑧𝑚𝑠)𝑧𝑚𝑠
ℎ 2⁄

−ℎ 2⁄ 𝑑𝑧𝑚𝑠

∫ 𝐸(𝑧𝑚𝑠)
ℎ 2⁄

−ℎ 2⁄ 𝑑𝑧𝑚𝑠
                                                                  (2)                                                                                                                                                                          

 

The nonhomogeneous properties of materials may be obtained by means of the rule of mixture. 

The volume fraction of ceramic 𝑉𝐶  in the new coordinate system can be expressed as 

 

𝑉𝐶 = ( 
𝑧𝑚𝑠

ℎ
+
1

2
 )𝑘 = ( 

𝑧𝑛𝑠+𝐶

ℎ
+
1

2
 )𝑘                                                          (3)                                                                                                                                                   

 

where the power k is greater than or equal to zero. The Young’s modulus of FG plate is a 

function of the thickness coordinate as follows 

 

𝐸(𝑧𝑛𝑠) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚) ( 
𝑧𝑛𝑠+𝐶

ℎ
+
1

2
 )
𝑘

                                               (4)                                                                                                                

 

For Mori–Tanaka scheme, the Young’s modulus is given as [37,38] 

Metal rich surface

Ceramic rich surface

Neutral surface

Middle surface

h/2

h/2

Czms

zns
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𝐸(𝑧𝑛𝑠) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚)
𝑉𝐶

1 + 𝑉𝑚(
𝐸𝑐
𝐸𝑚

− 1)(
1 + 𝜈
3 − 3𝜈

)
 ,   𝑉𝑚 = 𝑉𝐶 − 1                       (5) 

 

2-3- Quasi-3D RPT based on physical neutral surface 

Based on the RPT, the displacements of a material point located at (𝑥, 𝑦, 𝑧) in a plate may be 

written as 

𝑢(𝑥, 𝑦, 𝑧𝑛𝑠) = 𝑢0 − 𝑧𝑛𝑠
𝜕𝑤𝑏
𝜕𝑥

+ 𝑔(𝑧𝑛𝑠)
𝜕𝑤𝑠
𝜕𝑥

 

𝑣(𝑥, 𝑦, 𝑧𝑛𝑠) = 𝑣0 − 𝑧𝑛𝑠
𝜕𝑤𝑏

𝜕𝑦
+ 𝑔(𝑧𝑛𝑠)

𝜕𝑤𝑠

𝜕𝑦
                                                 (6)                                                                                                                   

𝑤(𝑥, 𝑦, 𝑧𝑛𝑠) = 𝑤𝑏 + 𝑤𝑠 +𝛹′(𝑧𝑛𝑠)𝛽 

 

where 𝑢, 𝑣, 𝑤 are displacements in the 𝑥, 𝑦, 𝑧 directions, 𝑢0, 𝑣0, 𝑤𝑏  and 𝑤𝑠 are mid-plane, 

bending and shear deflections and 𝛽 is the rotation of the 𝑥𝑦 plane due to shear. The function 

𝑔(𝑧𝑛𝑠) = 𝛹(𝑧𝑛𝑠) − (𝑧𝑛𝑠 + 𝐶) is used to describe the distribution of transverse shear strains 

and stresses through the plate thickness. In this paper 𝛹(𝑧𝑛𝑠)  function is presented as [32]: 

 

𝛹(𝑧𝑛𝑠) = ((𝑧𝑛𝑠 + 𝐶)/ℎ)(𝑐𝑜𝑠ℎ(0.5) + 0.5𝑠𝑖𝑛ℎ (0.5) − 𝑐𝑜𝑠ℎ((𝑧𝑛𝑠 + 𝐶)/ℎ))                    (7)                                                                                                                                                          

 

The relationships between strains and displacements are described as 

 

{ɛ} = {

ɛ𝑥
ɛ𝑦
𝛾𝑥𝑦
} = {

ɛ𝑥
0

ɛ𝑦
0

𝛾𝑥𝑦
0

} + 𝑧𝑛𝑠 {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} + 𝑔(𝑧𝑛𝑠) {

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
}                                     (8) 

{𝛾} = {
𝛾𝑥𝑧
𝛾𝑦𝑧
} = 𝛹 ′(𝑧𝑛𝑠) {

𝛾𝑥𝑧
𝑠

𝛾𝑦𝑧
𝑠 } 

{ɛ𝑧} = 𝛹 ′′(𝑧𝑛𝑠)𝛽 

where 

{

ɛ𝑥
0

ɛ𝑦
0

𝛾𝑥𝑦
0

} =

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥 }
 
 

 
 

  , {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} = −

{
 
 

 
 
𝜕2𝑤𝑏

𝜕𝑥2

𝜕2𝑤𝑏

𝜕𝑦2

2
𝜕2𝑤𝑏

𝜕𝑥𝜕𝑦}
 
 

 
 

 , {

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
} =

{
 
 

 
 

𝜕2𝑤𝑠

𝜕𝑥2

𝜕2𝑤𝑠

𝜕𝑦2

2
𝜕2𝑤𝑠

𝜕𝑥𝜕𝑦}
 
 

 
 

 , {
𝛾𝑥𝑧
𝑠

𝛾𝑦𝑧
𝑠 } = [

𝜕𝑤𝑠

𝜕𝑥
+
𝜕𝛽

𝜕𝑥
𝜕𝑤𝑠

𝜕𝑦
+
𝜕𝛽

𝜕𝑥

]               (9)                            

 

Based on the Hooke’s law the stresses are written as 

 

(1 − 𝜇𝛻2)

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧}
 
 

 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

{
 
 

 
 
ɛ𝑥
ɛ𝑦
ɛ𝑧
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

                             (10) 

𝐶11 = 𝐶22 = 𝐶33 =
(1 − ν)E(zns)

(1 − 2ν)(1 + ν)
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𝐶12 = 𝐶13 = 𝐶23 =
νE(zns)

(1 − 2ν)(1 + ν)
 

𝐶44 = 𝐶55 = 𝐶66 =
E(zns)

2(1 + ν)
 

                                                                                                                                       

The total potential energy can be given as 

 

П = 𝑈 − 𝑇                                                                 (11) 

 

where 𝑈, and T are strain energy, and kinetic energy. 

The strain energy is defined as 

 

𝑈 =
1

2
∬ 𝜎

ℎ

2
−𝐶

−
ℎ

2
−𝐶

ɛ𝑑𝑉 =
1

2
∬ (𝜎𝑥

𝑛𝑙ɛ𝑥 + 𝜎𝑦
𝑛𝑙ɛ𝑦 + 𝜎𝑧

𝑛𝑙ɛ𝑧 + 𝜏𝑥𝑦
𝑛𝑙 𝛾𝑥𝑦 + 𝜏𝑥𝑧

𝑛𝑙𝛾𝑥𝑧 + 𝜏𝑧𝑦
𝑛𝑙𝛾𝑧𝑦)

ℎ

2
−𝐶

−
ℎ

2
−𝐶

𝑑𝑧𝑛𝑠𝑑𝐴   (12)                              

 

By substituting Eq. (8) into Eq. (12), the potential energy of the plate is rewritten as 

 

𝑈 =
1

2
∫(𝑁𝑥ɛ𝑥

0 + 𝑁𝑦ɛ𝑦
0+𝑁𝑥𝑦𝛾𝑥𝑦

0 +𝑀𝑥
𝑏𝑘𝑥

𝑏 +𝑀𝑦
𝑏𝑘𝑦

𝑏+𝑀𝑥𝑦
𝑏 𝑘𝑥𝑦

𝑏 +𝑀𝑥
𝑠𝑘𝑥
𝑠 +𝑀𝑦

𝑠𝑘𝑦
𝑠+𝑀𝑥𝑦

𝑠 𝑘𝑥𝑦
𝑠  + 𝑆𝑥𝑧

𝑠 𝛾𝑥𝑧
𝑠 +

 𝑆𝑦𝑧
𝑠 𝛾𝑦𝑧

𝑠 + 𝑅𝑧𝛽)𝑑𝐴                                                                                                  (13)         

 

where the stress resultants N, M, S and R are defined as         

 

(𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦) = ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)
(𝑛𝑙)𝑑𝑧𝑛𝑠  

ℎ

2
−𝐶

−
ℎ

2
−𝐶

                                            (14a)                                                                              

(𝑀𝑥
𝑏 , 𝑀𝑦

𝑏 , 𝑀𝑥𝑦
𝑏 ) = ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)

(𝑛𝑙)𝑧𝑛𝑠𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

                                            (14b)                                                                                    

(𝑀𝑥
𝑠 , 𝑀𝑦

𝑠 , 𝑀𝑥𝑦
𝑠 ) = ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)

(𝑛𝑙)𝑔(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠  
ℎ

2
−𝐶

−
ℎ

2
−𝐶

                                        (14c)  

(Sxz
s , Syz

s ) = ∫ (𝜏𝑥𝑧,𝜏𝑦𝑧,)
(𝑛𝑙)𝛹′(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

                                              (14d)  

𝑅𝑧 = ∫ 𝜎𝑧
(𝑛𝑙)𝛹′′(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

                                                          (14e)  

 

By substituting Eq. (9) into Eq. (10) and the subsequent results into Eqs. (14a-e), the stress 

resultants are obtained as 

(1 − 𝜇𝛻2)

{
 

 
{𝑁}

{𝑀𝑏}
{𝑀𝑠}

{𝑅𝑧}}
 

 
= [𝐷𝑏]

{
 

 
{ɛ0}

{𝑘𝑏}
{𝑘𝑠}
{𝛽} }

 

 

                                                    (15a)                                                                                                                          

(1 − 𝜇𝛻2){𝑆𝑠} = [𝐷𝑠]{𝛾𝑠}                                                        (15b)  

 

where the material matrices are given as 
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[𝐷𝑏] =

[
 
 
 
 
[𝐴] [𝐵] [𝐷] [𝐺1]

𝑇

[𝐵] [𝐶] [𝐸] [𝐺2]
𝑇

[𝐷] [𝐸] [𝐹] [𝐺3]
𝑇

[𝐺1] [𝐺2] [𝐺3] [𝐺4] ]
 
 
 
 

                                                         (16)             

([𝐴], [𝐵], [𝐶], [𝐷], [𝐸], [𝐹]) =

                                                        [

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

] ∫ (1, 𝑧𝑛𝑠 , 𝑧𝑛𝑠
2 , 𝑔(𝑧𝑛𝑠), 𝑧𝑛𝑠𝑔(𝑧𝑛𝑠), 𝑔

2(𝑧𝑛𝑠))
𝐸(𝑧𝑛𝑠)

1−𝜈2
 𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

   

([𝐺1], [𝐺2], [𝐺3]) = [1 1 0] ∫
𝜈𝐸(𝑧𝑛𝑠)

(1−2𝜈)(1+𝜈)
(1, 𝑧𝑛𝑠 , 𝑔(𝑧𝑛𝑠))𝛹

′′(𝑧𝑛𝑠)𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

  

[𝐺4] = ∫
(1 − 𝜈)𝐸(𝑧𝑛𝑠)

(1 − 2𝜈)(1 + 𝜈)
(𝛹′′(𝑧𝑛𝑠))

2𝑑𝑧𝑛𝑠

ℎ
2
−𝐶

−
ℎ
2
−𝐶

  

[𝐷𝑠] = [
1 0
0 1

] ∫
𝐸(𝑧𝑛𝑠)

2(1+𝜈)
(𝛹′(𝑧𝑛𝑠))

2𝑑𝑧𝑛𝑠

ℎ

2
−𝐶

−
ℎ

2
−𝐶

  

 

The kinetic energy and its variation is obtained as 

 

T =
1

2
∫ρ [(�̇�)2 + (�̇�)2 + (�̇�)2]𝑑𝑉                                                      (17) 

𝛿T =∬ (�̇�𝛿�̇� + �̇�𝛿�̇� +

ℎ
2
−𝐶

−
ℎ
2
−𝐶

�̇�𝛿�̇�)ρ(zns)𝑑zns𝑑𝐴 = −∫(𝛿{�̃�}
𝑇 − 𝜇𝛻2𝛿{�̃�}𝑇) [𝑚]{�̈̃�}𝑑𝑉         (18) 

 

where m is the mass matrix defined as 

 

[𝑚] = [
𝐼0 0 0
0 𝐼0 0
0 0 𝐼00

] , 𝐼0 = [
𝐼1 𝐼2 𝐼4
𝐼2 𝐼3 𝐼5
𝐼4 𝐼5 𝐼6

] , 𝐼00 = [
𝐼1 𝐼7 𝐼4
𝐼7 𝐼8 𝐼5
𝐼4 𝐼5 𝐼6

]                                  (19) 

(I1, I2, I3, I4, I5, I6, I7, I8)

= ∫ (1, zns, zns
2, g(zns), znsg(zns), g

2(zns), Ψ
′(zns), (Ψ

′(zns))
2)ρ(zns)dzns

h
2
−C

−
h
2
−C

 

{�̃�} = {𝑢0, −
𝜕𝑤𝑏
𝜕𝑥

,
𝜕𝑤𝑠
𝜕𝑥

, 𝑣0, −
𝜕𝑤𝑏
𝜕𝑦

,
𝜕𝑤𝑠
𝜕𝑦

, (𝑤𝑏 +𝑤𝑠), 𝛽, 0}
𝑇                                (20) 

 

 

4. FG nanoplate formulation based on NURBS basis functions 

1-4- NURBS functions 

A non-decreasing knot vector in the parametric space [34] is define as 

 

𝑈 = {𝑢0, 𝑢1 , 𝑢2, … . , 𝑢𝑚}, 𝑢𝑖 ≤ 𝑢𝑖+1, 𝑖 = 0,1,2,3, … . . , 𝑚 − 1                                 (21)                                                                                   

𝑚 = 𝑛 + 𝑝 + 1 
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Here 𝑢𝑖 are the 𝑖-th knot, p is the polynomial degree and n+1 is the number of basis functions. 

The knots equally spaced in the parametric space are said to be uniform knots. A knot vector 

the first and the last knots are repeated p+1 times, is said to be open knot vector and is defined 

as  

𝑈 = {𝑎,⋯ , 𝑎⏟    
𝑝+1

, 𝑢𝑚−𝑝−1, 𝑏,⋯ , 𝑏⏟  
𝑝+1

}                                                                   (22)                                                                                                                            

 

The B-spline basis functions of degree p, are defined as 

 

𝑁𝑖,0(𝑢) = {
1                            𝑖𝑓 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1
0                                 otherwise       

                                                 (23)                                                                                                                

 

𝑁𝑖,𝑝(𝑢) =
𝑢 − 𝑢𝑖
𝑢𝑖+𝑝 − 𝑢𝑖

𝑁𝑖,𝑝−1(𝑢) +
𝑢𝑖+𝑝+1−𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢) 

 

A piecewise-polynomial B-spline curve is defined as 

𝐶(𝑢) =∑ 

𝑛

𝑖=0

𝑁𝑖,𝑝(𝑢) × 𝑃𝑖   ,    a ≤ u ≤ b                                                   (24) 

 

where {𝑝𝑖} are the control points and {𝑁𝑖,𝑝(𝑢)} are the B-spline basis functions of degree p. 

Similarly, a B-spline surface of degree p, is defined as 

 

𝑆(𝑢, 𝑣) =∑ 

𝑛

𝑖=0

∑ 

𝑚

𝑗=0

𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑃𝑖,𝑗                                                       (25) 

 

Where {𝑃𝑖,𝑗} form a bidirectional control net, {𝑁𝑖,𝑝(𝑢)} and {𝑁𝑗,𝑞(𝑣)} are the B-spline basis 

functions defined on the knot vectors as 

𝑈 = {0,… . ,0⏟    
𝑝+1

, 𝑢𝑝+1, … . , 𝑢𝑟−𝑝−1, 1, … . ,1⏟    
𝑝+1

}                                              (26)                                                                                                            

𝑉 = {0,… . ,0⏟    
𝑞+1

, 𝑣𝑞+1, … . . , 𝑣𝑠−𝑞−1 , 1, … . ,1⏟    
𝑞+1

} 

 

NURBS curve and surface of degree p are defined as 

 

𝐶(𝑢) =
∑ 𝑁𝑖,𝑝
𝑛
𝑖=0 (𝑢)𝑤𝑖𝑃𝑖
∑ 𝑁𝑖,𝑝
𝑛
𝑖=0 (𝑢)𝑤𝑖

                                                              (27) 

 

𝑆𝑖,𝑗(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖,𝑝(𝑢)

𝑚
𝑗=0 𝑁𝑗,𝑞

𝑛
𝑖=0 (𝑣)𝑤𝑖,𝑗𝑃𝑖,𝑗

∑ ∑ 𝑁𝑖,𝑝(𝑢)
𝑚
𝑗=0 𝑁𝑗,𝑞

𝑛
𝑖=0 (𝑣)𝑤𝑖,𝑗

                                         (28) 

 

where {𝑤𝑖} are the weights.  
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Rational B-spline basis function and NURBS surface defined in Eq. (28), can be expressed as 

 

𝑅𝑖,𝑗(𝑢, 𝑣) =
𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗

∑ ∑ 𝑁𝑘,𝑝(𝑢)
𝑚
𝑙=0 𝑁𝑙,𝑞

𝑛
𝑘=0 (𝑣)𝑤𝑘,𝑙

                                         (29) 

 

𝑆(𝑢, 𝑣) =∑ 

𝑛

𝑖=0

∑ 

𝑚

𝑗=0

𝑅𝑖,𝑗(𝑢, 𝑣)𝑃𝑖,𝑗                                                       (30) 

 

2-4- Quasi-3D RPT formulation based on NURBS approximations 

The variation of strain energy can be written as 

 

𝛿𝑈 = ∫𝛿 {ɛ}𝑇[�̅�]{ɛ}𝑑𝑉                                                               (31)                                                                                                                       

 

The global stiffness matrix 𝐾 is computed as 

 

[𝐾] = ∫([𝐵𝑚]𝑇 [𝐷𝑏][𝐵𝑚] + [𝐵𝑠]𝑇[𝐷𝑠][𝐵𝑠])𝑑𝛺                                          (32)                                                                   

 

where 

[𝐵𝑖
𝑚] =

[
 
 
 
 
 
𝑅𝑖,𝑥 0 𝑅𝑖,𝑦 0 0 0 0 0 0 0

0 𝑅𝑖,𝑦 𝑅𝑖,𝑥 0 0 0 0 0 0 0

0 0 0 −𝑅𝑖,𝑥𝑥 −𝑅𝑖,𝑦𝑦 −2𝑅𝑖,𝑥𝑦 0 0 0 0

0 0 0 0 0 0 𝑅𝑖,𝑥𝑥 𝑅𝑖,𝑦𝑦 2𝑅𝑖,𝑥𝑦 0

0 0 0 0 0 0 0 0 0 𝑅𝑖]
 
 
 
 
 
𝑇

       (33)                                           

[𝐵𝑖
𝑠] = [

0 0 0 𝑅𝑖,𝑥 𝑅𝑖,𝑥
0 0 0 𝑅𝑖,𝑦 𝑅𝑖,𝑦

] 

 

The Hamilton’s principle is used to derive the equation of the free vibration analysis as 

 

𝛿∫ (𝑇 − 𝑈)𝑑𝑡
𝑡

0

= ∫ (𝛿𝑇 − 𝛿𝑈)𝑑𝑡
𝑡

0

= 0  ⇒ ∫𝛿 {ɛ}𝑇[�̅�]{ɛ}dV = −∫𝛿 {�̃�}𝑇[𝑚]{�̈̃�}dV         (34) 

 

The Eq. (34) can be simplified as 

 

([K] − 𝜔2[M]){D} = 0                                                             (35) 

where 

[𝑀] = ∫ ([�̃�]𝑇 − 𝜇𝛻2[�̃�]𝑇)[𝑚][�̃�]𝑑𝛺 

[�̃�] =

[
 
 
 
 
𝑅𝑖 0 0 0 0 0 0 0 0
0 0 0 𝑅𝑖 0 0 0 0 0
0 −𝑅𝑖,𝑥 0 0 −𝑅𝑖,𝑦 0 𝑅𝑖 0 0

0 0 𝑅𝑖,𝑥 0 0 𝑅𝑖,𝑦 𝑅𝑖 0 0

0 0 0 0 0 0 0 𝑅𝑖 0]
 
 
 
 
𝑇
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5. Results and discussions 

     In this section the results of the free vibration analysis of FG nanoplates are presented. First 

the convergence of results for natural frequencies are examined. Then the efficiency of the 

present model is shown by comparing the obtained results with 3D solutions based on local 

elasticity theory (μ = 0). Finally, the results are presented for FG and isotropic nanoplates. To 

obtain results, (p+1)×(q+1) Gauss points are utilized. The material properties of FG nanoplates 

are listed in Table 1. Different boundary conditions are considered including simply supported: 

 

𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 0   at  x = 0, 𝑎                                                      (36)                    

𝑢0 = 𝑤𝑏 = 𝑤𝑠 = 0   at  y = 0, 𝑏 

 

Clamped: 

𝑢0 = 𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝛽 = 𝑤𝑏,𝑛 = 𝑤𝑠,𝑛 = 𝛽,𝑛 = 0                                      (37) 

 

Table 1: Material properties of FG nanoplates. 

Material E (GPa) ρ (kg/m3) ν 

SUS304 201.04 8166 0.3 

Si3N4 348.43 2370 0.3 

 

1-5- Convergence study 

Consider an isotropic square plate with fully simply supported boundary conditions. The 

convergence of non-dimensional natural frequencies for a/h = 10 and μ = 0 is shown in Table 

2 based on quartic NURBS elements (p = 4). However a mesh of 5×5 is enough for fundamental 

frequency but it is not enough for higher order frequencies. In other words, higher order 

frequencies are more sensitive to meshes in comparison with lower order frequencies. So in 

this paper a mesh of 11×11 quartic NURBS elements are used to solve problems as shown in 

Fig. 3.  

 

Table 2: Convergence of the non-dimensional natural frequencies �̅� = 𝝎(𝒂𝟐 𝝅𝟐⁄ )√𝝆𝒉 𝑮⁄  of SSSS 

isotropic square plates (a/h = 10). 

Mode 
Meshes           

3D [39] 
3×3 5×5 7×7 9×9 11×11 13×13 

1 1.9343 1.9342 1.9342 1.9342 1.9342 1.9342 1.9342 

2 4.6379 4.6225 4.6222 4.6222 4.6222 4.6222 4.6222 

3 4.6379 4.6225 4.6222 4.6222 4.6222 4.6222 4.6222 

4 6.5234 6.5234 6.5234 6.5234 6.5234 6.5234 6.5234 

5 6.5234 6.5234 6.5234 6.5234 6.5234 6.5234 6.5234 

6 7.1247 7.1035 7.1032 7.1032 7.1032 7.1032 7.1030 

7 8.6664 8.6776 8.6633 8.6623 8.6622 8.6621 8.6617 

8 8.6664 8.6776 8.6633 8.6623 8.6622 8.6621 8.6617 
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Fig. 3: Square plate: meshing of 11×11 quartic elements. 

 

2-5- Free vibration analysis 

Table 3 presents the non-dimensional fundamental frequency of SSSS isotropic rectangular 

nanoplates by assuming a = 10, E = 30×106 and ν = 0.3. The results are compared with the 

solutions of 3D (Ansari et al. [19] and Jomehzadeh et al. [15]), CPT, FSDT and TSDT 

(Aghababaei and Reddy [12]). Furthermore in Table 4, the results are presented for different 

boundary conditions for square nanoplates. As observed in Table 4, CCCC boundary condition 

gives higher values for frequency in comparison with SSSS.  

       

Table 3: Non-dimensional fundamental frequency �̅� = 𝝎𝒉√𝝆 𝑮⁄  of SSSS isotropic nanoplates (a 

= 10, E = 30×10
6
, ν = 0.3). 

a/b a/h μ 3D [15,19]  CPT [12] FSDT [12] TSDT [12] Present  

1 10 0 0.0931 0.0963 0.0930 0.0935 0.0932 

  1 0.0827 0.0880 0.0850 0.0854 0.0851 

  2 0.0751 0.0816 0.0788 0.0791 0.0789 

  3 0.0692 0.0763 0.0737 0.0741 0.0738 

  4 0.0646 0.0720 0.0696 0.0699 0.0696 

 20 0 0.0239 0.0241 0.0239 0.0239 0.0239 

  1 0.0211 0.0220 0.0218 0.0218 0.0218 

  2 0.0191 0.0204 0.0202 0.0202 0.0202 

  3 0.0176 0.0191 0.0189 0.0189 0.0189 

  4 0.0164 0.0180 0.0178 0.0179 0.0178 

2 10 0 - 0.0602 0.0589 0.0591 0.0589 

  1 - 0.0568 0.0556 0.0557 0.0556 

  2 - 0.0539 0.0527 0.0529 0.0528 

  3 - 0.0514 0.0503 0.0505 0.0503 

  4 - 0.0493 0.0482 0.0483 0.0482 

 20 0 - 0.0150 0.0150 0.0150 0.0150 

  1 - 0.0142 0.0141 0.0141 0.0141 

  2 - 0.0135 0.0134 0.0134 0.0134 

  3 - 0.0129 0.0128 0.0128 0.0128 

    4 - 0.0123 0.0123 0.0123 0.0122 
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Table 4: Non-dimensional fundamental frequency �̅� = 𝝎𝒉√𝝆 𝑮⁄  of isotropic square nanoplates 

(a = 10, a/h = 10, E = 30×10
6
, ν = 0.3). 

μ SSSC SCSC CCCS CCCC 

0 0.1110 0.1345 0.1467 0.1636 

1 0.1009 0.1218 0.1321 0.1469 

2 0.0930 0.1120 0.1211 0.1344 

3 0.0868 0.1043 0.1124 0.1245 

4 0.0816 0.0980 0.1053 0.1165 

 

In Fig. 4, the effect of the parameters a/h, μ, and k on the fundamental frequency of SSSS FG 

nanoplates are depicted. As depicted in Fig. 4, the frequency decreases by increasing the 

nonlocal parameter μ, length–thickness ratio a/h, aspect ratio b/a and power index k.  

 

  
Fig. 4: Effect of the parameters a/h, μ, and k on the fundamental frequency of SSSS SUS304/Si3N4 

nanoplates. 

 

Table 5: Non-dimensional natural frequencies �̅� = 𝝎𝒉√𝝆𝒄 𝑮𝒄⁄  of SSSS SUS304/Si3N4 square 

nanoplates (a = 10, a/h = 10). 

k Model 

Mode 1         Mode 2       

μ        μ       

0 1 2 4   0 1 2 4 

1 Present 0.0543 0.0496 0.0460 0.0406  0.1297 0.1061 0.0920 0.0752 

 Nguyena et al. [36] 0.0538 0.0491 0.0455 0.0402  0.1259 0.1031 0.0894 0.0730 

2 Present 0.0486 0.0444 0.0411 0.0363  0.1158 0.0947 0.0821 0.0671 

 Nguyena et al. [36] 0.0480 0.0439 0.0406 0.0359  0.1122 0.0918 0.0796 0.0651 

5 Present 0.0438 0.0401 0.0371 0.0328  0.1044 0.0854 0.0741 0.0605 

 Nguyena et al. [36] 0.0433 0.0396 0.0367 0.0324  0.1010 0.0827 0.0717 0.0586 

 Natarajan et al. [35] 0.0441 0.0403 0.0374 0.0330  0.1051 0.0860 0.0746 0.0610 

10 Present 0.0416 0.0380 0.0352 0.0311  0.0991 0.0811 0.0703 0.0575 

  Nguyena et al. [36] 0.0411 0.0375 0.0348 0.0307   0.0959 0.0785 0.0680 0.0556 
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In Table 5 the non-dimensional natural frequencies of SSSS SUS304/Si3N4 square nanoplates 

are given for different power indices k and nonlocal parameter μ. The length a = 10 and length–

thickness a/h = 10 are assumed. It is seen that the results are close to the solution of Nguyena 

et al. [36]. In Table 6, the results are also presented for CCCC boundary condition. 

 

Table 6: Non-dimensional natural frequencies �̅� = 𝝎𝒉√𝝆𝒄 𝑮𝒄⁄  of CCCC SUS304/Si3N4 square 

nanoplates (a = 10, a/h = 10). 

k 

Mode 1         Mode 2       

μ        μ       

0 1 2 4   0 1 2 4 

0 0.1636 0.1469 0.1344 0.1165  0.3160 0.2519 0.2154 0.1734 

1 0.0954 0.0857 0.0783 0.0679  0.1841 0.1467 0.1254 0.1009 

2 0.0851 0.0764 0.0699 0.0606  0.1639 0.1307 0.1117 0.0899 

5 0.0766 0.0688 0.0630 0.0546  0.1475 0.1176 0.1006 0.0810 

10 0.0728 0.0654 0.0598 0.0518   0.1401 0.1118 0.0956 0.0770 

 

6. Conclusions 

In this paper, quasi-3D hyperbolic shear deformation theory has been presented to analyze FG 

nanoplates by using the IGA approach and nonlocal elasticity theory based on physical neutral 

surface position. The principles of Hamilton is utilized to derive the equations. The theory uses 

five independent unknowns and satisfies the free transverse shear stress conditions on the top 

and bottom surfaces of the plate without a need for shear correction factor. It is observed that, 

the natural frequencies decrease by increasing the nonlocal parameter μ, length–thickness ratio 

a/h, aspect ratio b/a and power index k. It is also seen that higher order frequencies are more 

sensitive to the number of meshes in comparison with lower order frequencies. The present 

results can be utilized as benchmark solutions for future researches.  
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