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Abstract
The Lorenz curve (LC) is the most fundamental and remarkable tool for processing the size distribution of income and

wealth. The LC method is applied as a means to describe distributional consideration in economic analysis. On the other

hand, the importance of the biased sampling problem has been well-recognized in statistics and econometrics. In this paper,

the empirical likelihood (EL) procedure is proposed to make inferences about the LC in the length-biased setting. The

limiting distribution of the EL-based log-likelihood ratio leads to a scaled Chi-square. This limiting distribution will be

utilized to construct the EL ratio confidence interval for the LC. Another EL-based confidence interval is proposed by using

the influence function method. Simulation studies are conducted to compare the performances of these EL-based confi-

dence intervals with their counterparts in terms of coverage probability and average length. Real data analysis has been

used to illustrate the theoretical results.

Keywords Confidence interval � Empirical likelihood � Length-biased data � Lorenz curve

Mathematics Subject Classification 62G05 � 62G20

1 Introduction

Recently, there is a wide interest in evaluating the

inequality of incomes or wealth. In order to measure how

desirable is a given distribution with respect to another one

in terms of equality, it is important to determine on which

basis one (income) distribution could be regarded as ‘‘more

even’’ than another one. The most widely used tool to

display and evaluate the inequality of either income or

wealth is the Lorenz curve (LC). This measure, giving a

graphical display of income or inequality in wealth, was

developed by an American economist, Max Lorenz, in the

year 1905. The graph indicates wealth or income, which is

depicted on the vertical axis, against the population

depicted on the horizontal axis. The LC generally co-oc-

curs with a straight line having a slope one and illustrates

the absolute balance in wealth or income distribution. The

LC lies underneath and represents the real distribution. The

level of unequal distribution increases when the LC drifts

away from the baseline. Figure 1 gives a great description

of the LC.

Interest in LC significantly increased around the 1970s

when Atkinson (1970) and Gastwirth (1971) presented a

quantitative measuring and inequality comparisons with

the welfare economic implications of the LC. More con-

tributions to the LC’s analysis were made by Sen (1973),

Jakobsson (1976), Kakwani (1977), Goldie (1977), and

Marshall and Olkin (1979). Recent development has been

made by Mosler (1994), Arnold (1990), and Lambert

(2001), whose findings have led to numerous applications,

particularly in reliability theory.
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The corresponding LC of a nonnegative random variable

X, with a cumulative distribution function (cdf) F, is for-

mulated as follows:

qðtÞ :¼ 1

l

Z nt

0

xdFðxÞ; 0\t\1;

where l ¼
R1
0

xdFðxÞ\1 and nt ¼ F�1ðtÞ is the tth

quantile function of F. For a fixed t 2 ð0; 1Þ, the Lorenz

ordinate qðtÞ is the ratio of the mean income of the lowest

tth fraction of households and the mean income of total

households.

However, the income distribution, F, is frequently

unknown and must be estimated from the sample of income

data. Let X1; . . .;Xn be an independent and identically

distributed (i.i.d.) sample from F. Then, the empirical

estimate of the LC is

q̂ðtÞ ¼ 1

l̂

Z n̂t

0

xdFnðxÞ; ð1:1Þ

where l̂ is the sample mean, Fn is the empirical distribution

function of the data, and n̂t is the tth sample quantile.

The asymptotic theory for empirical Lorenz processes� ffiffiffi
n

p �
q̂ðtÞ � qðtÞ

�
; t 2 ½0; 1�

�
and what (Goldie 1977) calls

concentration processes based on i.i.d random variables has

been developed by many authors; see, for example, Gast-

wirth (1971), Gastwirth (1972), Kakwani and Podder

(1973), Goldie (1977), Chandra and Singpurwalla (1978),

Sendler (1982), Beach and Davidson (1983), Csörg}o et al.

(1986), and Zheng (2002). The Goldie concentration pro-

cesses are, in fact, inverse Lorenz processes whose

potential usefulness in econometrics suggests that they are

at least as important as Lorenz processes themselves.

However, when the population distribution F is skewed,

and t falls in the tails of the LC, the existing normal

approximation (NA) becomes unreliable unless the sample

size is very large. In this situation, one may instead con-

struct a confidence interval via the likelihood function.

Likelihood-based inferences are known to have many

optimal properties under some regularity conditions. The

coverage probability of a likelihood interval is usually

based on a Chi-square approximation to the distribution of

the likelihood ratio statistic. However, the optimal prop-

erties naturally depend on the appropriateness of the

parametric model and the precision of the Chi-square

approximation.

The empirical likelihood (EL), introduced by Owen

(1988, 1990), is a nonparametric methodology for con-

structing confidence regions and performing hypothesis

tests. The EL method produces confidence regions whose

shape and orientation are determined entirely by the data,

and it possesses some advantages over other methods like

the NA. Due to its simplicity and attractive properties, it

has been widely applied in many areas, such as regression

models (Chen and Van Keilegom 2009), quantile estima-

tion (Chen and Hall 1993), the accelerated failure time

model (Zhao 2011), and continuous scale diagnostic tests

in the presence of verification bias (Wang and Qin 2013),

to name only a few. The papers of particular importance

have been done by Qin and Lawless (1994) and Hjort et al.

(2009), which linked the concepts of EL, general estimat-

ing equations, and nuisance parameters. Since then, the EL

has been applied to many different contexts. Belinga-Hill

(2007) proposed an EL-based confidence interval for the

generalized LC and compared it with the NA-based con-

fidence interval. Qin et al. (2013) observed that most

income data are skewed in economics studies, so they

developed new EL-based methods to make inferences for

the LC, like hybrid bootstrap and EL approach. Shi et al.

(2020) proposed new nonparametric confidence intervals

for the LC using the influence function-based EL method.

They proved that the limiting distributions of the empirical

log-likelihood ratio statistics are standard Chi-square

distributions.

There are situations in which proper randomization

cannot be achieved, and the observed sample is not rep-

resentative of the population of interest. This biased sam-

pling problem frequently appears since, in the real world, a

truly random sampling is not easily achievable or practi-

cally feasible. The phenomenon of biased sampling was

initially discovered and recognized by Wicksell (1925) in

the field of anatomy. At that time, it was named the cor-

puscle problem, which later came to be known as length-

biased sampling. Biased sampling problems occur in many

research areas, including medicine, epidemiology and

public health, social sciences, and economics. Meanwhile,

Fig. 1 Lorenz curve

Iranian Journal of Science

123



the length-biased sampling is one of the most naturally

occurring types of biased sampling. Length-biased data are

clearly encountered in applications of renewal processes,

etiologic studies, genome-wide linkage studies, epidemio-

logic cohort studies, cancer prevention trials, and studies of

the labor economy. Finding appropriate adjustments for the

potential selection bias in analyzing length-biased data or,

more generally, the biased sampling problems has been a

long-standing statistical problem. The importance of biased

sampling problem has also been well-recognized in

econometrics, in the study of the concentration of income

and wealth. When economists compare distributions of

income or wealth, they may examine the extent to which

the distributions are unequal or concentrated. This com-

parison may also be of interest when the variable is not

wealth but time. To examine the concentration of income

or wealth, it is customary to study the Lorenz curve and the

Gini coefficient. The same tools apply when studying the

concentration of unemployment durations and are, in fact,

particularly analytically tractable for many common fam-

ilies of duration distributions. Lancaster (1990) deduced

the length-biased distribution as the distribution of the total

duration of an individual sampled from the stock in a

constant population model. Heckman (1979) discussed

sample selection bias as a specification error to utilize

simple regression methods in econometrics. Nowell and

Stanley (1991) addressed length-biased sampling in mall

intercept surveys. Nowell et al. (1988) presented length-

biased sampling in contingent valuation. Some applications

of sample selection bias have appeared, most notably in

wage comparison studies by Gronau (1974) and Hausman

(1980).

Let X be a nonnegative random variable with an

unknown cdf F. If the probability of selecting an item is

proportional to its length, then the recorded item will be

distributed according to the following cdf:

GðyÞ ¼ 1

l

Z y

0

xdFðxÞ; y� 0; ð1:2Þ

where l ¼
R1
0

xdFðxÞ is the mean of X and G is called the

length-biased version of F. It can be easily deduced from

(1.2) that

FðxÞ ¼ l
Z x

0

y�1dGðyÞ; x� 0: ð1:3Þ

There is a natural connection between the LC and length-

biased sampling distribution. The curve is actually the plot

of F(x) versus its length-biased version, that is, G(x). It

should be pointed out that l is the average income and thatR nt
0
xdFðxÞ ¼ E½XIðX� ntÞ� is the average income for those

households with income less than nt.

Accordingly, providing confidence intervals for the LC

in the presence of length-biased sampling is of special

interest. In this paper, the EL is used for the construction of

confidence intervals for the LC. It is proved that the EL

ratio admits a limiting scaled Chi-square distribution with

one degree of freedom. Another EL-based confidence

interval is derived from the influence function technique.

The rest of this article is classified as follows. In Sect. 2,

the EL procedure will be proposed to construct two dif-

ferent confidence intervals in the length-biased setting. In

Sect. 3, the NA and bootstrap-based confidence intervals

are provided for the Lorenz ordinates. Simulation studies

for comparing the performances of different methods and

real data applications are reported in Sect. 4. Proofs of the

theorems are presented in Appendix.

2 EL-Based Confidence Intervals for LC

In order to apply the EL approach for length-biased data, it

is necessary to restrict our attention to the estimation of the

biased distribution function G instead of the unbiased

distribution F. In the length-biased setting, instead of

observing a random sample from F, the observations

Y1; . . .; Yn are obtained randomly from the distribution G.

Apparently, the corresponding empirical distribution

function of G is

GnðyÞ ¼
1

n

Xn
i¼1

IðYi � yÞ; ð2:1Þ

where I(A) is the indicator function of the event A.

According to Eq. (1.3), the plug-in estimator of F, pro-

posed by Cox (1969), is given by

FnðxÞ ¼ ln

Z x

0

y�1dGnðyÞ; ð2:2Þ

where l�1
n ¼

R1
0

y�1dGnðyÞ:
Let Yð1Þ; . . .; YðnÞ be the order statistics corresponding to

Y1; . . .; Yn. The sample estimator of nt, proposed by Sen

(1984), is then taken as

n̂n;t ¼ YðknÞ; ð2:3Þ

where the random integer kn is suitably chosen from

kn ¼ max k :
Xk
i¼1

Y�1
ðiÞ � t

Xn
i¼1

Y�1
ðiÞ

( )
: ð2:4Þ

Remark 1 When t is close to zero and the sample size n is

small, the inequality in (2.4) may not hold even for k ¼ 1.

To overcome this difficulty, Sen (1984) proposed to choose

kn ¼ 1 whenever Y�1
ð1Þ [ t

Pn
i¼1 Y

�1
ðiÞ . Thus, kn is a positive

Iranian Journal of Science

123



integer-valued random variable and Pð1� kn � nÞ ¼ 1 for

every n� 1.

In what follows, two different EL-based confidence

intervals for the LC will be given. To achieve the main

theorems, some regularity conditions are assumed as

follows:

A1.

EðY�2Þ\1.

A2.

F has a continuous probability density function (pdf) f in

some neighborhood of nt and 0\ntf ðntÞ\1.

Remark 2 Assumption A1 is used to prove Lemmas 1 and

3 and is also needed to derive main theorems to ensure

finiteness of r21ðt0Þ. This moment condition is common and

not unlikely. It has also been used by Sen (1984) to derive

NA of the sample quantile. Assumption A2 has already

been used by Sen (1984) to derive weak convergence of the

sample quantile. This result is used to derive Lemmas 2

and 3 in Appendix.

2.1 EL

The fundamental principle of the EL method is based on

obtaining the EL ratio statistics via the Lagrange multiplier

method under the specified restrictions. According to

Eq. (2.1), for a fixed value of t 2 ð0; 1Þ, the restriction

E
�
IðY � ntÞ � qðtÞ

�
¼ 0; ð2:5Þ

can be expressed as the following estimating equation:

UðqðtÞÞ :¼ 1

n

Xn
i¼1

�
IðYi � ntÞ � qðtÞ

�
¼ 0: ð2:6Þ

Let p ¼ ðp1; . . .; pnÞ
0
be a probability vector for which

pi � 0; i ¼ 1; . . .; n, and
Pn

i¼1 pi ¼ 1. Define

DiðtÞ :¼ IðYi � ntÞ � qðtÞ; i ¼ 1; . . .; n:

Given Eq. (2.6), the EL for the LC function, qðtÞ, could be

defined as follows:

LðqðtÞÞ :¼ sup
p

Yn
i¼1

pi :
Xn
i¼1

pi ¼ 1;
Xn
i¼1

piDiðtÞ ¼ 0

( )
:

ð2:7Þ

Substituting the unknown population quantile nt, with its

sample estimator n̂n;t, the profile EL for qðtÞ is obtained as

LðqðtÞÞ :¼ sup
p

Yn
i¼1

pi :
Xn
i¼1

pi ¼ 1;
Xn
i¼1

piDniðtÞ ¼ 0

( )
;

where

DniðtÞ :¼ IðYi � n̂n;tÞ � qðtÞ; i ¼ 1; . . .; n:

Applying the Lagrange multiplier method, the likelihood

will be maximized at

pi ¼ fnð1þ kðtÞDniðtÞÞg�1; i ¼ 1; . . .; n;

where kðtÞ will be obtained from

1

n

Xn
i¼1

DniðtÞ
1þ kðtÞDniðtÞ

¼ 0: ð2:8Þ

Subjecting to the conditions
Pn

i¼1 pi ¼ 1 and

pi � 0; i ¼ 1; . . .; n, the product of the elements of p attains

its maximum, which is n�n at pi ¼ n�1. Thus, the profile

EL ratio for qðtÞ can be defined as

rðqðtÞÞ :¼
Yn
i¼1

ðnpiÞ ¼
Yn
i¼1

f1þ kðtÞDniðtÞg�1: ð2:9Þ

Finally, the profile empirical log-likelihood ratio of qðtÞ is

RðqðtÞÞ :¼� 2 log rðqðtÞÞ

¼2
Xn
i¼1

logf1þ kðtÞDniðtÞg:
ð2:10Þ

The following theorem gives the limiting distribution of

RðqðtÞÞ. This result can be used to construct confidence

intervals for the Lorenz ordinates.

Theorem 1 Under the stated regularity conditions and for

a fixed value of t ¼ t0 2 ð0; 1Þ, as n goes to infinity,

Rðqðt0ÞÞ tends to a scaled Chi-square random variable

with one degree of freedom, that is,

jRðqðt0ÞÞ�!
D

v21;

where �!D is used to denote convergence in the distribution

and

j ¼ r22ðt0Þ
r21ðt0Þ

is the scale constant in which

r21ðt0Þ :¼n2t0 ð1� t0Þ2
Z nt0

0

y�2dGðyÞ þ t20

Z 1

nt0

y�2dGðyÞ
 !

þ qðt0Þ
�
1� qðt0Þ

�
þ 2nt0

t0ðt0 � 1Þ
l

ð2:11Þ

and

r22ðt0Þ :¼ qðt0Þ
�
1� qðt0Þ

�
: ð2:12Þ

Iranian Journal of Science

123



Theorem 1 can be used to present a confidence interval

for qðtÞ at a fixed time t0 for 0\t0\1. First, it is necessary

to estimate r21 and r22, consistently. Hence, the following

plug-in estimators of r21 and r22 are used

r̂21ðt0Þ :¼n̂
2

n;t0
ð1� t0Þ2

Z n̂n;t0

0

y�2dGnðyÞ þ t20

Z 1

n̂n;t0

y�2dGnðyÞ
 !

þ qnðt0Þ
�
1� qnðt0Þ

�
þ 2n̂n;t0

t0ðt0 � 1Þ
ln

ð2:13Þ

and

r̂22ðt0Þ :¼ qnðt0Þ
�
1� qnðt0Þ

�
; ð2:14Þ

where Gn; ln, and n̂n;t are given by (2.1)–(2.3), respec-

tively, and

qnðt0Þ ¼
1

n

Xn
i¼1

IðYi � n̂n;t0Þ: ð2:15Þ

Therefore, an asymptotic 100ð1� aÞ% confidence interval

for qðtÞ at a fixed time t ¼ t0 2 ð0; 1Þ can be obtained from

the following equation:

IEL1 ¼ qðt0Þ :
r̂22ðt0Þ
r̂21ðt0Þ

R qðt0Þð Þ� v21;a

( )
; ð2:16Þ

where v21;a is the upper a-quantile of Chi-square distribu-

tion with one degree of freedom.

2.2 Influence Function-Based EL

According to Theorem 1, the limiting distribution of the

log-likelihood ratio is a scaled Chi-square. When applying

this method to construct EL-based confidence interval for

LC, one needs to estimate the unknown r21ðtÞ and r22ðtÞ.
According to the proof of Lemma 1 (see Appendix), the

influence function

gðYi; qðtÞÞ ¼
nt
Yi

�
t � IðYi � ntÞ

�
þ
�
IðYi � ntÞ � qðtÞ

�

has zero expectation. Hence, another EL for qðtÞ can be

defined based on this influence function as follows:

LIFðqðtÞÞ

:¼ sup
w

(Yn
i¼1

wi :
Xn
i¼1

wi ¼ 1;
Xn
i¼1

wigðYi; qðtÞÞ ¼ 0

)
;

ð2:17Þ

where w ¼ ðw1;w2; . . .;wnÞ
0
is a probability vector satis-

fying
Pn

i¼1 wi ¼ 1 and wi � 0 for all i. Substituting g with

its estimator, that is,

ĝðYi; qðtÞÞ ¼
n̂n;t
Yi

�
t � IðYi � n̂n;tÞ

�
þ IðYi � n̂n;tÞ � qðtÞ;

we derive the following influence function-based profile

EL,

LIFðqðtÞÞ

:¼ sup
w

(Yn
i¼1

wi :
Xn
i¼1

wi ¼ 1;
Xn
i¼1

wiĝðYi; qðtÞÞ ¼ 0

)
:

ð2:18Þ

The Lagrange multiplier method results in

wi ¼ fnð1þ cðtÞĝðYi; qðtÞÞg�1; i ¼ 1; . . .; n;

where cðtÞ will be obtained from

1

n

Xn
i¼1

ĝðYi; qðtÞÞ
1þ cðtÞĝðYi; qðtÞÞ

¼ 0: ð2:19Þ

Consequently, the corresponding influence function-based

profile empirical log-likelihood ratio is

RIFðqðtÞÞ :¼ 2
Xn
i¼1

logf1þ cðtÞĝðYi; qðtÞg: ð2:20Þ

The limiting distribution of RIFðqðtÞÞ is given in the fol-

lowing theorem.

Theorem 2 Under the stated regularity conditions and for

a fixed value of t ¼ t0 2 ð0; 1Þ, as n goes to infinity,

RIFðqðt0ÞÞ tends to a Chi-square random variable with one

degree of freedom, that is,

RIFðqðt0ÞÞ�!
D

v21:

According to Theorem 2, there is no need to estimate

any scale parameter. Hence, an asymptotic 100ð1� aÞ%
confidence interval for qðtÞ at a fixed time t ¼ t0 2 ð0; 1Þ
can be obtained from the following equation:

IEL2 ¼ qðt0Þ : RIF qðt0Þð Þ� v21;a

n o
: ð2:21Þ

3 NA-Based and Bootstrap-Based
Confidence Intervals

One of the old-fashioned ideas to find confidence intervals

straightaway without considering auxiliary information is

the NA method. Lemma 1 in Appendix allows us to con-

struct NA-based confidence intervals for qðtÞ. It is obvious
that r21ðtÞ can be consistently estimated by its plug-in

estimator r̂21ðtÞ. Consequently, an asymptotic 100ð1� aÞ%
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confidence interval for qðtÞ at a fixed time t ¼ t0 2 ð0; 1Þ
based on the stated NA is given by

INA1 ¼
�
qnðt0Þ � za=2

r̂1ðt0Þffiffiffi
n

p qnðt0Þ þ za=2
r̂1ðt0Þffiffiffi

n
p

�
;

where zp is the pth quantile of the standard normal distri-

bution and qn was given previously in (2.15).

According to the part (iii) of Lemma 4, one can also

propose another NA-based 100ð1� aÞ% confidence inter-

val for qðtÞ at a fixed time t ¼ t0 2 ð0; 1Þ, which is given

by

INA2 ¼ ~qnðt0Þ � za=2
r̂1ðt0Þffiffiffi

n
p ~qnðt0Þ þ za=2

r̂1ðt0Þffiffiffi
n

p
	 


;

where

~qnðt0Þ ¼
1

n

Xn
i¼1

n̂n;t0
Yi

�
t � IðYi � n̂n;t0Þ

�
þ 1

n

Xn
i¼1

IðYi � n̂n;t0Þ:

The NA-based and EL-based confidence intervals may

have disadvantages. First, the asymptotic normality holds

with large sample size. Second, the variance estimation

efficiency also depends on the sample size. When the

sample size is not large enough, these confidence intervals

may perform poorly, especially when the variance esti-

mation efficiency also depends on the sample size. To

overcome this problem, the useful method of the bootstrap

could be effective. There are several ways to construct

bootstrap confidence intervals that vary in ease of calcu-

lation and accuracy. The simplest is the normal interval. In

order to obtain normal bootstrap-based confidence inter-

vals, we construct the sequence of B, bootstrap estimator

qbnðtÞ ¼
1

n

Xn
i¼1

IðYb
i � n̂

b

n;tÞ; b ¼ 1; 2; . . .;B;

where Yb
1 ; . . .; Y

b
n are bootstrap re-samples from original

data and n̂
b

n;t is the tth sample quantile estimator, introduced

by (2.3), in the bootstrap re-sample. The bootstrap variance

of qnðtÞ is estimated by

Vb ¼ 1

B� 1

XB
b¼1

�
qbnðtÞ � �qnðtÞ

�2
;

where

�qnðtÞ ¼
1

B

XB
b¼1

qbnðtÞ:

As B �! 1, by the law of large numbers,

Vb�!a:s: VarðqnðtÞÞ:

[see, for example, Wasserman (2006, p. 30)].

The 100ð1� aÞ% bootstrap confidence interval is

therefore constructed by

IBoot ¼
�
�qnðtÞ � za=2

ffiffiffiffiffiffi
Vb

p
; �qnðtÞ þ za=2

ffiffiffiffiffiffi
Vb

p �
:

4 Numerical Results

4.1 Simulation Study

The design of the simulation study begins with the choice

of the underlying distributions.1 As income analysis is a

natural framework in which inequality measures are nee-

ded, we will focus our attention on the inverse gamma

distribution, which was used by Vinci (1921) for his

income distribution applications. The pdf is given by

f ðxÞ ¼ bp

CðpÞ x
�p�1e�b=x; x[ 0;

where p; b[ 0: The stated Assumptions A1 and A2 are

satisfied for this distribution. In order to investigate the

performances of the proposed confidence intervals, we

have conducted a Monte Carlo simulation study from an

Inverse gamma distribution with p ¼ 4 and b ¼ 1, to

derive the coverage probability and the average length of

each candidate. The number of replications for each sample

size n ¼ 50; 100; 400 and the number of bootstrap re-

samples are N ¼ 10000 and B ¼ 400, respectively. The

results are presented in Table 1. These results are sum-

marized as follows:

• For any sample sizes and various values of t, EL1, and

NA1 confidence intervals are not significantly different

from each other.

• NA2 performs better than NA1 in terms of coverage

probabilities. Among others, this confidence interval

has the highest coverage probability for small values of

t.

• As n increases, the superiority of EL2 over the rivals is

determined.

• For small values of n and when t falls in the lower tail

(next to the origin), EL2 has better performance in the

sense of minimum average length.

• As t increases, EL2 has uniformly higher coverage

probability than EL1 and NA. However, it produces

wider confidence intervals for small values of n.

• The performance of bootstrap confidence intervals is

not satisfactory for small sample sizes.

• For large sample sizes, all the methods work well.

1 The statistical language R is used to perform simulation study. R

codes are available on https://github.com/sarah1360/EL-inervals-for-

LC-for-LB-data.
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Table 1 Simulation results of

95% level confidence intervals

from Invgamma(4,1)

t n Coverage accuracy Average length

EL1 EL2 NA1 NA2 Boot EL1 EL2 NA1 NA2 Boot

50 0.9957 0.8113 0.9973 0.9978 0.8111 0.0719 0.0206 0.0714 0.0714 0.0692

0.1 100 0.9799 0.8579 0.9876 0.9925 0.8526 0.0381 0.0165 0.0379 0.0379 0.0366

400 0.9548 0.9220 0.9609 0.9810 0.8741 0.0123 0.0089 0.0123 0.0123 0.0119

50 0.9754 0.8934 0.9843 0.9930 0.8977 0.0737 0.0406 0.0738 0.0738 0.0781

0.2 100 0.9468 0.9123 0.9618 0.9825 0.8716 0.0428 0.0298 0.0428 0.0428 0.0442

400 0.9422 0.9429 0.9472 0.9670 0.9014 0.0166 0.0149 0.0166 0.0166 0.0168

50 0.9397 0.9166 0.9506 0.9764 0.8845 0.0777 0.0562 0.0778 0.0778 0.0879

0.3 100 0.9291 0.9314 0.9401 0.9715 0.8813 0.0481 0.0403 0.0481 0.0481 0.0520

400 0.9437 0.9474 0.9453 0.9578 0.9174 0.0209 0.0200 0.0209 0.0209 0.0215

50 0.9114 0.9359 0.9161 0.9682 0.8857 0.0818 0.0691 0.0819 0.0820 0.0972

0.4 100 0.9098 0.9399 0.9172 0.9563 0.8942 0.0532 0.0490 0.0533 0.0533 0.0594

400 0.9397 0.9484 0.9429 0.9535 0.9284 0.0247 0.0243 0.0247 0.0247 0.0256

50 0.9066 0.9432 0.9081 0.9593 0.8949 0.0850 0.0796 0.0852 0.0852 0.1055

0.5 100 0.9063 0.9456 0.9086 0.9512 0.9040 0.0578 0.0562 0.0579 0.0579 0.0658

400 0.9447 0.9473 0.9446 0.9497 0.9322 0.0280 0.0279 0.0280 0.0280 0.0291

50 0.8321 0.9450 0.8363 0.9353 0.8950 0.0863 0.0872 0.0864 0.0865 0.1121

0.6 100 0.9079 0.9470 0.9083 0.9416 0.9064 0.0611 0.0617 0.0612 0.0612 0.0709

400 0.9358 0.9461 0.9368 0.9454 0.9366 0.0306 0.0307 0.0306 0.0306 0.0319

50 0.8032 0.9469 0.8031 0.9210 0.8953 0.0843 0.0919 0.0844 0.0844 0.1158

0.7 100 0.8848 0.9466 0.8848 0.9315 0.9108 0.0623 0.0649 0.0624 0.0624 0.0739

400 0.9392 0.9455 0.9392 0.9417 0.9417 0.0321 0.0324 0.0321 0.0321 0.0336

50 0.7842 0.9456 0.7825 0.8394 0.8884 0.0752 0.0920 0.0754 0.0754 0.1153

0.8 100 0.8863 0.9475 0.8857 0.9078 0.9091 0.0597 0.0651 0.0597 0.0597 0.0739

400 0.9301 0.9477 0.9286 0.9417 0.9389 0.0319 0.0325 0.0319 0.0319 0.0337

50 0.5974 0.9403 0.5943 0.6155 0.8693 0.0467 0.0831 0.0468 0.0468 0.1059

0.9 100 0.8139 0.9452 0.8079 0.8620 0.8951 0.0482 0.0588 0.0482 0.0482 0.0676

400 0.9226 0.9469 0.9226 0.9298 0.9321 0.0282 0.0294 0.0281 0.0282 0.0306

Fig. 2 a Histogram and b quantile-quantile normal plot of Texas counties data
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4.2 Real Data Application

For illustration purposes, we consider data to be referred to

as the Texas counties data consists of 157 observations.

Each observation represents the total personal income

accruing to the population of someone of 254 counties in

Texas in 1969. The 157 observations included in the pre-

sent data set represent all the Texas counties in which the

total personal income exceeds $20; 000; 000. This kind of

cross-section results in left truncation. Here, the truncation

variable is defined as the total personal income, which is

less than $20; 000; 000. When the personal income popu-

lation size may be assumed to be constant, a suit-

able modelization is given by the length-bias model (1.2);

see (Lancaster 1990).

The histogram of these lifetimes is depicted in Fig. 2a,

while the Q-Q normal plot is given in Fig. 2b. Summary

statistics are provided in Table 2. The histogram shows that

these data are highly skewed to the right. From the Q-Q

plot, an inflection with a different slope to the right can be

detected. According to these results, the distribution of the

data is apparently unimodal and far from being Gaussian.

There exist some outliers in the observations. It would be

hard enough to come up with a parametric family that fits

the data and allows both skewness and kurtosis to vary

freely. To avoid having to specify a parametric family for

the data, the proposed nonparametric methods are used to

construct confidence intervals for LC. Five rival 95%

confidence intervals are provided in Table 3 for different

values of t. The enlarged graph for 100� (lower/upper

confidence bounds�qnðtÞ) is depicted in Fig. 3. It can be

concluded from Fig. 4 that the proposed intervals have a

short length for any fixed values of t. In general, the smaller

the t value, the shorter the confidence interval. From the

graph, it can be concluded that EL1 and NA intervals have

almost the same lengths. The EL confidence intervals are

more stable than bootstrap ones, and EL2 has generally

shorter interval length.

5 Conclusion

In this paper, the EL method was proposed and used to

construct confidence intervals for the Lorenz ordinate in

the case of length-biased sampling. Our simulation results

showed that the influence function-based EL confidence

intervals have good coverage probabilities in the upper tails

of the Lorenz curve. Compared with other rivals, they give

the shortest interval length over small values of t. EL1 and

NA intervals have almost the same performances in terms

of the average length and coverage probabilities. Gener-

ally, the main advantage of EL, relative to the bootstrap,

stems from its use of a likelihood function. Not only does

EL provide data-determined shapes for confidence inter-

vals, but it can also easily incorporate known constraints on

parameters and adjust for biased sampling schemes. Indeed

it should be mentioned that sometimes, it can be compu-

tationally challenging to optimize the likelihood ratio over

some nuisance parameters. The optimization problem is

time-consuming, and this is the main shortcoming of EL

relative to the bootstrap.

One might be interested in simultaneous confidence

bands. To construct these bands, we have to establish the

weak convergence of the EL ratio-based stochastic process.

Table 2 Texas counties data: descriptive statistics

Mean 195.05

SD 662.48

Min 20.20

Max 6007.10

Skewness 6.92

Kurtosis 51.62

Jarque–Bera (test statistics) 4.6782

Jarque–Bera (p-value) 0.09642

Number of observations 157

Table 3 95% confidence

intervals for Lorenz ordinates of

Texas counties data

t EL1 EL2 NA1 NA2 Boot

0.1 (0.0363, 0.0689) (0.0406, 0.0496) (0.0346, 0.0673) (0.0287, 0.0614) (0.0377, 0.0717)

0.2 (0.0828, 0.1094) (0.0839, 0.1015) (0.0823, 0.1088) (0.0794, 0.1060) (0.0854, 0.1153)

0.3 (0.1322, 0.1616) (0.1317, 0.1582) (0.1318, 0.1612) (0.1303, 0.1597) (0.1332, 0.1699)

0.4 (0.1860, 0.2224) (0.1855, 0.2215) (0.1856, 0.2220) (0.1854, 0.2218) (0.1899, 0.2349)

0.5 (0.2504, 0.2983) (0.2451, 0.2901) (0.2499, 0.2978) (0.2439, 0.2918) (0.2520, 0.3035)

0.6 (0.3168, 0.3718) (0.3139, 0.3688) (0.3164, 0.3715) (0.3143, 0.3694) (0.3206, 0.3805)

0.7 (0.3950, 0.4589) (0.3927, 0.4568) (0.3948, 0.4587) (0.3937, 0.4576) (0.3975, 0.4659)

0.8 (0.4947, 0.5624) (0.4868, 0.5569) (0.4948, 0.5625) (0.4896, 0.5573) (0.4952, 0.5666)

0.9 (0.6268, 0.6969) (0.6169, 0.6915) (0.6273, 0.6975) (0.6216, 0.6918) (0.6262, 0.7010)
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Fig. 3 100 * (95% confidence limits-qnðtÞ) for the Lorenz ordinates of Texas counties data

Fig. 4 Length of 95% confidence intervals for the Lorenz ordinates of Texas counties data

Iranian Journal of Science

123



We leave this issue as our future work since it is a topic of

a different research project.

Appendix

Lemma 1 Suppose that the stated conditions of Theo-

rem 1 are satisfied. Then, for a fixed t ¼ t0 2 ð0; 1Þ, as
n �! 1, it holds that

1ffiffiffi
n

p
Xn
i¼1

Dniðt0Þ�!
D

N
�
0; r21ðt0Þ

�
; ð6:1Þ

where r21ðt0Þ is given in (2.11).

Proof Let G be the space of all distribution functions. The

line segment in G joining F and Fn consists of the set of

distribution functions, fð1� mÞF þ mFn; 0� m� 1g, also

written as fF þ mðFn � FÞ; 0� m� 1g. Consider the func-

tional TðFÞ ¼
R nt0
0 xdFðxÞ and define TðFmÞ ¼ T

�
Fþ

mðFn � FÞ
�
. The first-order Gâteaux differential of T at F in

the direction of Fn is

d

dk
TðFmÞ

�����
m¼0þ

¼ nt0
�
t0 � Fnðnt0Þ

�
þ ln

n

Xn
i¼1

IðYi � nt0Þ � TðFÞ
 !

¼ nt0 t0 �
ln
n

Xn
i¼1

1

Yi
IðYi � nt0Þ

 !

þ ln
n

Xn
i¼1

IðYi � nt0Þ � TðFÞ
 !

:

ð6:2Þ

Using (6.2) and applying the Taylor expansion of statistical

functionals introduced by Mises (1947), we can write

TðFnÞ � TðFÞ ¼nt0

�
t0 �

ln
n

Xn
i¼1

1

Yi
IðYi � nt0Þ

�

þ ln
n

Xn
i¼1

IðYi � nt0Þ � TðFÞ
 !

þ opðn�1=2Þ;

where

TðFnÞ ¼
ln
n

Xn
i¼1

IðYi � n̂n;t0Þ:

Hence, we have

1ffiffiffi
n

p
Xn
i¼1

Dniðt0Þ

¼ 1ffiffiffi
n

p
Xn
i¼1

�
IðYi � n̂n;t0Þ � qðt0Þ

�

¼ 1ffiffiffi
n

p
Xn
i¼1

nt0
Yi

�
t0 � IðYi � nt0Þ

�

þ 1ffiffiffi
n

p
Xn
i¼1

�
IðYi � nt0Þ � qðt0Þ

�
þ opð1Þ:

ð6:3Þ

Applying Central limit theorem for the i.i.d. random

variables

gðYi; qðt0ÞÞ ¼
nt0
Yi

�
t0 � IðYi � nt0Þ

�

þ IðYi � nt0Þ � qðt0Þ; i ¼ 1; 2; . . .;

ð6:4Þ

gives that

1ffiffiffi
n

p
Xn
i¼1

Dniðt0Þ�!
D

N
�
0; r21ðt0Þ

�
;

where r21ðt0Þ is given in (2.11). h

Lemma 2 Suppose that the stated conditions of Theo-

rem 1 are satisfied. Then, for a fixed t ¼ t0 2 ð0; 1Þ, as
n �! 1, the following statements are satisfied:

(i)
��IðYi � n̂n;t0Þ � IðYi � nt0Þ

���!P 0;

(ii) 1
n

Pn
i¼1 D

2
niðt0Þ�!

P
r22ðt0Þ;

where �!P denotes the convergence in probability and

r22ðt0Þ is given in (2.12).

Proof

(i) According to (3.10) of Sen (1984), for every g[ 0,

there exists an integer n0, such that for every (fixed)

c[ 0 and n� n0,

Pðn̂n;t0 2 JnÞ� 1� g;

where Jn ¼ fy : nt0 � cffiffi
n

p � y� nt0 þ cffiffi
n

p g. Hence,

we conclude that

Pðjn̂n;t0 � nt0 j[
cffiffiffi
n

p Þ\g; for every n� n0:

Let 0\�\1, using Markov’s inequality, we can

write
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Pð
��IðYi � n̂n;t0Þ � IðYi � nt0Þ

��[ �Þ

�
E
��IðYi � n̂n;t0Þ � IðYi � nt0Þ

��
�

¼ 1

�

�
Pðn̂n;t0\Yi � nt0Þ þ Pðnt0\Yi � n̂n;t0Þ

�

¼ Pðn̂n;t0 � nt0\Yi � nt0 � 0Þ
�

þ Pð0\Yi � nt0 � n̂n;t0 � nt0Þ
�

� Pðjn̂n;t0 � nt0 j[ jYi � nt0 jÞ
�

¼
Z 1

0

Pðjn̂n;t0 � nt0 j[ jy� nt0 jÞ
�

dGðyÞ

¼
Z
Jn

Pðjn̂n;t0 � nt0 j[ jy� nt0 jÞ
�

dGðyÞ

þ
Z
J
0
n

Pðjn̂n;t0 � nt0 j[ jy� nt0 jÞ
�

dGðyÞ

¼: An1 þ An2;

ð6:5Þ

where J
0
n ¼ fy : y\nt0 � cffiffi

n
p g [ fy : y[ nt0 þ cffiffi

n
p g.

To get rid of An1, we can write

An1 �
1

�

Z
Jn

dGðyÞ

¼
Gðnt0 þ cffiffi

n
p Þ � Gðnt0 � cffiffi

n
p Þ

�

¼ 2c

�
ffiffiffi
n

p
Gðnt0 þ cffiffi

n
p Þ � Gðnt0 � cffiffi

n
p Þ

2cffiffi
n

p

 !
:

Obviously, we have

lim
n!1

Gðnt0 þ cffiffi
n

p Þ � Gðnt0 � cffiffi
n

p Þ
2cffiffi
n

p
¼ gðnt0Þ;

where gð�Þ is the corresponding density function of

Gð�Þ. Hence, for every �
0
[ 0, there exists an inte-

ger n1, such that for all values of n� n1,

An1\�
0
: ð6:6Þ

For the second term in (6.5), we have

An2 �
Z
J
0
n

Pðjn̂n;t0 � nt0 j[ cffiffi
n

p Þ
�

dGðyÞ

\
g
�
; for every n� n0:

ð6:7Þ

Since �
0
and g are positive arbitrary values, we

choose g ¼ �d
2
and �

0 ¼ d
2
and hence, we conclude

from (6.5), (6.6) and (6.7) that for every

n� maxfn0; n1g,

Pð
��IðYi � n̂n;t0Þ � IðYi � nt0Þ

��[ �Þ\d; i ¼ 1; 2; . . .

ð6:8Þ

(ii) Applying the law of large numbers for the sequence

fD2
i ðt0Þ; i ¼ 1; 2; . . .g of i.i.d. random variables, we

have

1

n

Xn
i¼1

D2
i ðt0Þ�!

P
EðD2

i ðt0ÞÞ;

where

EðD2
i ðt0ÞÞ ¼ qðt0Þ

�
1� qðt0Þ

�
:

Hence,

1

n

Xn
i¼1

D2
niðt0Þ �

1

n

Xn
i¼1

D2
i ðt0Þ

�����
�����

� 1

n

Xn
i¼1

��Dniðt0Þ þ Diðt0Þ
����Dniðt0Þ � Diðt0Þ

��

� 2

n

Xn
i¼1

��IðYi � n̂n;t0Þ � IðYi � nt0Þ
��

¼ opð1Þ;

where the last convergence follows from part (i)

and this completes the proof. h

Proof of Theorem 1 Since EðD2
niðt0ÞÞ\1, for a fixed

value of t ¼ t0 2 ð0; 1Þ, Lemma 2 (ii) jointly with a similar

argument as in Owen (2001) results that

max
1� i� n

jDniðt0Þj ¼ opðn1=2Þ; ð6:9Þ

and also,

1

n

Xn
i¼1

���Dniðt0Þ
���3 ¼ opðn1=2Þ: ð6:10Þ

Thus, combining (6.9) and (6.10), we can prove that���kðt0Þ
��� ¼ Opðn�1=2Þ: ð6:11Þ

Using Taylor expansion of (2.20), we have

Rðqðt0ÞÞ ¼ 2
Xn
i¼1

logf1þ kðt0ÞDniðt0Þg

¼ 2
Xn
i¼1

kðt0ÞDniðt0Þ �
k2ðt0ÞD2

niðt0Þ
2

	 


þ Remðt0Þ;

ð6:12Þ

where
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Remðt0Þ ¼ 2
Xn
i¼1

X1
k¼3

ð�1Þk�1 kkðt0ÞDk
niðt0Þ

k

	 

:

Applying (6.10) and (6.11), it can be seen that

jRemðt0Þj �C
Xn
i¼1

jkðt0ÞDniðt0Þj3

�Cjkðt0Þj3
Xn
i¼1

jDniðt0Þj3

¼ opð1Þ:

ð6:13Þ

Recalling (2.8), it follows that

0 ¼
Xn
i¼1

Dniðt0Þ
1þ kðtÞDniðt0Þ

¼
Xn
i¼1

Dniðt0Þ 1� kðt0ÞDniðt0Þ þ
k2ðtÞD2

niðt0Þ
1þ kðtÞDniðtÞ

� 


¼
Xn
i¼1

Dniðt0Þ � kðt0Þ
Xn
i¼1

D2
niðt0Þ

 !

þ
Xn
i¼1

k2ðt0ÞD3
niðt0Þ

1þ kðt0ÞDniðt0Þ
:

ð6:14Þ

Applying (6.9) and (6.11) in (6.14) results in

kðt0Þ ¼
Pn

i¼1 Dniðt0ÞPn
i¼1 D

2
niðt0Þ

þ opðn�1=2Þ: ð6:15Þ

Once more by recalling (2.8), we have

0 ¼
Xn
i¼1

kðt0ÞDniðt0Þ
1þ kðt0ÞDniðt0Þ

¼
Xn
i¼1

�
kðt0ÞDniðt0Þ

�
�
Xn
i¼1

�
k2ðt0ÞD2

niðt0Þ
�

þ
Xn
i¼1

k3ðt0ÞD3
niðt0Þ

1þ kðt0ÞDniðt0Þ
:

Moreover, from (6.9) and (6.11), we can write

Xn
i¼1

k3ðt0ÞD3
niðt0Þ

1þ kðt0ÞDniðt0Þ
¼ opðn�1=2Þ:

Hence,

Xn
i¼1

�
k2ðt0ÞD2

niðt0Þ
�
¼
Xn
i¼1

�
kðt0ÞDniðt0Þ

�
þ opð1Þ: ð6:16Þ

Substituting (6.15) and (6.16) into (6.12), and using Lem-

mas 1 and 2, as n �! 1, we conclude that

jRðqðt0ÞÞÞ ¼
r22ðt0Þ
r21ðt0Þ

Xn
i¼1

�
k2ðt0ÞD2

niðt0Þ
�
þ opð1Þ

¼ r22ðt0Þ
r21ðt0Þ

1ffiffi
n

p
Pn

i¼1 Dniðt0Þ
� �2

1
n

Pn
i¼1 D

2
niðt0Þ

� � þ opð1Þ

¼ v21 þ opð1Þ;

which completes the proof. h

The following two lemmas are needed to prove

Theorem 2.

Lemma 3 Under the stated conditions of Theorem 1, we

have

1

n

Xn
i¼1

ĝðYi; qðt0ÞÞ � gðYi; qðt0ÞÞð Þ2¼ opð1Þ:

Proof We can write

ĝðYi; qðt0ÞÞ � gðYi; qðt0ÞÞ ¼: C1i þ C2i þ C3i; ð6:17Þ

where

C1i ¼
t0ðn̂n;t0 � nt0Þ

Yi
;

C2i ¼IðYi � n̂n;t0Þ � IðYi � nt0Þ;

C3i ¼
nt0
Yi

IðYi � nt0Þ �
n̂n;t0
Yi

IðYi � n̂n;t0Þ:

Applying the inequality ðaþ bþ cÞ2 � 3ða2 þ b2þ
c2Þ; a; b; c 2 R, we have

1

n

Xn
i¼1

�
ĝðYi; qðt0ÞÞ � gðYi; qðt0ÞÞ

�2 � 3

n

Xn
i¼1

C2
1i

þ 3

n

Xn
i¼1

C2
2i þ

3

n

Xn
i¼1

C2
3i:

ð6:18Þ

Since EðY�2Þ\1, using the law of large numbers and the

weak consistency of n̂n;t0 , which was studied by Sen

(1984), we have

1

n

Xn
i¼1

C2
1i ¼ t20 n̂n;t0 � nt0

� �21
n

Xn
i¼1

1

Y2
i

¼ opð1Þ: ð6:19Þ

To calculate the second term in the right side of (6.18), first

we compute the expectation of C2
2i; i ¼ 1; 2; . . .; n: Choose

�[ 0 and n so large that (6.8) holds, then, we have

EðC2
2iÞ ¼E

�
C2
2iIðjC2ij � �Þ

�
þ E

�
C2
2iIðjC2ij[ �Þ

�
¼PðjC2ij[ �Þ\d:

According to the Markov’s inequality, we have for x[ 0;
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P
� 1
n

Xn
i¼1

C2
2i [ x

�
� 1

n

Xn
i¼1

EðC2
2iÞ

x
:

Hence, we conclude that

1

n

Xn
i¼1

C2
2i ¼ opð1Þ:

To get rid of the third term in (6.18), we decompose C3i

into

C3i ¼ðnt0 � n̂n;t0Þ
IðYi � nt0Þ

Yi

þ 1

Yi
ðn̂n;t0 � nt0Þ

�
IðYi � nt0Þ � IðYi � n̂n;t0Þ

�

þ nt0
Yi

�
IðYi � nt0Þ � IðYi � n̂n;t0Þ

�

¼:I1i þ I2i þ I3i:

Using similar arguments, we obtain simply that

1

n

Xn
i¼1

I2i1 ¼opð1Þ;

1

n

Xn
i¼1

I2i2 ¼opð1Þ:

We have also

1

n

Xn
i¼1

I2i3 �
2n2t0
n

Xn
i¼1

��IðYi � nt0Þ � IðYi � n̂n;t0Þ
��

Y2
i

¼ opð1Þ;

and analogously,

1

n

Xn
i¼1

C2
3i �

3

n

Xn
i¼1

I21i þ
3

n

Xn
i¼1

I22i þ
3

n

Xn
i¼1

I23i

¼opð1Þ:
ð6:20Þ

The result follows from (6.18)–(6.20). h

Lemma 4 Under the stated conditions of Theorem 1, the

following statements are satisfied:

(i) max1� i� n jĝðYi; qðt0ÞÞj ¼ opðn1=2Þ:
(ii) 1

n

Pn
i¼1 ĝ

2ðYi; qðt0ÞÞ ¼ r21ðt0Þ þ opð1Þ:
(iii) 1ffiffi

n
p
Pn

i¼1 ĝðYi; qðt0ÞÞ�!
D

N
�
0; r21ðt0Þ

�
;

where r21ðt0Þ is given in (2.11).

Proof

(i) Since gðYi; qðt0ÞÞ; i ¼ 1; . . .; n are i.i.d. mean zero

random variables with variance r21ðt0Þ, we have

max
1� i� n

jgðYi; qðt0ÞÞj ¼ opðn1=2Þ:

Hence,

max
1� i� n

jĝðYi; qðt0ÞÞj

� max
1� i� n

jĝðYi; qðt0ÞÞ � gðYi; qðt0ÞÞj

þ max
1� i� n

jgðYi; qðt0ÞÞj

¼ opðn1=2Þ:

(ii) Similar to the proof of Lemma 3, we can prove

that

1

n

Xn
i¼1

gðYi; qðt0ÞÞ
�
ĝðYi; qðt0ÞÞ

� gðYi; qðt0ÞÞ
�
¼ opð1Þ:

ð6:21Þ

Using the law of large numbers, we have

1

n

Xn
i¼1

g2ðYi; qðt0ÞÞ ¼ r21ðt0Þ þ opð1Þ: ð6:22Þ

Consequently, we obtain from (6.21) and (6.22)

that

1

n

Xn
i¼1

ĝ2ðYi;qðt0ÞÞ

¼ 1

n

Xn
i¼1

�
ĝðYi;qðt0ÞÞ � gðYi; qðt0ÞÞ

�2

þ 1

n

Xn
i¼1

g2ðYi; qðt0ÞÞ

þ 2

n

Xn
i¼1

gðYi; qðt0ÞÞ
�
ĝðYi; qðt0ÞÞ � gðYi; qðt0ÞÞ

�

¼ r21ðt0Þ þ opð1Þ:

(iii) Considering definition ĝ, we have

1ffiffiffi
n

p
Xn
i¼1

ĝðYi; qðt0ÞÞ

¼ n̂n;t0
ffiffiffi
n

p t0
ln

� Hnðn̂n;t0Þ
	 


þ 1ffiffiffi
n

p
Xn
i¼1

Dniðt0Þ;

ð6:23Þ

where

Hnðn̂n;t0Þ ¼
1

n

Xn
i¼1

1

Yi
IðYi � n̂n;t0Þ:

According to Sen (1984), (p. 64, Line 1), we have

lnHnðn̂n;t0Þ ¼ t0 þ Opð1=nÞ:

Applying the law of large numbers for ln and

using the weak consistency of n̂n;t0 , we obtain
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n̂n;t0
ffiffiffi
n

p t0
ln

� Hnðn̂n;t0Þ
	 


¼ opð1Þ: ð6:24Þ

Hence, the result follows from (6.23), (6.24)

and Lemma 1. h

Proof of Theorem 2 Lemma 4(i) together with a similar

argument given in the proof of Theorem 1 gives

jcðt0Þj ¼ Opðn�1=2Þ: ð6:25Þ

Taylor expansion results in

RIFðqðt0ÞÞ

¼ 2
Xn
i¼1

cðt0ÞĝðYi; qðt0ÞÞ �
1

2
c2ðt0Þĝ2ðYi; qðt0ÞÞ

	 


þ remðt0Þ;
ð6:26Þ

where

jremðt0Þj ¼ opð1Þ:

Recalling (2.19), we have

0 ¼
Xn
i¼1

ĝðYi; qðt0ÞÞ
1þ cðt0ÞĝðYi; qðt0ÞÞ

¼
Xn
i¼1

ĝðYi;qðt0ÞÞ � cðt0Þ
Xn
i¼1

ĝ2ðYi; qðt0ÞÞ

þ
Xn
i¼1

c2ðt0Þĝ3ðYi; qðt0ÞÞ
1þ cðt0ÞĝðYi; qðt0ÞÞ

:

ð6:27Þ

Applying Lemma 4(i) and (6.25) in (6.27) results in

cðt0Þ ¼
Pn

i¼1 ĝðYi; qðt0ÞÞPn
i¼1 ĝ

2ðYi; qðt0ÞÞ
þ opðn�1=2Þ: ð6:28Þ

Moreover, we have

Xn
i¼1

cðt0ÞĝðYi; qðt0ÞÞ

¼
Xn
i¼1

c2ðt0Þĝ2ðYi; qðt0ÞÞ þ opð1Þ:
ð6:29Þ

Substituting (6.28) and (6.29) into (6.26), and using

Lemma 4, as n �! 1, we conclude that

Rðqðt0ÞÞÞ ¼
Xn
i¼1

�
c2ðt0Þĝ2ðYi; qðt0ÞÞ

�
þ opð1Þ

¼
1ffiffi
n

p
Pn

i¼1 ĝðYi; qðt0ÞÞ
� �2

1
n

Pn
i¼1 ĝ

2ðYi; qðt0ÞÞ
� � þ opð1Þ

¼v21 þ opð1Þ;

which completes the proof. h
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