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1 Introduction

It is well-known that the classical effective action of bosonic and heterotic string theories,
obtained through Kaluza-Klein (KK) reduction on a torus T (d) with 1 ≤ d ≤ D, is in-
variant under rigid O(d, d) transformations at all orders of α′ [1, 2]. This symmetry has
been successfully employed in several studies, including [3–7], where the d = 1 case was
considered to derive the effective action of string theory in both open and closed spacetime
manifolds.

The O(d, d) group for d > 1 includes geometrical subgroups consisting of rigid diffeo-
morphisms and shifts on the B-field, as well as non-geometrical β-transformations given by

δEµν = −EµρβρσEσν ,

δΦ = 1
2Eµνβ

µν , (1.1)

where Φ is the dilaton, Eµν = Gµν+Bµν , and βµν is a constant antisymmetric bi-vector [8].
At the critical dimension D, a diffeomorphism-invariant and B-field gauge-invariant effec-
tive action is naturally invariant under the geometrical subgroups of the O(D,D) group
with non-constant parameters. The invariance of the D-dimensional covariant action un-
der β-transformations would indicate that the effective action is invariant under the rigid
O(D,D) transformations without relying on KK reduction.

In a recent paper [8], it was suggested that the effective actions at the critical dimension
D may be invariant under β-transformations if a constraint is imposed on the partial
derivatives, given by

βµν∂ν(· · · ) = 0. (1.2)

Using the frame formalism, it has been shown that the effective action at the leading order
of α′, given by

S0 = − 2
κ2

∫
dDx
√
−Ge−2Φ

(
R− 4∇µΦ∇µΦ + 4∇µ∇µΦ− 1

12H
2
)
, (1.3)

where H = dB, is indeed invariant under β-transformations. In the bosonic string theory,
D = 26, and for the superstring theory and the heterotic string theory, D = 10. The
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existence of this symmetry at the supergravity level was already noted in [9]. In [8], it
was shown that the transformation of the effective action at order α′ in the two-parameter
generalized Bergshoeff-de Roo scheme [10] results in three- and four-flux terms. It was
demonstrated that these terms can be cancelled by deforming the β-transformations. It
is important to note that there are no residual total derivative terms in proving the β-
symmetry of the above actions.

The effective action (1.3) is the correct effective action of string theory for closed
spacetime manifolds. However, for open spacetime manifolds, this action does not satisfy
the least action principle. In fact, the least action principle for the metric indicates that
there must be the Gibbons-Hawking boundary term [13]. Assuming that the effective
actions at the critical dimension are background-independent [11], one would expect that
the global β-symmetry is the symmetry of the more general spacetime backgrounds with
boundary. In [12], it was shown that the effective action for open spacetime manifolds at
the leading order of α′, given by S(0) + ∂S(0), is indeed invariant under β-transformations.
This action is expressed as

S(0) + ∂S(0) = − 2
κ2

[∫
dDx
√
−Ge−2Φ

(
R+ 4∇µΦ∇µΦ− 1

12H
2
)

+ 2
∫
dD−1σ

√
|g|e−2ΦK

]
,

(1.4)
where the last term is the Gibbons-Hawking boundary term [13]. In the given term, K
represents the extrinsic curvature of the boundary. This curvature is defined as Kµν =
∇µnν ± nµnρ∇ρnν , where nµ refers to the outward unit vector normal to the boundary.
The choice of minus (plus) sign corresponds to a timelike (spacelike) boundary. In proving
the β-symmetry of the above bulk action, one encounters residual total derivative terms
that can be cancelled with the β-transformation of the Gibbons-Hawking boundary term.
If the β-symmetry is to be preserved at higher orders of α′, then there should be bulk
and boundary actions at higher orders that are invariant under appropriately deformed
β-transformations.

The heterotic string theory has odd parity couplings resulting from the Green-Schwarz
anomaly cancellation mechanism [14]. At order α′, there is only one odd parity coupling
in the bulk, and there is no odd parity coupling on the boundary. Therefore, the β-
transformation of the bulk coupling should produce appropriate deformations at order α′

that leave the Gibbons-Hawking boundary term invariant. In this paper, we will perform
these calculations in detail.

2 The β-symmetry at order α′

In this section, we will examine the transformation of the odd parity coupling in the effective
action of the heterotic string theory at order α′. The effective action of the heterotic string
theory has both parity-even and parity-odd parts. The parity-odd part of the effective
action at order α′ is given by

S(1)
O = −2α′

κ2

∫
d10x
√
−Ge−2Φ

(
−1

6HµναΩµνα
)
, (2.1)
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where Ω is the Chern-Simons three-form that arises from the Green-Schwarz anomaly
cancellation mechanism [14]. This mechanism requires a non-standard local Lorentz trans-
formation for the B-field, given by

Bµν → Bµν + α′∂[µΛabων]b
a, (2.2)

where Λab is the matrix of the Lorentz transformations and ωµa
b is the spin connection.

Under this transformation, the 3-form Hµνα + α′Ωµνα is invariant, i.e., Hµνα + α′Ωµνα →
Hµνα + α′Ωµνα. The Chern-Simons three-form Ω is given by

Ωµνα = ω[µa
b∂νωα]b

a + 2
3ω[µa

bωνb
cωα]c

a, (2.3)

where ωµab = ∂µeν
beνa−Γµνρeρbeνa, with eµa being the vielbein, and eµaeνbηab = Gµν . The

spin connection with subscript indices ωµνα = eν
aeα

bωµab is antisymmetric with respect to
its last two indices. In the heterotic string theory, by replacing H with the gauge invariant
field strength Ĥ = H + α′Ω in the leading order action (1.4), we obtain the odd parity
coupling (2.1).

The β-transformation of the frame eµa is given by

δeµ
a = −Bµαeβaβαβ . (2.4)

This transformation correctly produces the β-transformation of the metric in (1.1). It’s
worth noting that the β-transformations change odd parity terms to even parity terms and
vice versa. By using the above transformation and the transformations in (1.1) and apply-
ing the constraint (1.2), we obtain the transformation of the action (2.1) in terms of the
curved space fluxes Hµνα, ωµνα, and their covariant derivatives, which can be expressed as1

δS(1)
O = −2α′

κ2

∫
d10x
√
−Ge−2Φ

[
−1

3β
αβωα

γδωβ
εεωγε

µωδµε + 1
6Hγε

µHδµεβ
αβωα

γδωεβ
ε

− 1
12Hβ

µεHεµεβ
αβωα

γδωεγδ + 1
6Hβε

µHδεµβ
αβωα

γδωεγ
ε + 1

3Hβε
µHγεµβ

αβωγα
δωεδ

ε

− 1
12HβµεHγδεβ

αβωα
γδωεµε − 1

12HβγεHδµεβ
αβωα

γδωεµε + 2
3β

αβωα
γδωγ

εεωεβ
µωεδµ

+ 1
12HαγεHβεµβ

αβωγδεωεδ
µ + 1

6Hβδ
εHγεεβ

αβ∇εωγαδ + 1
6Hγ

εεβαβωγα
δ∇εHβδε

+ 1
12Hαγ

εβαβωγδε∇εHβδε −
2
3β

αβωα
γδωγ

εε∇εωεβδ
]
. (2.5)

It is worth noting that the coupling in (2.1) is an odd parity term, and its transformation
under the β-transformations is even parity, as expected. Using the fundamental require-
ment that the frame eµa is covariantly constant, i.e.,

∇µeνa ≡ ∂µeνa − Γµνρeρa + ωµb
aeν

b = 0, (2.6)
1The calculations in this paper were performed using the “xAct” package [15]. In a previous version of

this paper, there was a mistake in calculating the transformation (2.5). In particular, in that version, the
terms without H were missing. This mistake led us to incorrectly conclude that (2.5) is not invariant under
the β-transformations.
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we can rewrite the transformation (2.5) in terms of the flat space fluxes Habc, ωabc, and
their flat derivatives, for example,

∇µHναβ = eµ
aeν

beα
ceβ

d(DaHbcd + ωab
eHecd + ωac

eHbed + ωad
eHbce), (2.7)

where the flat derivative is Da = eµa∂µ. It is worth noting that the transformation in (2.5)
involves only three and four fluxes, regardless of whether we use flat space or curved space
fluxes. In fact, it has been observed in [8] that the β-transformation of the effective action
of the heterotic string theory at order α′ in the Bergshoeff-de Roo scheme also involves
only three and four flat space fluxes. In this paper, we continue our calculations using the
curved space tensors.

It is evident that the transformation (2.5) is not zero. However, it is possible that
the integrand might be a total derivative or might cancel with terms at order α′ that are
produced by the transformation of the leading order bulk action (1.4) under an appropriate
deformation of the β-transformations at order α′. We consider the most general covariant
deformation at order α′ for the β-transformations, given by

δΦ = δΦ(0) + α′δΦ(1) + · · · ,
δGαβ = δG

(0)
αβ + α′δG

(1)
αβ + · · · ,

δBαβ = δB
(0)
αβ + α′δB

(1)
αβ + · · · , (2.8)

where δΦ(0), δG(0)
αβ , and δB

(0)
αβ are given in (1.1), and δΦ(1), δG(1)

αβ , and δB
(1)
αβ are all possible

contractions of the fluxes Hµνα, ωµνα, ∇µΦ, βµν , and their covariant derivatives2 at order
α′. These contractions should include only the linear order of βµν . The transformation of
the leading order bulk action (1.4) under the above deformed transformation produces the
following terms at order α′:

α′∆(S0) = −2α′

κ2

∫
d10x
√
−Ge−2Φ

[
−RαβδG(1)

αβ −
1
24HβγδH

βγδδG(1)α
α + 1

2RδG
(1)α

α

+1
4Hα

γδHβγδδG
(1)αβ + 1

6HαβγH
αβγδΦ(1) − 2RδΦ(1) + 8∇αΦ∇αδΦ(1)

+2δG(1)β
β∇αΦ∇αΦ− 8δΦ(1)∇αΦ∇αΦ +∇β∇αδG(1)αβ −∇β∇βδG(1)α

α

−4δG(1)
αβ∇αΦ∇βΦ− 1

2Hαβγ∇γδB(1)αβ
]
. (2.9)

Since the transformation (2.5) is even-parity, the deformations δΦ(1), δG(1)
αβ must include

an even number of H, and δB
(1)
αβ must include an odd number of H. We also include

all possible total covariant derivative terms in our calculations. The most general total
2Please note that the constant antisymmetric bi-vector βµν is not covariantly constant. In other words,

∇αβ
µν = 0 does not hold, while ∂αβ

µν = 0. One could utilize the latter relation to express the covariant
derivatives of βµν in terms of the Levi-Civita connection, for example, ∇αβ

µν = −2Γ[µ
αρβ

ν]ρ. However, in
this paper, we refrain from employing such relations.
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derivative terms are given by

J (1) = −2α′

κ2

∫
d10x
√
−G∇α

[
e−2ΦI(1)α

]
, (2.10)

where the vector I(1)α is all contractions of ω, H, ∇Φ, β, and their covariant derivatives
at order α′, which are even-parity and linear in βµν .

In order for the action (2.1) to be invariant under the deformed β-transformations, the
following relation must be satisfied:

δS(1)
O + α′∆(S(0)) + J (1) = 0. (2.11)

To solve this equation, one must impose the following Bianchi identities:

Rα[βγδ] = 0,
∇[µRαβ]γδ = 0, (2.12)
∇[µHαβγ] = 0,

[∇,∇]O −RO = 0,

as well as the constraint (1.2). To impose the Bianchi identities, we write the curvatures,
the spin connection, and the covariant derivatives in (2.11) in terms of partial derivatives
of the frame eµa, and write the field strength H in terms of the B-field. In this way, all
the Bianchi identities are satisfied automatically, and the constraint (1.2) can easily be
imposed. Then, the equation (2.11) can be written in terms of non-covariant independent
terms. If the above relation is correct, then the coefficients of the independent terms
should be zero, i.e., there should be total derivative terms and appropriate corrections for
the β-transformations that make the above relation satisfied.

However, some of the coefficients of the total derivative terms and the corrections to
the β-transformations may be related to each other by the Bianchi identities when they are
inserted into the constraint (2.11). Hence, we do not expect the constraint (2.11) to fix all
coefficients in the total derivative terms and in the deformations of the β-transformations.
We have found that the equation (2.11) has solutions for many unfixed parameters in the
total derivative terms and in the deformations of the β-transformations. The solution is
such that for no values of the remaining parameters, the deformation δG(1)

αβ is zero.
Since there is only one odd-parity bulk coupling at order α′ with a fixed coefficient,

there is no further constraint on the remaining parameters for the closed spacetime man-
ifolds. The remaining parameters are independent of the bulk coupling, so one may set
them all to zero. In this way, one finds the following current for total derivative terms:

I(1)α = 1
12Hγ

εεHδεεβ
βγωβ

αδ − 1
3β

βγωβ
αδωγ

εεωεδε − ββγωβδεωδαεωεγε

+1
3∇γωδ

α
β∇δββγ + 2

3∇δωβ
α
γ∇δββγ , (2.13)

– 5 –
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and the following deformations for the β-transformations:

δΦ(1) = 0,

δG
(1)
αβ = 1

3β(α
γωβ)

δεωγδε + 1
3∇γ∇(αββ)

γ + 2
3β(α

γ∇γ∇β)Φ,

δB
(1)
αβ = 1

3H[αδεβ
γδωβ]γ

ε − 1
6Hγδεβ[α

γωβ]
δε − 1

3H[αδεβ
γδωγβ]

ε + 1
6H[αδεββ]

γωγ
δε, (2.14)

where (, ) is used to symmetrize the indices α, β, and [, ] is used to antisymmetrize α, β.
With the above total derivative terms and deformation of the β-transformations, the odd
parity coupling at order α′ is invariant under the β-transformations. For closed spacetime
manifolds, the total derivative terms can be ignored.

Since we are interested in open spacetime manifolds that have a boundary, there are
further constraints in addition to the constraint (2.11). Therefore, we first need to impose
these constraints on the parameters, and then the remaining parameters may be set to
zero. There is a unit vector nµ to the boundary that should be invariant under the β-
transformations, i.e., δnµ = 0 at all orders of α′. Moreover, its length should be invariant.
This implies that

nµnνδGµν = 0, (2.15)

should hold at all orders of α′.
On the other hand, there are data on the boundary that should be invariant under the

β-transformations. The data at order α′ are the values of the massless fields and their first
derivatives [7]. In imposing the O(1, 1) symmetry on the effective action, since there are
no constraints on the massless field in the base space, the constraint (2.15) implies that the
deformation of the base space metric must be zero. The constraint that the data should
be invariant under the O(1, 1) transformations also implies that the deformations for other
massless fields at order α′ should include only the first derivative of the massless fields.

In the β-symmetry, however, there are also the constraints (1.2) as well as the following
constraint [12]:

βµνnν = 0. (2.16)

The constraint mentioned above, which ensures the invariance of the leading-order action
described by equation (1.4) under the β-transformations given by equation (1.1), was de-
rived in [12]. These constraints do not allow us to conclude that the deformation of the
metric must be zero, and all other deformations must include only the first derivative of
βµν and the massless fields. In fact, the data must not be spoiled after using the con-
straints (1.2) and (2.16). We clarify this point further in the Conclusion section.

The constraint (2.15) dictates that only one of the parameters in the deformations
resulting from equation (2.11) is zero, i.e., δG(1)

αβ is non-zero even in the presence of a
boundary. However, for any values of the parameters, we find that

δΦ(1) = 0;GµνδG(1)
µν = 0, (2.17)

which indicates that the measure e−2Φ√−G is invariant under the deformed β-trans-
formations.

– 6 –
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In the presence of a boundary, there are similar constraints like (2.11) for the boundary
effective action as well. Since there is no odd parity boundary action at order α′, the β-
transformation of the leading order boundary term should be canceled with the resulting
total derivative terms in (2.11) after using the Stokes’ theorem, i.e.,

α′∆(∂S(0)) + 2α′

κ2

∫
d9x e−2Φ

√
|g|nαI(1)α = 0. (2.18)

In the Gaussian normal coordinates, i.e., xµ(σµ̃) = (σµ̃, z∗) where z∗ is fixed on the bound-
ary, one has

ds2 = Gµνdx
µdxν = ±d2z + gµ̃ν̃dσ

µ̃dσν̃ ; or, Gµν =
(
±1 0
0 gµ̃ν̃

)
. (2.19)

Then using (2.17), one finds that the measure in the Gibbons-Hawking boundary term
in (1.4) is invariant under the β-transformations, i.e.,

δ

(
e−2Φ

√
|g|
)

= e−2Φ
√
|g|
(
−2δΦ(1) + 1

2g
µ̃ν̃δgµ̃ν̃

)
= e−2Φ

√
|g|
(
−2δΦ(1) + 1

2G
µνδGµν

)
= 0.

Hence, we need to study the transformation of the extrinsic curvature of the boundary K
under the deformed β-transformations.

We consider a spacelike boundary. Using the fact that the normal vector is invariant,
we find that the transformation of this curvature is

δK = −nαnβ(∇αnγ +∇γnα)δG(1)
βγ − n

α∇βδG(1)
α

β −∇βnαδG(1)
αβ

+1
2n

α∇αδG(1)
β

β − 1
2n

αnβnγ∇γδG(1)
αβ . (2.20)

When we replace the deformed δG(1)
αβ that we have found from the constraints (2.11), (2.15),

and use the constraints (1.2) and (2.16) and their combined constraint βµν∂αnµ = 0, we find
that the result is zero for any parameter in δG(1)

αβ . For example, the extrinsic curvature is
invariant under the deformation (2.14). However, the total derivative terms (2.13) produce
some non-zero terms which make the odd parity coupling not invariant under the deformed
β-transformations (2.14) in the presence of a boundary.

The boundary constraint (2.18) then dictates that nαI(1)α must be zero after using the
constraints (1.2) and (2.16). This gives some relations between the parameters in I(1)α.
Since there is no other constraint that the remaining parameters have to satisfy, they are
presumably the dependent parameters that are related to the independent parameters by
the Bianchi identities. So we set them all to zero. The result is that there are no total
derivative terms, and the deformed β-transformations are the following:

δΦ(1) = 0,

δG
(1)
αβ = 1

3ω(α
δεωγδεββ)

γ + 1
12H(α

δεHγδεββ)
γ ,

δB
(1)
αβ = 1

3H[αδεβ
γδωβ]γ

ε − 1
6Hγδεβ[α

γωβ]
δε − 1

3H[αδεβ
γδωγβ]

ε + 1
6H[αδεββ]

γωγ
δε. (2.21)

This ends our illustration that the odd-parity couplings in the heterotic theory at order α′

are invariant under the deformed β-transformation in the presence of a boundary.
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3 Conclusion

In this paper, we demonstrate the invariance of the odd-parity coupling at order α′ in
heterotic string theory in the presence of a boundary, as given by (2.1), under the β-
transformations (1.1) and their deformation at order α′ given by (2.21). We consider all pos-
sible deformations and total derivative terms at order α′ and impose the constraint (1.2) on
the parameters of the β-transformations. In particular, we require that the bulk couplings
satisfy the β-constraint (2.11) and the boundary action satisfies the β-constraint (2.18).
Additionally, in the presence of a boundary, we have the constraints (2.16) and (2.17). By
imposing these constraints, we find that the bulk and boundary actions are invariant un-
der the β-transformations with no total derivative terms and with the deformations given
by (2.21). In our calculation, there are several parameters in the total derivative terms and
the deformation that are presumably removable by the Bianchi identity. To simplify the
analysis, we set all such parameters to zero.

A similar calculation has been carried out in [17] to show the invariance of the circular
reduction of bulk and boundary couplings under the O(1, 1)-group. There are advantages
and disadvantages when comparing the two methods. In the β-symmetry, the advantage
is that no Kaluza-Klein reduction is needed, and only massless fields such as the metric,
B-field, and dilaton need to be considered in the spacetime. The disadvantage is the
requirement to impose the constraint (1.2) and work with a curved spacetime. Furthermore,
the β-transformations do not form a group and need to be combined with local Lorentz
transformations and B-field gauge transformations to satisfy a closed algebra [8].

On the other hand, the advantage of the O(1, 1)-symmetry is that there are no con-
straints in the base space, and the base space can be chosen to be flat. Furthermore, the
deformations form the simple Z2-group, making the calculation in the base space much
simpler. However, the disadvantage is that there are more fields in the base space resulting
from the Kaluza-Klein reduction than in the original spacetime.

In [6, 7], it was proposed that in the presence of a boundary, there exist data on the
boundary that should not be affected by field redefinition or T-duality transformations.
Specifically, for the effective action at order α′, the boundary data consist of the values of
the massless fields and their first derivatives [7]. Therefore, at order α′, there should be no
field redefinition for the metric, and for other massless fields, any field redefinitions should
only involve their first derivatives.

To clarify this point, consider the variation of the leading-order effective action in (2.9).
The second derivative of the metric perturbation in the third line of (2.9) produces the
first derivative of the perturbation on the boundary using Stokes’ theorem. If the metric
perturbation includes the first derivative of the massless fields, then the first derivative of
the perturbation produces the second derivative of the massless fields on the boundary,
which are not known for the effective action at order α′. Hence, this perturbation would
spoil the boundary data. A similar argument applies to the β-transformations, which
should also preserve the boundary data.

We have observed that the deformation at order α′ involves a non-zero δG(1)
αβ . However,

due to the constraints (1.2) and (2.16), it cannot be concluded that the first derivative of this
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deformation, which appears on the boundary, produces the second derivative of the massless
fields. In fact, the last term in the third line of (2.9) is zero according to the equation (2.17).
We note that the third term in the third line of (2.9), which produces nβ∇αδG(1)αβ on
the boundary, only generates the first derivative of the massless fields for the deformation
in (2.21) upon using the constraints (1.2) and (2.16). Interestingly, the deformation of the
B-field in (2.21) also only involves the first derivative of the massless fields, even without
using the constraints (1.2) and (2.16). Therefore, the deformations (2.21) do not spoil the
boundary data.

The deformations of the β-transformations generally depend on the chosen scheme
for the effective action. This observation was made in [12] for the parity-even component
of the effective action in the heterotic theory at order α′. Specifically, the deformation
described by equation (2.21) corresponds to a particular odd-parity coupling, as given by
equation (2.1). This deformation aligns with the findings in [8], which specifically pertain
to the Bergshoeff-de Roo scheme. Such a deformation can be employed to study the even-
parity couplings at order α′2 within the Bergshoeff-de Roo scheme [18]. In particular, one
can examine the transformations of the couplings at order α′2 in this action under the
deformed β-transformations described in equation (1.1), in addition to the transformations
of the couplings at order α′ under the deformed β-transformations at the same order and
the transformation of the leading-order action described by equation (1.4) under the β-
transformations at order α′2. These transformations should yield either zero or some total
derivative terms. Given that the couplings are known in this scheme, one can utilize it
to verify the deformations at order α′ and also determine the deformations at order α′2.
Performing such calculations would be intriguing in order to identify the deformations
of the β-transformations at order α′2 within the Bergshoeff-de Roo scheme. A similar
calculation has been carried out in [19], where the O(1, 1,Z) symmetry was used instead
of β-symmetry, in order to determine the NS-NS couplings at order α′2 in the heterotic
theory within the Meissner scheme.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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