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A B S T R A C T   

Determining the optimal quantity of crops is crucial for establishing a sustainable cultivation pattern when 
multiple potential crops are available. To address this issue, we propose a novel hybrid multi-attribute optimi-
zation model (MAOM) based on two steps. Firstly, we calculate the sustainability score of candidate crops by 
taking into account strategic criteria categorized in terms of sustainability, including economic, social, and 
environmental dimensions. To ensure a more reliable choice, we develop a risk-averse UTA (UTilité Additive) to 
adjust the trade-off among the criteria of alternatives in multi-criteria decision-making (MCDM) problems. 
Secondly, we develop a linear optimization model to calculate the optimal amount of candidate crops based on 
the sustainability score and operational criteria. We employ this framework to determine the optimal cultivation 
pattern in Khorasan Razavi, Iran. The results suggest that Dried Garlic, Turnip, Forage, Millet, and Khasil are 
suitable crops for the six-month period of spring and summer, while Potato, Fodder Beet, Shah Seed, and Mung 
Bean are the optimal alternatives for the six-month period of autumn and winter among the 46 candidate crops. 
Finally, a conclusion is drawn and recommendations for further research are proposed.   

1. Introduction 

In recent years, agriculture’s contribution to the global economy has 
been increasing, with its share in the gross domestic product (GDP) 
rising from 17.8% in 2019–20 to 19.9% in 2020–21 (Kapil, 2021). 
Agriculture has the potential to benefit the economy, society, and 
environment, but it can also have negative impacts on these areas if the 
wrong cultivation methods are used (Chen, Li, & Jin, 2016). Previous 
research on optimal cultivation patterns has mainly focused on opera-
tional criteria such as resource utilization optimization. However, there 
is growing awareness that sustainable agriculture requires the consid-
eration of strategic criteria, including economic, social, and environ-
mental factors (W. Chen et al., 2016). 

Two main challenges make it difficult to include these strategic 
criteria in the agricultural decision-making process. Firstly, it requires 
the development of new models that can effectively balance multiple 
dimensions. Historically, decisions in agriculture have been based on 
operational criteria, such as the availability of workers and water. 
However, when strategic criteria such as environmental sustainability, 

social impact, and economic viability are added, a more comprehensive 
approach is needed to help decision-makers find a good balance between 
these different factors. Additionally, different stakeholders may have 
different priorities and trade-offs between these dimensions, making it 
difficult to agree on the best way to grow crops. Farmers may prioritize 
maximizing their profits, while environmentalists may focus on 
reducing agriculture’s impact on natural ecosystems. Consumers may 
prioritize the accessibility and affordability of certain crops, while 
government officials may be interested in promoting certain crops for 
their economic benefits. Achieving a harmonious balance between these 
various priorities and compromises requires a comprehensive strategy 
that considers the requirements and concerns of all stakeholders 
involved. Therefore, there is a dilemma in which the criteria associated 
with the two levels must be addressed. 

As the first contribution, this study proposes a multi-attribute opti-
mization model (MAOM) to consider both the strategic and operational 
levels. The proposed model can take into account a broad spectrum of 
criteria that have a significant impact on the selection process and 
incorporate experts’ perspectives. 
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Although multi-criteria decision-making (MCDM) methods have the 
potential to simplify decision-making, the trade-offs inherent in these 
methods may not result in appropriate choices in the long run, as the 
current literature suggests. MCDM methods may lead to the selection of 
an option with a higher weight in certain criteria, which may not be 
better in terms of other criteria. In other words, an alternative with 
strong performance in a few criteria may hide its weaknesses in other 
criteria (Wang, 2012). The allowance of unrestricted trade-offs between 
the criteria of each alternative, which is permissible in compensatory 
MCDM methods, may lead to the overlooking of a better alternative that 
aligns with decision-makers’ preferences (Kheybari, 2021; Kheybari & 
Ishizaka, 2022). Therefore, in MCDM problems, it is essential to consider 
decision-makers’ preferences while avoiding being excessively swayed 
by higher-weighted preferences. Reducing the risks associated with 
trade-offs in MCDM methods is of utmost importance. A sophisticated 
method to achieve this objective is to emphasize the shortcomings of 
each option during the assessment process. For this purpose, this paper 
proposes a risk-averse UTA (UTilité Additive) model in a two-level 
framework to determine the optimal cultivation pattern, which is the 
second contribution of this paper. The proposed model is used to 
compare different crops at the strategic level, and the optimal level of 
cultivation for each crop is calculated based on operational constraints 
using the score of each crop as a parameter of the objective function. 
Finally, the developed model is applied to a real case in Iran. 

Taking into account the reasons discussed and the literature 
reviewed, this investigation seeks to:  

• propose a more comprehensive framework of criteria classified as 
economic, social, and environmental dimensions;  

• propose a risk-averse UTA method to calculate the weights of criteria 
at the strategic level that applies to multi-criteria problems;  

• propose an MAOM using the output of a risk-averse UTA and 
considering operational criteria to determine the optimal cultivation 
pattern; and  

• evaluate the proposed framework in a real-world case study. 

The structure of this study is as follows: Section 2 reviews the liter-
ature on the cultivation pattern problem and identifies research gaps. 
Section 3 outlines the methodology employed in this investigation. 
Section 4 details the case study. Section 5 presents the results of applying 
the proposed methodology to the case study. Section 6 provides mana-
gerial implications for the proposed methodology. Finally, Section 7 
offers conclusions and suggestions for future research. 

2. Literature review 

In order to develop the proposed framework, we conducted an 
investigation of studies attempting to address and solve the problem of 
optimal cultivation patterns. As we aimed to identify criteria at both the 
strategic and operational levels, we reviewed papers that employed 
Multi-Attribute Decision-Making (MADM) methods as methodologies. It 
is noteworthy that the text and tables of the studies were used to identify 
criteria at the two levels employed in the text. 

Studies on the selection of optimal cultivation patterns using MCDM 
techniques can be classified into two main categories: Multi-Objective 
Decision Making (MODM) and MADM. Most studies have focused on 
two primary objectives: maximizing net returns from the proposed 
cultivation pattern and minimizing costs associated with the selected 
cultivation pattern. However, depending on the case being studied, in-
dividual scholars may have adopted other objectives (Sarker & Quad-
dus, 2002). MODM is the most commonly employed method in the 
literature, and it can be divided into two classes: Class A, which com-
prises studies that have employed multi-objective programming, and 
Class B, which encompasses those that have utilized single-objective 
programming. 

As an example of the studies in class A Mainuddin, Gupta, and Onta 

(1997) proposed an optimal cropping plan with a multi-objective anal-
ysis using the Analytic Hierarchy Process (AHP) in Thailand, with the 
aim of maximizing both economic net benefit and irrigated area while 
taking into account the preferences of the decision makers. Ren et al. 
(2019) proposed a multi-objective stochastic fuzzy programming and 
AHP method for agricultural water and land optimization allocation in 
China, considering multiple uncertainties. The objectives of the model 
were to maximize net benefit, agricultural water productivity, and 
minimize irrigation area. The model was tested under multiple un-
certainties related to a water shortage, and the results provided decision 
makers with the optimal water irrigation level and land resources. 
Regulwar and Gurav (2011) proposed a multi-objective fuzzy linear 
programming (MOFLP) approach to irrigation planning under uncer-
tainty in India, with the objectives of net benefits, crop/yield produc-
tion, employment generation/labor requirement, and manure 
utilization. The fuzzy concept was employed to account for uncertainty 
in the proposed model. Daghighi, Nahvi, and Kim (2017) proposed a 
multi-objective linear programming model for the purpose of locating an 
optimal cultivation pattern in Fars Province, Iran. This water resources 
planning model was designed to assist decision-makers in selecting an 
appropriate cultivation pattern, optimizing the exploitation of surface 
water resources, and determining the method of allocating water across 
different farm crops while minimizing the negative impacts of water 
scarcity. 

As an example of the studies falling into class B, O. Heady (1954) 
employed a simplified linear programming approach to identify an 
optimal crop pattern, with the aim of determining the most profitable 
crop within the confines of land, capital, cultivation capacity, and labor. 
Itoh, Ishii, and Nanseki (2003) developed a linear model that accounted 
for the fuzziness and randomness of land and labor resources. Abedi, 
Peykani, and Kalashami (2011) employed a linear programming (LP) 
approach to assess the comparative advantage of corn in comparison to 
other competitor crops in optimal cultivation patterns in Kermanshah 
province, Iran. The performance of eight different crops was evaluated 
under two scenarios (with and without rotation) in eight states of Ker-
manshah. The results indicated that corn had a comparative advantage 
in all the states. Abedi et al. (2011) employed a LP approach to assess the 
comparative advantage of corn in comparison to other competitor crops 
in optimal cultivation patterns in Kermanshah province, Iran. The per-
formance of eight different crops was evaluated under two scenarios (the 
existence and lack of rotation) in eight states of Kermanshah. The results 
indicated that corn had a comparative advantage in all the states. 

Singh, Jaiswal, Reddy, Singh, and Bhandarkar (2001) developed a 
linear programming model to determine an optimal cropping pattern 
with respect to different water availability levels in India, with the 
objective of maximizing net return. The results indicated that wheat 
provided the most consistent profit among the eight crops. Garg and 
Dadhich (2014) conducted an investigation into an integrated non- 
linear single-objective mathematical model for optimal cropping 
pattern and irrigation scheduling under deficit irrigation. Variables such 
as deficit levels were incorporated into the model in order to maximize 
the net return. The results indicated that the optimal net financial return 
was increased by 92.5%, and the total optimal cropped area was 
enhanced by 109.7%. Additionally, there have been a few studies that 
have considered both single and multi-object. For example, Amini 
Fasakhodi, Nouri, and Amini (2010) proposed a Multi-Objective Frac-
tional Goal Programming (MOFGP) approach to identify an optimal crop 
pattern in agricultural systems, with the aim of maximizing two ratios 
concurrently: net return/water consumption and labor employment/ 
water consumption. The results indicated that the MOFGP solution was 
more advantageous than both Fuzzy Programming (FP) and LP models. 
Sarker and Quaddus (2002) conducted a study to explore the application 
of both single- and multi-objective models to address a nationwide crop- 
planning problem. They demonstrated how the information obtained 
from LP models can be incorporated into its goal programming (GP) 
counterpart to provide enhanced insights and decision support in a 
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third-world country. 
Despite the fact that MADM methods consider both quantitative and 

qualitative criteria in the decision-making process, including the selec-
tion of optimal cultivation patterns, there are fewer studies that address 
this problem using MADM methods. Furthermore, MADM techniques 
encompass a wide range of criteria compared to mathematical pro-
gramming models, as the latter are more likely to result in a lack of 
feasible regions for the problem when a high number of variables and 
constraints are present. This constraint does not exist in. As a result, the 
utilization of MADM methods has been found to provide a more diverse 
and widespread set of criteria than those offered by mathematical pro-
gramming models. Studies concerning cultivation patterns with a 
MADM approach have taken into account criteria that are closely related 

to economic, social, psychological, and cultural factors. For instance, 
Devatha and Thalla (2019) employed four MADM methods, namely 
Simple Additive Weighting (SAW), Weighted Product Method (WPM), 
Preference Ranking Organization Method for Enrichment Evaluations 
(PROMETHEE), and Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS), to prioritize cropping alternatives in India. The 
results obtained by the MADM methods were compared to those of a 
non-linear optimization model, with wheat identified as the most prof-
itable crop. Agha, Nofal, and Nassar (2012) used AHP and PROMPTEE to 
address the cultivation pattern problem for government lands in the 
Gaza Strip under both normal and resistant economic conditions. Their 
objective was to rank crops based on economic, financial, marketing, 
environmental, technical, political, and social criteria. Huang and Zhang 

Table 1 
A comparison between our study to the most relevant ones in literature.  

Studies Eco. Soc. Env. Technique(s) used Risk of Decision Maker’s (DM’s) 
attitude 

Huang and Zhang (2020) ✓ ✓ × AHP, Fuzzy TOPSIS Not considered 
Honar et al. (2021) × ✓ ✓ AHP, TOPSIS, PROMETHEE, ELimination and ChoiceExpressingREality 

(ELECTRE) 
Not considered 

Mainuddin et al. (1997) × × ✓ AHP Not considered 
Amini Fasakhodi et al. (2010) × × ✓ Multi-objective Fractional Goal Programming Not considered 
Ren, Li, and Zhang (2019) × × ✓ Multi-objective Fuzzy Stochastic Programming Not considered 
Devatha and Thalla (2019) × × ✓ SAW, WPM, TOPSIS, PROMETHEE Not considered 
Agha et al. (2012) × × ✓ AHP, PROMETHEE Not considered 
Mohammadian and Heydari 

(2019) 
× × ✓ Fuzzy Goal Programming Not considered 

Daghighi et al. (2017) × × ✓ Linear Programming Not considered 
Singh et al. (2001) ✓ ✓ ✓ Linear programming Not considered 
Chen et al. (2021) × × ✓ Two-way ANOVA and optimization Not considered 
Sedighkia et al. (2023) × × ✓ Regression and Genetic Algorithm Not considered 
Hasanzadeh Saray et al. (2022) × × ✓ Regression Analysis and Mixed Integer Linear Programming Not considered 
Tofighy et al. (2005) ✓ × × Bayesian information criterion and smooth filters Not considered 
This study ✓ ✓ ✓ UTA, risk-averse UTA, Linear Programming Considered  

Fig. 1. Research Steps.  
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(2020) proposed an optimal economic crop model that combined AHP 
for generating criteria weights and Fuzzy TOPSIS for ranking crops to 
improve farmers’ income and soil and water conservation in Taiwan. 
The study found that palm was the optimal crop. 

Additionally, there is a body of research that examines the use of 
Statistical Analysis for the purpose of optimizing cultivation. An over-
view of this stream was conducted by Wu et al. (2022). Furthermore, 
Sedighkia et al. (2022) proposed an integrated optimization framework 
for agricultural planning that links an environmental flow model, 
drought analysis, a cropping pattern model, and deficit irrigation func-
tions using regression models. The framework incorporates a genetic 
algorithm to generate an optimal plan for cropping patterns and irri-
gation supply that minimizes ecological impacts on the river ecosystem. 
The model is capable of minimizing ecological impacts on the river 
ecosystem in all hydrological conditions while also providing a sus-
tainable plan for agricultural and environmental management. 

Contemplating the studies in the literature, we found the following 
research gaps:  

• Research conducted to date has largely been quantitative in nature, 
utilizing MCDM methods and not taking into account qualitative 
criteria, which require MADM techniques. Additionally, while some 
studies have employed statistical analysis to assess quantitative 
criteria, few have considered qualitative criteria, and none have 
considered both quantitative and qualitative criteria simultaneously. 
Previous research has addressed the economic, social, and environ-
mental dimensions associated with the strategic level but has not 
utilized the output of the strategic level at the operational level or 
has simply considered the operational level while disregarding the 
strategic level. However, our study has not only implemented the 
strategic level but has also employed its output for the operational 
level, which has been demonstrated by a MAOM. Consequently, it 
encompasses a greater number of criteria. Additionally, several 
studies that have incorporated environmental criteria into their 
statistical analysis have neglected to consider the risk factor in their 
optimization problem ((J.-H. Chen et al., 2021), (Sedighkia, Fathi, 
Razavi, & Abdoli, 2023), (Saray et al., 2022)).  

• According to the sustainability framework, although a long-lasting 
cultivation should be beneficial in terms of economy, society, and 
environment, there is a lack of research in the literature that com-
prises sustainability with detailed criteria for optimal cultivation 
selection. For example, Huang and Zhang (2020) considered soil and 
water conservation as two elements of sustainability for social and 
economic aspects, while Honar, Ghazali, and Nikoo (2021) examined 
the social and economic aspects of cultivation patterns from the 
perspective of stockholders. Additionally, Mainuddin et al. (1997) 
and Amini Fasakhodi et al. (2010) have both studied water man-
agement as an environmental criterion in sustainability. As a result, 
the effective criteria have been divided into three categories: those 
associated with human beings, society, and governmental regula-
tions are categorized as society factors; those that either improve or 
worsen the environment are categorized as environmental factors; 
and the remaining criteria are considered economic criteria.  

• As presented in Table 1, Singh et al. (2001) is the only work in the 
literature that considers all three dimensions of the cultivation 
pattern problem. However, this work does not consider the risk 
involved in weighing criteria or the opinions of decision-makers. Our 
study has addressed this shortcoming by including all sustainable 
dimensions, demonstrating the comprehensiveness of our 
investigation. 

3. Methodology 

The research depicted in Fig. 1 comprises eight steps. The first four 
steps, which concern the introduction and literature sections, are related 
to the strategic level. The modeling step, which is based on the output of 

a risk-averse UTA and optimization model, is associated with the oper-
ational level. Consequently, the proposed framework, MAOM, encom-
passes both the strategic and operational levels. 

At the strategic level, relevant criteria were initially extracted from 
previous studies in the literature. Subsequently, experts were asked to 
provide their preferred criteria using a five-point Likert scale. Criteria 
were screened based on a threshold for the coefficient of variation (CV) 
of the scored criteria. After experimenting with a range of threshold 
values, a threshold of 3.2 was chosen as it ensured the number of sub- 
criteria within each dimension was balanced in comparison to other 
dimensions (Salamirad, Kheybari, Ishizaka, & Farazmand, 2023). After 
the screening of criteria, the same experts were asked to select their top 
five crops and rank them among all those cultivable in Khorasan Razavi 
province. The number five was selected to provide the experts with an 
appropriate level of discrimination power. A high number of chosen 
crops can make it difficult for the experts to differentiate between them, 
while a low number may lead to an inadequate level of accuracy. In the 
subsequent step, the experts’ priorities were provided to the UTA to 
obtain a range for the weight of each criterion. A risk-averse UTA was 
developed to identify the optimal weights of the criteria. These weights 
were then used to calculate the sustainability score of the candidate 
crops. Finally, after reviewing the literature on optimal cultivation se-
lection, operational constraints were extracted. 

In the operational step, a linear optimization problem was formu-
lated to identify the optimal amount of cultivation for each crop, uti-
lizing the output of the risk-averse UTA as coefficients of the objective 
function. This step was crucial, as operational constraints such as water, 
area, and human or machine resources had to be taken into account 
when cultivating crops that had been identified as sustainable at the 
strategic level. The mathematical model was solved using LINGO. In the 
following subsections, we provide a detailed account of each step. 

3.1. UTAa 

The UTilité Additive (UTA) was initially proposed by Acquet-Lagreze 
and Siskos (Jacquet-Lagreze & Siskos, 1982) in 1981. UTA can be used 
to prioritize different performance metrics that are important for the 
nonlinear service system, such as customer satisfaction, service quality, 
and efficiency. The weights of these metrics can be determined based on 
expert judgment or through a survey of system users. UTA can then be 
used to rank different control strategies based on their performance on 
these metrics, which can be used to select the best strategy for the 
nonlinear service system. The purpose of UTA is to identify the decision 
maker’s preference model within the criteria involved in decision 
making, so that the output generated by its application is most similar to 
the actual decisions made. The utilization of the summability utility 
model as a methodology for MADM problems has been demonstrated in 
several studies. This model requires the decision-maker to prioritize a 
reference set of options according to their preferences (Beuthe & Scan-
nella, 2001). This has been demonstrated to be effective in addressing 
the issue of dependent criteria when estimating a utility function. This 
model is able to solve the problem of having dependent criteria while 
estimating the utility function. Providing sensitivity analysis on the 
optimal answer is another advantage of this method. This method has 
many applications for ranking alternatives in many areas, such as se-
lection material in engineering (Athawale, Kumar, & Chakraborty, 
2011) and road building (Rezaeinia, 2022). 

There are several studies extending the UTA method. For example, 
Angilella, Greco, Lamantia, and Matarazzo (2004) developed a non- 
additive utility function in the framework of the so-called fuzzy in-
tegrals, which permits modeling preference structures of Decision 
Makers (DMs) with interaction between criteria. Or Chhipi-Shrestha, 
Kaur, Hewage, and Sadiq (2018) proposed a UTA where conflicting 
criteria can be considered. However, there is no study about UTA 
extension where the risk attitude of DMs during their ranking process is 
considered. We explain in the next sub-section how we extend UTA such 
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that it can consider risk in the evaluation process. We extended the UTA 
method proposed and applied in the literature (Angilella et al., 2004; 
Chhipi-Shrestha et al., 2018; Rezaeinia, 2022) by considering the risk- 
averseness of DMs in the weighting process, as explained in the next 
sub-section. Moreover, we discuss the details of the UTA model in Ap-
pendix A. 

3.2. Risk-averse UTA 

In the evaluation process, decision makers often seek to minimize the 
weaknesses of alternatives. To this end, the developed risk-averse UTA 
model highlights the weaknesses of each alternative by seeking the best 
weight in the possible range for each criterion. To further emphasize the 
weaknesses of alternatives, the concept of Data Envelopment Analysis 
(DEA) is utilized in the risk-averse UTA model. The optimization model 
(1) is conducted to obtain weights that emphasize the shortcomings of 
the alternatives, thus avoiding the application of a single set of weights 
to all alternatives. 

Minimize
i

∑

j
wijuij   

Subject to:  

∑

j
wij = 1∀i  

w*l
j ≤ wij ≤ w*u

j ∀j (1) 

Model 1 presents the risk-aversion rationale as a method of selecting 
the optimal weight point by minimizing the output of alternatives. The 
proposed model ensures that the chosen alternative surpasses any cri-
terion whose weight is set to the lowest possible value. In other words, 
by controlling the trade-off, the risk of the evaluation is reduced. wij is 
the weight of criterion j for the alternative i, and w*u

j and w*l
j are the 

upper and lower bounds of criterion j (cj) calculated by the UTA. uij is the 
normalized value of alternative i for criterion j which are calculated by 
Eqs. (2) and (3). 

uij =

xij − min(
i

xij)

max
i
(xij) − min

i
(xij)

∀iand positive j (2)  

uij =

max(
i

xij)− xij

max
i
(xij) − min

i
(xij)

∀iand negative j (3)  

where xij indicates the score of alternative i in criterion j. 
Finally, the candidate alternatives were ranked by calculating the 

overall score of the alternative using the simple weighted sum function 
presented in Eq. (4). 

si =
∑

j
uijwji∀i (4)  

3.3. Optimal cultivation model 

In this section, the aim is to identify an optimal set of crops. To 
achieve this aim, the year of cultivation is divided into two six-month 
periods. Based on the experts’ opinion, potential crops for each season 
are grouped and considered as candidates for cultivation. Prior to pre-
senting the linear mathematical model, the parameters and decision 
variables are defined. 

Notations 
There are two groups of crops to be cultivated because warmness and 

coolness of weather directly affect the behavior of crops. This classifi-
cation has been recognized by the experts. 

Indices 
i: Set of crops for cultivation (i ∈ I)
j: Set of cities (j ∈ J)
Parameters. 
Di: A vector showing the upper level of demand for crop i (measured 

by kilogram per square meter). 
ai: A vector illustrating the area required to cultivate one unite of 

crop i (measured by square meter per kilogram). 
ATj: A vector showing the available area in city j (measured by square 

meter). 
pi: A vector showing the required power supplied by human and 

machine resources to cultivate one unite of crop i (measured by horse 
power per hour). 

PTj: A vector illustrating the available power supplied by human and 
machine resources in city j (measured by horse power per hour). 

wti: A vector illustrating shows the water amount required to culti-
vate one unite of crop i (measured by cubic meter per kilogram). 

WTj: A vector illustrating the available amount of water in city j 
(measured by cubic meter). 

si: A vector showing the suitability index obtained by cultivating one 
unit of crop i. 

Decision Variables 
xij: A matrix illustrating the amount of crop i that is cultivated in city 

j. 
Objective function. 
We consider a single-objective function. Equation (5) calculates the 

total sustainability obtained by cultivated crops. 

Maximize
∑

i

∑

j
sixij (5) 

Constraints. 
To consider limitations of the cultivation pattern, we have the 

following constrains: 
The set of constraints (6) expresses upper bound demand for each 

crop. The constraints guarantee that at most how much from each crop 
should be cultivated. 
∑

j
xij ≤ Di∀i (6) 

The set of constrains (7) states the available power supplied by 
human and machine resources in each city. These constraints guarantee 
that the consumed machine and human resources do not exceed their 
available counterparts in each city. In fact, each city has a limited 
number of machine and human resources that must be considered when 
a crop is to be cultivated. 
∑

i
pixij ≤ PTj∀j (7) 

The set of constraints (8) denotes the amount of available water in 
each city. These constraints guarantee that the consumed machine re-
sources do not exceed their available counterpart resources. 
∑

i
wtixij ≤ WTj∀j (8) 

The set of constraints (9) expresses the available area in each city. 
These constraints guarantee that the available land limit for each city 
has been considered. 
∑

i
aixij ≤ ATj∀j (9)  

4. Case study 

According to the report of the World Bank in 2017, the labor 
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proportion of the agriculture sector to the total number of employed 
people in the world is equal to 26.5% while this proportion has been 
estimated at 17.6% in Iran based on Iran Statistics Center (The World 
Bank (2021), 2021). Specifically, our case study has been conducted in 
Khorasan Razavi, which is one of the top five provinces in Iran when it 
comes to talking about the most arable area. Khorasan Razavi is a 
province located in northeastern Iran. Mashhad is the center and capital 
of the province. This province has a population of 6,434,501 and has 33 
cities. It is also the second-largest province in Iran. The area of the 
province is 118,854 square kilometers, which makes it the fifth largest 
province in Iran and occupies seven percent of the area of Iran. 

Even though the province has numerous advantages, its agriculture 
industry has faced some difficulties in choosing which crops to cultivate 
because of the water shortage crisis and environmental challenges over 
the last decade. In addition, according to the Mashhad University of 
Medical Sciences statistics, this province has been tremendously 
involved in the COVID-19 outbreak from 2020 to 2022. Hence, its 

human resource availability has become a serious concern for the agri-
culture industry in this province. As a result, a sustainable cultivation 
pattern would be extremely advantageous for this province. It goes 
without saying that similar provinces can be benefited by our proposed 
sustainable framework. The potential crops for cultivation are collected 
by using an online questionnaire, and then experts give the score of each 
crop with respect to the criteria. Subsequently, the optimal weights are 
calculated, and then the optimal amount of crops is determined. 

4.1. Data collection 

Generally speaking, data sources in our paper are divided into two 
classes. Data of the UTA method that is gathered by experts’ opinions as 
mentioned in Table 2. The data enables us to calculate the weight of each 
criteria. In the second group of data, which is considered the strategic 
level of our investigation, we have used data from the Statistical Center 
of Iran (2022) and Ministry of Agriculture (2022). To run the optimi-
zation model, which is actually the operational level of our study, we 
obtained the data for the model’s parameters by using the Statistical 
Center of Iran and the Ministry of Agriculture of Jihad. 

We regarded the opinion of Khorasan Razavi Agricultural Jihad ex-
perts and researchers of the department of agriculture, Ferdowsi Uni-
versity of Mashhad. The number of experts is 20, all of whom are adept, 
as detailed information provided in Table 2 about their expertise and 
work experience attests. To have access to and exchange information 
with the experts, we have utilized their online profiles. We asked the 

Table 2 
Experts information.  

Respondents Faculty 
member 

Experienced 
farmer 

Average years of work 
experience 

Screening criteria 12 8  12.6 
Filling 

questionnaire 
6 2  15.5  

Fig. 2. Screened criteria in terms of sustainable cultivation.  
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experts to identify any missing criteria that we had not covered in the 
literature. In this step, we gave the criteria in the three dimensions 
(economy, society, and environment) as mentioned in Section 2. Then, 
we asked the experts to score the criteria by filling out a questionnaire 
based on a five-point Likert scale, with 1 being the lowest and 5 being 
the highest. 

4.2. Criteria screening 

Following data collection, criteria screening was conducted to opti-
mize the reliability of comparisons between criteria (Kheybari, Ishizaka, 
& Salamirad, 2021; Kheybari, 2023) and to enhance the discrimination 
power of the experts (Wanke, Barros, & Emrouznejad, 2016). Using a 
threshold of 3.2 for the coefficient of variation (CV) measure, we 
selected seven criteria (out of 19), which are highlighted in yellow in 
Fig. 2. 

5. Results and discussion 

In this section, the local weights of the criteria at each main level are 
calculated. The UTA stipulates the optimal range of the weights for any 
criterion by averaging the intervals obtained from the experts’ opinions. 
To analyze the experts’ opinions, we selected the middle of the optimal 
ranges as the local weight of their corresponding criteria. In order to 
determine the optimal weight, the output of the risk-averse UTA is uti-
lized as the objective function coefficients of the mathematical model 
proposed in Section 3.2. For more detailed investigation, the codes 
related to original UTA, risk-averse UTA, and MAOM can be seen in 
Online Appendix, respectively. 

5.1. Local weight of criteria 

After the UTA model has been used, the lower and upper limits of 
each criterion are found by taking the minimum and maximum weights 
from the UTA. Subsequently, the mean of the lower and upper bounds is 
calculated (Table 3). As mentioned, the mean value of the lower and 
upper bounds is utilized to analyze the weights. 

Table 4 presents the weights of the three sustainability dimensions. 
The weight of each main dimensions is determined by summing its 
corresponding sub-level weights. For instance, the economic dimension 
score is calculated by summing the weights of its respective components. 

As C1 (net profit from cultivation), C2 (amount of capital required), C4 
(convenience of crop cultivation), and C7 (preventing currency outflow and 
having crop export potential) are associated with the economic dimension, 
the score is equal to 0.5899. The economic dimension has been given the 
highest priority out of the three. This may be because of the sanctions 
put on Iran, which have stopped agricultural centers from using modern 
technology. It may also be because of a lack of investment, traditional 
farming, and a weak economy, which has made it much harder to take 
risks. 

Table 3 demonstrates that C4 (convenience of crop cultivation) is of the 
highest importance among the economic sub-criteria due to the fact that 
transportation cost is a major factor for crop cultivation in Khorasan 
Razavi. Furthermore, the quality of crops for export necessitates that 
suppliers pay the utmost attention to the appearance of the crop. Since 
C5 (farm involvement) and C6 (water consumption per hectare) are both 
components of the environment dimension, its score is equal to 0.3079. 
As shown in Table 3, C6 (Water consumption per hectare) has more weight 
than C5 (farm involvement) mainly because Khorasan Razavi is consid-
ered to have a cold semi-arid climate, meaning that it has a low rate of 
rain. On the other hand, since it is a wide province, C5 (farm involvement) 
is not a big issue. Finally, since only C3 (usage of fertilizer and pesticide per 
hectare) belongs to the social dimension, its score is equal to 0.1022. 

5.2. Optimal weight of criteria and alternative assessment 

In this section, the crops are evaluated using the optimal weight of 
criteria obtained from risk-averse UTA. The optimal weight of the 
criteria can be calculated using the risk-averse UTA by utilizing the 
optimal range of weight of criteria (Table 3) and the normalized decision 
matrix (Table A in Appendix B). Examination of Table 5 reveals that the 
opinions of experts are most consistent in C2 compared to the other 
criteria. In fact, sample standard deviations for C1 to C7 are 0.0357, 
0.0024, 0.0218, 0.0702, 0.0062, 0.0519, and 0.0155, respectively. 

Table 6 presents the overall score of the risk-averse UTA, which is 
obtained by the summation of the resulting weights for each crop 
(Equation (4). Additionally, the overall score of the original UTA for 
each crop is calculated by taking the average score of eight experts. 
Upon examining Table 6, it can be seen that A7, A35, and A11 are the top 
three crops in terms of risk-averse UTA overall scores, while A5, A1, and 
A46 are the bottom three among the 46 crops. 

5.3. Analyzing the results of risk-averse UTA and original UTA 

Discussion of the rankings of A29 and A32 is conducted in order to 
analyze the outcomes of the suggested methodology. When the risk- 
averse UTA was applied, the rank of A29 shifted from 8 to 15, while 
the rank of A32 moved from 20 to 14. This suggests that, when the risk- 
averse factor is taken into account in the initial ranking, criteria with 
weaker performance in the original UTA can outperform in the risk- 
averse condition. As illustrated in Fig. 3, A29 outperforms A32 for 
more than half of the criteria (five out of seven; C1, C3, C5, C6, and C7); 
however, A29 performs significantly weaker in C2 and C4. 

The results presented in Table 6 demonstrate that the weaknesses of 
A29 were not taken into account in the assessment process with the 
original UTA, resulting in A29 obtaining a higher rank than A32 (rank 8 
versus rank 20). To address this issue and prevent any irreversible 
consequences, the risk-averse UTA emphasizes the weaknesses of al-
ternatives in the optimal range of weights determined by the original 
UTA. To put it in other words, the risk-averse UTA model gives the upper 
bound of the weight to the criteria where the crops do not outperform 
and underrates the other criteria. In this vein, as depicted in Fig. 4, by 
lowering the weight of the criteria where the alternatives (crops) 
outperform (i.e. C1, C3, C5, C6, and C7 for A29 and C2 and C4 for A32) and 
adding it to the criteria where the crops perform poorly (i.e. C2 and C4 
for A29 and C1, C3, C5, C6, and C7 for A32), we are able to magnify the 
weaknesses of alternatives in the weight range determined by the 

Table 3 
Upper and lower bounds of criteria.  

Criterion Lower 
bound 

Upper 
bound 

Weight 
(middle) 

Rank 

Net profit from cultivation (C1) 0  0.7243  0.3621 3 
Amount of capital required (C2) 0  0.4438  0.2219 6 
Usage of fertilizer and pesticide 

per hectare (C3) 
0  0.4440  0.2220 5 

Convenience of crop cultivation 
(C4) 

0  0.9034  0.4517 1 

Farm involvement(C5) 0  0.4356  0.2178 7 
Water consumption per hectare 

(C6) 
0  0.9020  0.4510 2 

Preventing currency outflow and 
having crop export potential 
(C7) 

0  0.4918  0.2459 4  

Table 4 
Weight of each dimension.  

Main Level Weight Rank 

Economic dimension  0.5899 1 
Social dimension  0.1022 3 
Environment dimension  0.3079 2  
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experts to the extent that is feasible. Hence, the proposed model dem-
onstrates that after underscoring the criteria in which the alternatives 
have higher risks, we should select A32 as a more suitable alternative 
than A29 because it has fewer weaknesses and a more uniform perfor-
mance score compared with A29. 

5.4. Analyzing the results of optimization cultivation model 

In this case study, 46 crops are divided into two groups, Group A and 
Group B, based on their climatic features. Group A consists of 16 crops 
that can be cultivated during the warm period (the first six months of a 
year), while Group B consists of 30 crops that can be cultivated during 
the semi-cold or cold period (the second six months of a year). The 
values of parameters for the linear optimization problem for Groups A 
and B are presented in Appendix B (Table B for Group A and Table C for 
Group B). The optimal cultivation magnitudes for crops in Groups A and 
B are detailed in Tables D-F in Appendix B, respectively. 

As demonstrated in Table 7, the optimal cultivation pattern model 
was applied to crops in Group A, resulting in the selection of Crops 8, 13, 
11, and 14 as the optimal solution, with respective ranks of 43, 3, 7, and 
6. Notably, Crops 11, 13, and 14 achieved the highest possible value of 
their respective demands, indicating the strategic dimension of the 
MAOM. It is noteworthy that Crop 8 has achieved approximately half of 

its maximum demand due to its low rank (43) and its ability to satisfy 
operational constraints, as evidenced by the values of its respective 
parameters in the model. 

As demonstrated in Table 8, the same reasoning applies to crops in 
Group B. Specifically, the demand constraint is the primary factor, 
provided that the other constraints are satisfied. From the 30 crops, 
those with sustainability ranks of 1, 10, 14, and 5 (i.e., crops 7, 15, 32, 
and 41, respectively) were chosen. If the selection of only four crops 
from Group B was to be made without taking operational-level criteria 
into account, then it would be reasonable to select the four crops with 
the highest rankings. However, our linear mathematical model suggests 
otherwise, as we are confronted with certain constraints in the real- 
world environment that are taken into consideration in our cultivation 
model (operational level). It is observed that crops with ranks 7, 15, and 
32 have achieved their highest levels of demand, whereas crop number 
41 has not yet reached its peak demand. An intriguing outcome is related 
to the fact that crops with ranks 4, 8, 9, and 11 have not been chosen. 
This is likely due to the fact that these crops have significantly lower 
demand in comparison to crops with ranks 1, 10, 14, and 5. In our 
objective function, the decision variable is maximized, thus the model 
seeks to identify crops that satisfy the constraints while also having a 
high potential value of cultivation. For instance, Crop 2 has a high de-
mand, however, due to its low rank, the model will not select it as the 

Table 5 
Optimal weights obtained by using risk-averse UTA.  

Crops C1 C2 C3 C4 C5 C6 C7 

Baghala (A1) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577 
Onion (A2) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577 
Tomato (A3) 0.1037  0.0148  0.0122  0.5038  0.0670  0.1407  0.1577 
Red pepper (A4) 0.1704  0.0102  0.0122  0.3499  0.0670  0.2265  0.1637 
Leafy vegetables (A5) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577 
Glandular vegetables (A6) 0.1704  0.0102  0.0122  0.4357  0.0670  0.1407  0.1637 
Potato (A7) 0.1704  0.0148  0.0323  0.3224  0.0744  0.2219  0.1637 
Dried garlic (A8) 0.0649  0.0102  0.0122  0.5034  0.0674  0.2196  0.1222 
Sangolak (A9) 0.1083  0.0102  0.0511  0.5038  0.0740  0.0948  0.1577 
Clover (A10) 0.1365  0.0102  0.0122  0.3499  0.0670  0.2627  0.1615 
Turnip and forage (A11) 0.1704  0.0079  0.0511  0.4357  0.0740  0.0971  0.1637 
Carrots (A12) 0.1083  0.0079  0.0511  0.5038  0.0740  0.0971  0.1577 
Millet (A13) 0.1704  0.0079  0.0122  0.3499  0.0693  0.2265  0.1637 
Khasil (A14) 0.1960  0.0079  0.0122  0.4357  0.0693  0.1407  0.1381 
Fodder beet (A15) 0.1704  0.0079  0.0122  0.3499  0.0693  0.2265  0.1637 
Fodder Corn (A16) 0.1704  0.0148  0.0122  0.3499  0.0670  0.2219  0.1637 
Cluster Corn (A17) 0.1195  0.0079  0.1342  0.3751  0.1030  0.0971  0.1631 
Alfalfa (A18) 0.1704  0.0148  0.0122  0.3499  0.0670  0.2219  0.1637 
Corn (A19) 0.1037  0.0148  0.0122  0.5038  0.0670  0.1407  0.1577 
Khakshir (A20) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577 
Watermelon seed (A21) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577 
Sunflower (A22) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577 
Broom (A23) 0.1488  0.0148  0.0122  0.5038  0.0670  0.1407  0.1126 
Pumpkin seed (A24) 0.1704  0.0102  0.0122  0.3499  0.0670  0.2265  0.1637 
Jo (A25) 0.1704  0.0102  0.0122  0.3499  0.0670  0.2265  0.1637 
Maize (A26) 0.1704  0.0102  0.0122  0.3499  0.0670  0.2265  0.1637 
Shaltook (A27) 0.1704  0.0102  0.0122  0.3499  0.0670  0.2265  0.1637 
Wheat (A28) 0.1365  0.0102  0.0122  0.3499  0.0670  0.2627  0.1615 
Canola (A29) 0.0630  0.0148  0.0122  0.5038  0.0690  0.1796  0.1577 
Sesame (A30) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577 
Golrang (A31) 0.0921  0.0148  0.0511  0.5038  0.0856  0.0948  0.1577 
Shah seed (A32) 0.1704  0.0102  0.0122  0.3499  0.0670  0.2265  0.1637 
Sugar beet (A33) 0.1037  0.0148  0.0122  0.5038  0.0670  0.1407  0.1577 
Cotton (A34) 0.1037  0.0148  0.0511  0.5038  0.0740  0.0948  0.1577 
Tobacco (A35) 0.0649  0.0079  0.0122  0.4215  0.0693  0.2627  0.1615 
Mendab (A36) 0.1083  0.0102  0.0122  0.5038  0.0740  0.1337  0.1577 
Pea (A37) 0.0649  0.0102  0.0122  0.5038  0.0670  0.2196  0.1222 
Dried baghala (A38) 0.1083  0.0102  0.0122  0.5038  0.0740  0.1337  0.1577 
Lentils (A39) 0.1488  0.0102  0.0122  0.5038  0.0700  0.1722  0.0828 
Bean (A40) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577 
Mung bean (A41) 0.1704  0.0148  0.0122  0.4311  0.0670  0.1407  0.1637 
Cucumber (A42) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577 
Melon (A43) 0.1083  0.0079  0.0122  0.5038  0.0693  0.1407  0.1577 
Pumpkin family (A44) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577 
Watermelon family (A45) 0.1083  0.0102  0.0511  0.5038  0.0740  0.0948  0.1577 
Eggplant (A46) 0.1083  0.0102  0.0122  0.5038  0.0670  0.1407  0.1577  
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optimal set of solutions. 
Considering the practical constraints in the province investigated in 

our case study, we observe that even top crops in terms of risk-averse 
UTA output may not be selected, proving how realistic our optimal 
cultivation model is. For example, as shown in Table 6, according to risk- 
averse overall score, A7, A35, A11, A26, and A41 are among the top 5 with 
respect to the risk-averse overall score; however, according to Table 7, 
A8, A11, A13, and A14 for group A and A7, A15, A32, and A41 for group B 

are selected when we consider operational constraints. As it can be seen, 
A7, A11, and A41 are common between what the risk-averse overall score 
and our optimization problem choose. This result reveals that our 
MAOM appropriately captures the strategic and operational dimensions 
of the proposed framework. Moreover, currently in the province, A8, 
A13, A1, and A17 in group A and A7, A15, A43, and A44 in group B are 
cultivated. According to Tables 7 and 8, we observe some differences 
between what actually happens and our suggested optimization model. 
To be more specific, for group A, our optimization problem choses A11 
and A14 instead of A1 and A17 and for group B, A32 and A41 instead of A6 
and A43. There is an important note behind this difference signifying 
why our optimal cultivation pattern is better than what happens in the 
real case. To prove this fact, it suffices to refer to the objective function 
value for the two cases: 

For group A, in the real situation, A1 and A17 have respective values 
of 9000 and 9624, and given their risk-averse overall scores of 0.1459 
and 0.3505, the objective function is 4686.3120 (according to Eq. (5); 
however, according to our model’s suggestion, A11 and A14 have 
respective values of 47,619 and 55,248 and considering their respective 
risk-averse overall scores of 0.5256 and 0.4913, the objective function, 
according to Eq. (5), is equal to 52171.8888. Hence, since our model 
presents a higher objective function, it is better (remember that the 
objective function is the sustainability score of the cultivation pattern). 
Our inference is that the reason for satisfying upper demand for crops 
with a not-that-high rank in risk-averse UTA is having decent perfor-
mance in operational constraints (the constraints of our optimization 
model); i.e., the entire focus on the cultivation of these crops over the 
long-term is not justifiable. 

Similarly, for group B, the similar reasoning is valid. To sum up, since 
our optimization model’s output both is similar to the output of risk- 
averse overall scores and considers operational constraints, it results 
in a more sustainable cultivation pattern. We also reported time 
execution for the optimization models in Table G of Appendix B. 

5.5. Sensitivity analysis of the optimal cultivation model 

After consulting with experts, it was determined that the only 
parameter in the optimal cultivation model that can be considered un-
certain is demand. The experts provided four plausible scenarios based 
on their past experience. To this end, in order to assess the sensitivity of 
our primary results presented in Sections 7 and 8 for Groups A and B of 
products, four scenarios were considered in which the demand for the 
products was increased by 10%, 20%, 40%, and 60%, respectively. It 
was found that the selection of products for cultivation remained the 
same after implementing new scenarios, suggesting that the proposed 
optimal cultivation model is approximately robust with respect to de-
mand changes of up to 60%. This result was presented for both Group A 
and Group B of products in Table 9. It was observed from the preceding 
sub-sections that A7, A8,A11,A13,A14,A15,A32, and A41 were selected as 
optimal crops (for group A and B) to be cultivated. An example of the 
effects of a 10% increase in demand, as seen in Table 9, is that A32 and 
A41 are no longer selected as the optimal products in the new scenario 

Table 6 
Ranking result of risk-averse UTA and original UTA.  

Alternatives Risk-averse UTA Original UTA 

Overall score Rank Overall score Rank 

A1  0.1459 45  0.2139 45 
A2  0.2074 36  0.2953 35 
A3  0.1917 40  0.2731 42 
A4  0.2509 30  0.2846 37 
A5  0.1414 46  0.2113 46 
A6  0.3606 17  0.3797 25 
A7  0.6215 1  0.5906 1 
A8  0.1859 43  0.2544 44 
A9  0.3257 25  0.4215 17 
A10  0.3130 26  0.3274 29 
A11  0.5256 3  0.5433 2 
A12  0.2331 32  0.3527 27 
A13  0.4730 7  0.4652 7 
A14  0.4913 6  0.4991 4 
A15  0.4526 10  0.4507 9 
A16  0.4445 11  0.4285 15 
A17  0.3505 20  0.3868 24 
A18  0.4598 9  0.4380 13 
A19  0.3574 18  0.4329 14 
A20  0.2011 38  0.2938 36 
A21  0.2541 29  0.3318 28 
A22  0.2008 39  0.2752 40 
A23  0.2332 31  0.3041 34 
A24  0.4242 12  0.4192 18 
A25  0.4644 8  0.4490 10 
A26  0.5117 4  0.4801 6 
A27  0.4240 13  0.4189 19 
A28  0.3564 19  0.3601 26 
A29  0.3929 15  0.4608 8 
A30  0.2273 33  0.3174 32 
A31  0.2908 27  0.3872 23 
A32  0.4069 14  0.4087 20 
A33  0.2615 28  0.3194 31 
A34  0.3621 16  0.4408 11 
A35  0.5699 2  0.5421 3 
A36  0.3312 24  0.4271 16 
A37  0.2058 37  0.2743 41 
A38  0.3452 21  0.4385 12 
A39  0.3370 22  0.4004 22 
A40  0.3329 23  0.4066 21 
A41  0.4984 5  0.4814 5 
A42  0.1910 41  0.2783 38 
A43  0.2104 35  0.3131 33 
A44  0.1905 42  0.2778 39 
A45  0.2211 34  0.3235 30 
A46  0.1787 44  0.2586 43  

Fig. 3. Normalized value of A29 and A32.  
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compared to the before-change state. Furthermore, in all four scenarios, 
A7, A8,A11,A13 and A14 remain optimal, indicating that these products 
are the most reliable ones in terms of dealing with demand uncertainty. 

6. Managerial implications 

The study suggests a framework that combines qualitative and 
quantitative criteria with an optimization approach to address both 
short-term and long-term concerns in MCDA contexts. The research in-
troduces a risk-averse UTA method that considers both experts’ opinions 
and the information in the decision matrix to avoid anchoring bias in the 
weighting process. The proposed methodology eliminates the 
complexity associated with the application of probabilistic or fuzzy 
methods in decision-making. Moreover, the MAOM can reduce the di-
mensions of complex problems, making them feasible to solve. The 
framework can be used in various areas, including multi-level supply 
chain management, healthcare system optimization, and financial 
markets, where the complexity of the situation can be overwhelming. 
The proposed methodology can suggest alternatives with the fewest 
weaknesses, leading to satisfaction in the long term, even in crises such 
as the emergent need for hospital location. The current weighting 

Fig. 4. The respective performance of A29 and A32 on criteria in which they practice within the evaluation process based on the original and risk-averse UTA.  

Table 7 
Optimal set of solution for crops in group A.  

Crop Rank Optimal Cultivation Di 

A1 45 0 9000 
A8 43 20483.8105 41,666 
A9 25 0 1170 
A11 3 47,619 47,619 
A13 7 17,857 17,857 
A14 6 55,248 55,248 
A17 20 0 9624 
A19 18 0 600 
A24 12 0 2702 
A27 13 0 4000 
A28 19 0 1751 
A35 2 0 2481 
A36 24 0 1175 
A37 37 0 2500 
A38 21 0 1004 
A40 23 0 1169  

Table 8 
Optimal set of solution for crops in group B.  

Crop Rank Optimal Cultivation Di 

A2 36 0 45,454 
A3 40 0 38,461 
A4 30 0 20,000 
A5 46 0 23,255 
A6 17 0 26,315 
A7 1 32,786 32,786 
A10 26 0 7032 
A12 32 0 6024 
A15 10 50,505 50,505 
A16 11 0 6896 
A18 9 0 3508 
A20 38 0 700 
A21 29 0 1533 
A22 39 0 3003 
A23 31 0 800 
A25 8 0 6301 
A26 4 0 3974 
A29 15 0 925 
A30 33 0 1388 
A31 27 0 3484 
A32 14 51,020 51,020 
A33 28 0 2403 
A34 16 0 2617 
A35 22 0 1404 
A41 5 3792.4602 20,325 
A42 41 0 19,880 
A43 35 0 35,714 
A44 42 0 28,328 
A45 34 0 23,809 
A46 44 0 31,250  

Table 9 
Outcomes of the optimal cultivation model following an increase in demand.  

Scenario Product 
Number 

Rank Optimal 
Cultivation 

Demand  

7 1  36064.6 36064.6 
8 43  45832.6 45832.6 
11 3  52380.9 52380.9 
13 7  19642.7 19642.7 

Demand + 10% 
Demand 

14 6  60772.8 60772.8  

15 10  29738.7 55555.5 
17 20  6800.3 10586.4 

Demand + 20% 
Demand 

7 1  39343.2 39343.2 
8 43  49999.2 49999.2 
11 3  57142.8 57142.8  
13 7  21428.4 21428.4 
14 6  66297.6 66297.6 
15 10  17954.1 60,606 
17 20  4105.6 11548.8 

Demand + 40% 
Demand 

7 1  41526.5 45900.4 
8 43  54858.3 58332.4 
11 3  66666.6 66666.6  
13 7  24999.8 24999.8 
14 6  77347.2 77347.2 

Demand + 60% 
Demand 

7 1  29723.5 52457.6 
8 43  48608.4 66665.6 
11 3  76190.4 76190.4  
13 7  28571.2 28571.2 
14 6  88396.8 88396.8  
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methods that rely solely on experts’ opinions can lead to a preference for 
certain criteria, ultimately resulting in suboptimal alternatives. The 
proposed method can consider both experts’ opinions and the infor-
mation in the decision matrix, ensuring a comprehensive evaluation and 
weighting of criteria. The proposed method yields the following insights:  

• Organizations can effectively consider both short-term and long- 
term concerns in their decision-making process by utilizing stra-
tegic and operational criteria.  

• The proposed MAOM reduces the risk of the decision-making 
process.  

• When there is a lack of information regarding potential alternatives, 
when the alternatives are only known to experts, or when a crisis 
situation necessitates the selection of alternatives, current methods 
may be effective in the short-term, but they may not take into ac-
count the long-term implications of the alternatives as the MAOM 
can. 

7. Conclusions and future studies 

This study proposed a Multi-Attribute Optimization Model (MAOM) 
to determine the optimal amount of cultivation of crops considering 
both strategic and operational criteria in order to promote sustainable 
agricultural development. The framework of strategic criteria was 
divided into economy, society, and environment dimensions and used to 
calculate the sustainability score of candidate crops in the first step. In 
order to reduce the risk of low-scoring criteria, a risk-averse UTA was 
developed in this step. In the second step, a linear mathematical model 
was developed to calculate the optimal amount of candidate crops, 
taking into account the results of risk-averse UTA as the parameter of the 
objective function and operational criteria as constraints. 

We employed the MAOM in Khorasan Razavi, Iran. An analysis of the 
local weight of strategic criteria revealed that the three dimensions had 
varying levels of importance, with the economic dimension being the 
most significant. An analysis of the local weight of sub-criteria in the 
three dimensions revealed that convenience of crop cultivation, water 
consumption per hectare, and usage of fertilizer and pesticide per hectare are 
the most significant factors from economic, social, and environmental 
perspectives. 

In this study, the risk-averse UTA was used to figure out the sus-
tainability scores of 49 candidate crops, and the crops were then ranked 
according to their scores. The highest and lowest scores were achieved 
by Potato and Leafy vegetables, respectively. Furthermore, a compari-
son between the original UTA and the risk-averse UTA revealed that the 
latter was able to effectively adjust the trade-off between decision- 
making criteria by determining the optimal weight for each. Finally, 
the optimization problem yielded the result that Dried garlic, Turnip and 
forage, Millet, and Khasil should be cultivated during the spring and 
summer months, while Potato, Fodder beet, Shah seed, and Mung bean 
are recommended for the autumn and winter months. Moreover, 
sensitivity analysis on the proposed model showed that our results are 
approximately robust with respect to demand uncertainty. This outcome 
can be valuable for policymakers by helping them to formulate policies, 
allocate resources, and promote economic stability in the agricultural 
sector. For example, policymakers can use the proposed framework to 

design policies that incentivize farmers to cultivate that particular crop. 
This can help ensure a stable supply of the crop even if demand 
fluctuates. 

In this study, we used multi-criteria decision-making (MCDM) 
methods to come up with a hierarchical structure of criteria to figure out 
how sustainable crops are. This suggested structure provides valuable 
insights for both scholars and policymakers. Scholars can use the criteria 
to enhance and create agricultural machinery and seeds for sustainable 
production, while policymakers can use the framework of criteria to 
rank farmers’ concerns and devise sustainable strategies to address 
them. 

This work is limited in that, although we have attempted to cover 
more criteria by taking into account a sustainability index, it may not be 
the most comprehensive in terms of sustainability. Future research 
should consider other operational issues such as workforce allocation, 
irrigation scheduling, transportation of raw materials, and produced 
crops to better proxy real-life situations in optimal cultivation patterns. 
Moreover, other mathematical programming, such as stochastic pro-
gramming can model the uncertainty of parameters at operational level 
more appropriately. Such an extension for the proposed model will 
provide decision-makers with more accurate results. In addition, if our 
proposed model applies to a wider scope (country), the size of the 
problem gets bigger and needs meta-heuristic algorithms for providing 
efficient solutions. Therefore, devising a meta-heuristic algorithm for a 
large-scale version of our proposed framework is beneficial. Finally, 
even though this study extends UTA method by considering risk-averse 
factor in decision-making process, since uncertainty is intertwined with 
decision-making context (Chun-Yueh, 2022), a combination of rein-
forcement learning (Zamfirache, Precup, Roman, & Petriu, 2022) and 
UTA is appreciated to include both risk factor and uncertainty for multi- 
criteria decision-making problems. 

CRediT authorship contribution statement 

Mohammad Reza Mehrpour: Conceptualization, Investigation, 
Resources, Validation, Data curation, Formal analysis, Software, Visu-
alization, Writing - original draft, Writing - review & editing. Siamak 
Kheybari: Conceptualization, Investigation, Methodology, Resources, 
Validation, Data curation, Formal analysis, Project administration, 
Software, Supervision, Visualization, Writing - original draft, Writing - 
review & editing. Jagjit Singh Srai: Validation, Conceptualization, 
Investigation, Writing - original draft, Writing - review & editing. Abbas 
Rohani: Resources, Validation, Conceptualization, Data curation, 
Funding acquisition, Investigation, Writing - original draft, Writing - 
review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request.  

Appendix A 

Appling the UTA model entails the following assumptions:  

• A set of criteria as 
{
g1, g2,⋯, gn

}
is defined in which n denotes the number of decision criteria.  

• AR includes the options that are ranked by the decision maker.  
• Possible values for different options within criterion i in real interval is defined such that g*

i and gi* denote the worst and best level of criterion i in a 
non-decreasing real interval. 
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• The value of option a in criterion i is equal to gi(a) and g(a) that shows the performance of option a in n decision criteria.  
• As the performance of an option increases, its preference increases. In other words, we have: 

gi (a) > gi (b)⇔ a P b ∀ i  

gi (a) = gi (b)⇔ a I b ∀ i (A1)  

Where P is called the strict preference relation and I the indifference relation.  

• Marginal utility function of alternative a for criterion i is denoted by ui(gi (a)), and global utility function of alternative a is denoted by U(a). Both 
marginal utility and global utility functions are positive, non-decreasing, and one-to-one functions, and they belong to the set of real numbers. 
Global utility function lies within the interval [0,1] while marginal utility function is a fraction of this interval, and we have: 

ui :
[
gi*, g*

i

]
→[01]∀i  

U(g(a)) > U(g(b)⇔ a > b  

U(g(a) ) = U(g(b) )⇔ a ≈ b (A2)    

• Assuming that Global utility function is an additive function, we have: 

U(g(a) ) =
∑n

i
ui(gi(a) )

∑n

i
ui
(
g*

i

)
= 1  

ui(gi* ) = 0 , ∀ i = 1, 2,⋯, n (A3)    

• As shown in Fig. A, any marginal utility function is regarded as a continuous piecewise linear function, meaning that it consists of a series of linear 
functions that are interconnected.  

• We assume that 
[
gi* , g*

i
]

can be divided into (αi− 1) equal parts such that the ending point of each interval for criterion i and sub-interval j is equal 
to: 

gj
i = gi +

j − 1
αi − 1

(
g*

i − gi*
)
∀i = 1, 2,⋯,αi (A4) 

Where using linear interpolation, ui(gi (a)) is equal to: 

ui(gi(a) ) = ui
(
gj

i
)
+

gi(a) − gj
i

gj+1
i − gj

i

(
ui
(
gj+1

i
)
− ui

(
gj

i
) )

(A5) 

This method uses a linear programming to achieve utility functions such that the rankings obtained from these functions are as consistent as 
possible with the initial rankings performed on the AR reference set. Since the answer obtained from the model may be exactly in accordance with the 
initial preferences of the decision maker, some errors are considered in the model such that the utility function defined in Equation (3) changes into 
Equation (6). 

U′(g(a) ) =
∑n

i
ui(gi(a) )+ σ(a)∀a ∈ AR (A6) 

Where σ(a) is potential error of U(g(a) ). 
Considering the ranking done in AR and assuming that a1 is at the highest rank and an is at the lowest the rank, in each pair of alternatives (ak, ak+1), 

it is possible (i) ak takes precedence over ak+1 ((ak > ak+1)) or (ii) the two alternatives are indifferent to each other ((ak ≈ ak+1)). In other words, we 
have: 

Δ(ak , ak+1) = U[g(ak ) ] − U[g(ak+1 ) ] ≥ δ for ak > ak+1 ∀ k
Δ(ak, ak+1) = U[g(ak) ] − U[g(ak+1) ] = 0 for ak ≈ ak+1 ∀k (A7) 

Where δ is a very small value appropriately showing significant difference between two consecutive alternatives. Given the aforementioned ex-
planations, marginal utility function is equal to: 

Minimize F =
∑

a∈AR

σ(a)

Subject to: 

Δ(ak, ak+1) = U[g(ak) ] − U[g(ak+1) ] ≥ δ for ak > ak+1∀ k  

Δ(ak, ak+1) = U[g(ak) ] − U[g(ak+1) ] = 0 for ak ≈ ak+1∀ k  
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∑n

i
ui
(
g*

i

)
= 1

ui
(
gj+1

i
)
− ui

(
gj

i
)
≥ 0 ∀ i, j

σ(a) ≥ 0

(A8) 

If F* = 0, then it means that we have found a solution set for the final utility such that the ranking resulted from the model perfectly matches the 
initial ranking presented by the reference set; otherwise, it means that there is no set of values to accurately create the same initial ranking of the AR. 
Therefore, the ranking obtained from the model is created with some error in relation to the decision-maker’s point of view. 

Model 8 considers only positive errors, whereas since this error is not defined as an absolute value, it may have a negative value. For this purpose, 
an improved version of UTA was proposed by Siskos et al., (Siskos, Grigoroudis, & Matsatsinis, 2016)., called UTA STAR (Model 9). 

MinimizeZ =
∑m

i=1
σ+(ak)+ σ− (ak)

Subject to: 

Δ(ak, ak+1) ≥ δ ∀ ak > ak+1 ∀k
Δ(ak, ak+1) = 0 ∀ ak ≈ ak+1 ∀k  

∑n

i=1

∑αi − 1

j=1
wij = 1 ∀ i, j  

Table A1 
Normalized score of candidate crops across decision-making criteria.  

Crops C1 C2 C3 C4 C5 C6 C7 

A1 0.059 0.334 0.84 0 0.948 0.4 0.039 
A2 0.096 0.334 0.875 0 0.918 0.8 0.056 
A3 0.071 0 0.858 0 0.823 0.8 0.039 
A4 0.046 0.667 0.929 0.334 0.888 0.2 0.022 
A5 0.096 0.334 0.858 0 0.777 0.4 0.056 
A6 0.31 0.667 0.822 0.334 0.896 0.6 0.009 
A7 0.059 0.667 0.893 1 0.915 0.8 0.031 
A8 0.41 0.667 0.911 0 0.955 0.2 0.271 
A9 0.561 0.667 0.947 0 0.758 1 0.374 
A10 0.065 0.667 0.786 0.667 0.731 0 0.035 
A11 0.052 1 0.875 0.667 0.976 1 0.026 
A12 0.071 1 0.911 0 0.916 1 0.039 
A13 0.076 1 0.786 0.667 0.963 0.6 0.042 
A14 0 1 0.875 0.667 0.967 0.8 0.019 
A15 0.015 1 0.768 0.667 0.919 0.6 0 
A16 0.015 0.334 0.768 0.667 0.916 0.6 0 
A17 0.071 1 0 0.667 0 0.8 0.039 
A18 0.069 0.334 0.768 0.667 0.916 0.6 0.037 
A19 0.749 0.667 0.983 0 0.986 0.8 0.503 
A20 0.052 0.334 0.929 0 0.956 0.8 0.026 
A21 0.423 0.667 0.947 0 0.919 0.6 0.279 
A22 0.31 0.667 0.965 0 0.904 0.4 0.202 
A23 0.052 0.334 0.929 0 0.873 0.6 0.588 
A24 0.075 0.667 0.822 0.667 0.956 0.4 0.042 
A25 0.069 0.667 0.768 0.667 0.916 0.6 0.037 
A26 0.247 0.667 0.804 0.667 0.864 0.6 0.159 
A27 0.077 0.667 0.822 0.667 0.943 0.4 0.043 
A28 0.184 0.667 0.786 0.667 0.939 0 0.116 
A29 1 0.334 0.965 0 0.918 0.8 0.674 
A30 0.184 0.334 0.965 0 0.916 0.8 0.116 
A31 0.561 0.334 0.911 0 0.397 1 0.374 
A32 0.027 0.667 0.84 0.667 0.895 0.4 0.009 
A33 0.486 0.334 0.786 0 0.917 0.6 0.322 
A34 0.687 0.334 0.875 0 1 1 0.46 
A35 0.875 1 0.947 0.667 0.941 0.2 0.588 
A36 0.498 0.667 1 0 0.978 1 0.331 
A37 0.561 0.667 0.84 0 0.937 0.2 0.374 
A38 0.561 0.667 1 0 0.985 1 0.374 
A39 0.473 0.667 0.911 0 0.896 0.6 1 
A40 0.661 0.667 0.893 0 0.915 0.8 0.443 
A41 0.096 0.334 0.822 0.667 0.866 0.8 0.056 
A42 0.04 0.334 0.822 0 0.866 0.8 0.018 
A43 0.096 1 0.858 0 0.87 0.8 0.056 
A44 0.037 0.334 0.822 0 0.866 0.8 0.016 
A45 0.077 0.334 0.822 0 0.889 1 0.043 
A46 0.109 0.334 0.893 0 0.866 0.6 0.065  
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wij ≥ 0 ∀ i, j
σ+(ak) ≥ 0 ∀k
σ− (ak) ≥ 0 ∀ k

(A9) 

where 

Δ(ak , ak+1) = U[g(ak ) ] − σ+(ak) − σ− (ak) − U[g(ak+1 ) ] + σ+(ak) − σ− (ak) (A10)  

wij = ui
(
gj+1

i
)
− ui

(
gj

i
)
≥ 0 ∀ i = 1, 2,⋯, n, j = 1, 2,⋯, αi − 1 (A11) 

Note that m in the objective function of model number 9 is equal to the number of alternatives of set AR. 
To calculate the optimal weigh of criteria contributed to decision making problems, we should solve optimization model 12 (Siskos et al., 2016). 

Minimize
i

(
ui
(
g*

i

) )
=

∑αi − 1

j=1
wij ∀i 

Subject to: 

Table B1 
Parameters of linear optimization model for group A.  

Crop Di ai pi wi 

A1 9000 11,000  0.1459  0.864 
A8 41,666 2400  0.1859  0.164 
A9 1170 85,400  0.3257  27.77 
A11 47,619 0.21  0.5256  0.086 
A13 17,857 5600  0.4730  0.32 
A14 55,248 0.181  0.4913  0.095 
A17 9624 10,398  0.3505  13.611 
A19 600 166,600  0.3574  4.83 
A24 2702 37,000  0.4242  2.51 
A27 4000 25,000  0.4240  2.125 
A28 1751 57,100  0.3564  5.139 
A35 2481 40,300  0.5699  3.52277 
A36 1175 85,100  0.3312  3.319 
A37 2500 40,000  0.2058  3.68 
A38 1004 99,600  0.3452  2.988 
A40 1169 85,500  0.3329  10.39  

Table C1 
Parameters of linear optimization model for group B.  

Crop Di ai pi wi 

A2 45,454  0.22  0.2074  0.256 
A3 38,461  0.26  0.1917  0.26 
A4 20,000  0.5  0.2509  0.78 
A5 23,255  0.43  0.1414  1.29 
A6 26,315  0.38  0.3606  0.554 
A7 32,786  0.305  0.6215  0.786 
A10 7032  1.422  0.3130  5.119 
A12 6024  1.66  0.2331  1.99 
A15 50,505  0.198  0.4526  0.229 
A16 6896  1.45  0.4445  1.74 
A18 3508  2.85  0.4598  3.42 
A20 700  14.28  0.2011  9.71 
A21 1533  6.523  0.2541  7.56 
A22 3003  3.33  0.2008  4.49 
A23 800  12.5  0.2332  21.875 
A25 6301  1.587  0.4644  1.9 
A26 3974  2.516  0.5117  4.7 
A29 925  10.81  0.3929  12.648 
A30 1388  7.204  0.2273  8.64 
A31 3484  2.87  0.2908  22.81 
A32 51,020  0.196  0.4069  0.287 
A33 2403  4.16  0.2615  4.91 
A34 2617  3.82  0.3621  0.37 
A35 1404  7.12  0.3370  10.38 
A41 20,325  0.492  0.4984  0.91 
A42 19,880  0.503  0.1910  0.93 
A43 35,714  0.28  0.2104  0.5 
A44 28,328  0.353  0.1905  0.65 
A45 23,809  0.42  0.2211  0.65 
A46 31,250  0.32  0.1787  0.592  
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{ ∑m

k=1
[σ+(ak) − σ− (ak) ] ≤ Z* + ε

alltheconstraintsoflinearprogram(9)
(A12) 

where Z* is the optimal value of linear program 9 and ε is a very small positive number. 

Table D1 
Parameters related to common parameters of crops.  

City (j) ATj PTj WTj 

1 67,721 4284  47129.2169 
2 26,805 1695  18654.4596 
3 57,862 3660  40268.0224 
4 23,088 1460  16067.6800 
5 16,275 1029  11326.2947 
6 17,541 1109  12207.3447 
7 1580 99  1099.5727 
8 5581 353  3883.9970 
9 16,249 1028  11308.2005 
10 44,824 2835  31194.4599 
11 16,267 1029  11320.7273 
12 30,717 1943  21376.9459 
13 15,622 988  10871.8511 
14 15,631 988  10878.1145 
15 20,831 1317  14496.9613 
16 17,840 1128  12415.4284 
17 17,128 1083  11919.9248 
18 30,588 1935  21287.1707 
19 96,603 6111  67229.1274 
20 35,231 2228  24518.3834 
21 48,330 3057  33634.3978 
22 38,459 2433  26764.8521 
23 25,026 1583  17416.3964 
24 8729 552  6074.7912 
25 6693 423  4657.8735 
26 44,609 2822  31044.8345 
27 20,026 1266  13936.7360 
28 6275 396  4366.9738 
29 18,176 1149  12649.2616  

Table E1 
Optimal cultivation magnitude in detail for crops in group A.  

City (j) A7 A11 A14 A15 

1  10640.5473  0.0000  0.0000  0.0000 
2  4210.0205  0.0000  0.0000  0.0000 
3  0.0000  0.0000  0.0000  11669.7159 
4  3626.3303  0.0000  0.0000  0.0000 
5  0.0000  4640.1469  0.0000  0.0000 
6  2754.5208  0.0000  0.0000  0.0000 
7  0.0000  0.0000  414.3600  0.0000 
8  876.7771  0.0000  0.0000  0.0000 
9  2553.3339  0.0000  0.0000  0.0000 
10  0.0000  0.0000  11865.7636  0.0000 
11  608.5280  3535.3500  0.0000  0.0000 
12  4825.9998  0.0000  0.0000  0.0000 
13  0.0000  0.0000  4135.2291  0.0000 
14  0.0000  0.0000  0.0000  3150.1856 
15  0.0000  0.0000  5512.2436  0.0000 
16  0.0000  0.0000  4721.1927  0.0000 
17  2689.9423  0.0000  0.0000  0.0000 
18  0.0000  0.0000  8098.8545  0.0000 
19  0.0000  0.0000  15691.2691  7531.1117 
20  0.0000  10046.8875  0.0000  0.0000 
21  0.0000  0.0000  0.0000  9747.0824 
22  0.0000  0.0000  0.0000  7757.4915 
23  0.0000  7138.3406  0.0000  0.0000 
24  0.0000  130.7719  0.0000  1667.5578 
25  0.0000  1907.4656  0.0000  0.0000 
26  0.0000  12725.4563  0.0000  0.0000 
27  0.0000  5708.8687  0.0000  0.0000 
28  0.0000  1785.7125  0.0000  0.0000 
29  0.0000  0.0000  4809.0873  0.0000  
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Appendix B 

See Table A1-G1. 
See Fig. A1. 
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26  3418.9005  1227.6688  0.0000 
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29  2266.7724  0.0000  0.0000  

Table G1 
Time complexity of the mathematical model presented in this research.  

Model Execution time (in seconds) 

Calculating Range of Weights of Criteria  30.12 
Calculating Optimal Weights of Criteria  42.34 
Calculating Optimal Amount of Crops  71.04  

Fig. A1. Marginal utility function.  
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