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1 Introduction

Holographic studies of dilaton-gravity theories in two dimensions (see [1] for a review on
2D dilaton-gravities) have been growing in recent years after the discovery of the duality
between the Jackiw-Teitelboim (JT) gravity [2, 3] and the low-temperature Sachdev-Ye-
Kitaev (SYK) model [4–7]. JT gravity provides a nearly AdS2 description of the near-
horizon geometry of nearly extremal black holes and the SYK model, on the other hand, is
a nearly conformal interacting statistical quantum mechanical model of Majorana fermions
with random couplings. The boundary dynamics of JT gravity under suitable boundary
conditions are given in terms of a Schwarzian theory which emerges as the low energy
effective action of the SYK model in the large N (semi-classical) limit [5–12]. This duality
has been extended to the case of complex SYK model [13–18] whose effective action im-
proves to a warped Schwarzian theory [19]. It was shown in [20] that the cSYK model in
a certain double scaling limit is dual to a flat holographic bulk theory, originally denoted
as ĈGHS model [20–23]. A natural plan is to investigate the supersymmetric version of
this holographic picture in the semi-classical regime. The denomination ĈGHS is due to
the classical equivalence of this model with the conformally transformed matterless Callan-
Giddings-Harvey-Strominger model [24]. The construction of the ĈGHS model is based on
the BF gauge theory formulation of Cangemi and Jackiw which was first introduced as a
string-inspired model for gravity on a line [25]. This authenticates the name CJ gravity to
this model as well [26–28].1 In contrast to the JT model, boundary conditions in ĈGHS

1Throughout this paper, we sometimes refer to CJ as the classical model and to ĈGHS as the quantum
gravity model.
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(or CJ) model is ordered such that, it describes the near horizon geometry of the nearly
non-extremal black holes (flat Rindler) [23].

In this paper, we work on the bulk side where we have the ĈGHS supergravity based on
the BF-theory construction of Rivelles, Cangemi, and Leblanc [29, 30]. The theory exhibits
an infinite dimensional asymptotic symmetry which is the supersymmetric warped-Virasoro
algebra with abelian Heisenberg subalgebra;

[Ln, Lm] = (n−m)Ln+m + c

12(m3 −m)δm+n,0 ,

[Ln, Pm] = −mPn+m − iκ (m2 +m)δm+n,0 , [Pm, Pn] = 0 ,

[Ln,Ψr] =
(
n

2 − r
)

Ψn+r , [Pn,Ψr] = 0 ,

{Ψr,Ψs} = − 1
2κ
∑
q

Pr+s−qPq + i(r + s− 1)Pr+s − 2κ
(
s2 − 1

4

)
δr+s,0 .

(1.1)

This extension of the Virasoro symmetry naturally accommodates for an extension of the
corresponding Schwarzian Goldstone action which we systematically derive it using the bulk
variational principle of the supergravity theory. The boundary action is then expected to
be the effective action of a would-be supersymmetric SYK model in a scaling limit in the
spirit of the statement in [20] which is not addressed here.

The structure of the paper is as follows, in section 2 we introduce the bulk supergravity
model. In section 3 we develop the boundary conditions in the Bondi gauge at finite
temperature and obtain the corresponding asymptotic symmetries. In section 4 we develop
the variational principle analysis and thereby obtain the boundary action together with
integrability conditions. In section 5 we calculate the entropy of black hole solutions by
imposing the holonomy condition on the solution space and evaluating both the on-shell
action and also canonical charges. We also solve the stabilizer condition on our zero mode
Euclidean background in this section.

Note added. While this work was in progress, ref. [28] was posted on the arXiv, whose
results overlap with some of ours.

2 Supergravity model

The string-inspired dilaton-gravity CGHS model [24] after a dilaton-dependent Weyl rescal-
ing can be formulated as a BF gauge theory [20, 25]. The BF-theory formulation of the
ĈGHS supergravity model is based on the supersymmetric extension of 2D Maxwell algebra
(central extension of the 2D Poincaré algebra) [29, 30],

[Pa, Pb] = εabZ̃, [J, Pa] = εa
bPb,

[Pa, Qα] = 1
2(ΓaU)α, [J,Qα] = −1

2(Γ3Q)α, [J, Uα] = −1
2(Γ3U)α, (2.1)

[K,Qα] = −1
2(Γ3U)α, {Qα, Qβ} = (Γa)αβPa − (Γ3)αβK, {Qα, Uβ} = −(Γ3)αβZ̃ ,

– 2 –
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where a, b = 0, 1 specify Lorentz indices while the Greek indices α, β = 1, 2 run over the
components of two dimensional spinors. The two-dimensional gamma matrices in (2.1) are
given as

(Γ0)αβ =
(

0 −1
1 0

)
, (Γ1)αβ =

(
0 1
1 0

)
, (Γ3)αβ = −(Γ0Γ1)αβ =

(
1 0
0 −1

)
, (2.2)

and Γαβ = (Γ)α
γCγβ = (ΓC−1)αβ where C = Γ0 = −Γ0 is the charge conjugation matrix

that allows us to raise and lower the spinor indices using Cαβ and Cαβ as components of
the matrix CT and C−1 respectively [31, 32].

This algebra can be derived as the extension of the N = 1 2D super-Poincaré alge-
bra which itself is a contraction of the osp(2,1) algebra (N = 1 supersymmetric AdS2
algebra). The extension is based on introducing the contraction parameter σ = 1/`2 and
expanding osp(2,1) generators appropriately in the contraction parameter i.e. J (0) ≡ J ,
J (1/2) ≡

√
σK, J (1) ≡ σZ̃ and Q(0)

α ≡ Qα, Q(1/2)
α ≡

√
σUα. This leads us to the 2D super

Maxwell algebra (2.1) with extra fermionic generators Uα, which are nilpotent and their
anti-commutators vanish. So one may call it N = 2 supersymmetry.

The superalgebra (2.1) admits quadratic and linear Casimir elements as follows

C2 = PaP
a +K2 + JZ̃ + Z̃J + 1

2C
αβ(QαUβ + UβQα) , (2.3)

C1 = Z̃ . (2.4)

Correspondingly it has the following graded invariant non-degenerate bilinear form;

〈Pa, Pb〉 = ηab, 〈J, Z̃〉 = 1, 〈J, J〉 = b, 〈K,K〉 = 1, 〈Qα, Uβ〉 = 2Cαβ , (2.5)

where η = diag(−1,+1) and b is an arbitrary constant. The emphasis on the presence of
b in the bosonic bilinear form goes back to [33] while in the present context, it was first
introduced in [22] where the theory with b 6= 0 was called twisted ĈGHS model.2

Since this superalgebra admits an invariant bilinear form one can construct its BF
gauge theory as a 2D dilaton-supergravity,

I0 = κ

∫
〈B,F 〉 , (2.6)

where B is the algebra valued scalar field and F is the 2-form field strength associated to
the gauge field A of the algebra (2.1). It is easy to check that this theory is invariant under
the following general gauge transformation (with parameter Λ) associated with these fields

δA = dΛ + [A,Λ] , δB = [B,Λ] .

By choosing A and B as

A = eaPa + ωJ + a Z̃ + ψαQα + χαUα + vK ,

B = XaPa + Y J +XZ̃ + φαQα + ραUα +WK ,
(2.7)

2It was shown in [22] that the presence of b leads to a Schwarzian derivative term in the boundary
Lagrangian, see also section 4.
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we reproduce the BF theory supergravity action in the first-order formulation [29, 30]

I0 = κ

∫
Xa

(
dea + εb

aωeb − 1
2 ψ̄Γaψ

)
+ Y

(
b dω + da+ 1

2εabe
aeb + ψ̄Γ3χ

)
+X dω

+ 2ρ̄Dψ + φ̄

(
2Dχ+ eaΓaψ −

1
2vΓ3ψ −

1
2WΓ3ψ

)
+W

(
dv + 1

2 ψ̄Γ3ψ

)
, (2.8)

where Dψ = dψ − 1
2ωΓ3ψ, and λ̄ ≡ λTC (leading to λ̄Γψ = λαΓαβψβ for a typical matrix

Γ). The field content of this theory is as follows: Xa is a pair of Lagrange multipliers that
require the torsion constraint, X is the dilaton field, Y is a scalar field that is constant
on-shell required by the field equation of the gauge field a. The φα, ρα stand for the
dilatino spinor fields, and ψα, χα are the gravitino spinor vector fields. ea corresponds
to the Zweibein vector field and ω is the dualized spin connection. The gauge field v

and the scalar field W are R-symmetry fields. This action is invariant under the local
supersymmetry transformation Λ = εαQα + ζαUα,

δea = −ψ̄Γaε, δω = 0, δXa = −φ̄Γaε, δX = φ̄Γ3ζ + ρ̄Γ3ε, δa = ψ̄Γ3ζ + χ̄Γ3ε

δχα = Dζα + 1
2e

a(ζ̄Γa)α −
1
2v(ε̄Γ3)α, δψα = Dεα, δv = ψ̄Γ3ε, δY = 0

δρα = 1
2
(
Xa(ε̄Γa)α − Y (ζ̄Γa)α −W (ε̄Γ3)α

)
, δW = φ̄Γ3ε, δφα = −1

2Y (ε̄Γ3)α .
(2.9)

Light-cone algebra. We work in the component form of the Lorentzian superalge-
bra (2.1), whose light-cone form with P± = P1 ± P0 is3

[P+, P−] = Z, [J, P+] = −P+, [J, P−] = P−

[P−, Q1] = U2 , [P+, Q2] = U1 , [P+, Q1] = 0 = [P−, Q2], [J,Q1,2] = ∓1
2Q1,2,

[J, U1,2] = ∓1
2U1,2, [K,Q1,2] = ∓1

2U1,2, {Q1, Q1} = P+, {Q2, Q2} = −P− ,

{Q1, Q2} = K, {Q1, U1} = 0 = {Q2, U2} , {Q1, U2} = −Z2 = {Q2, U1} , (2.12)

where we set Z = −2Z̃. The corresponding bilinear form (2.5) after an overall 1/2 rescaling
takes the following form in the light-cone

〈P+, P−〉 = −〈J, Z〉 = 2 〈K,K〉 = 1, 〈J, J〉 = b, 〈Q1, U2〉 = −〈Q2, U1〉 = −1 . (2.13)

Throughout the paper, we use the algebra (2.12) and the bilinear form (2.13).
3The closed form of the Euclidean superalgebra, with all generators being Euclidean, where we do not

distinguish between the up and down flat indices has the same form as the Lorentzian one with ε21 = 1
in (2.1) after introducing the following analytic continuation in gamma matrices

ΓE
2 = −iΓ0, ΓE

1 = Γ1 , ΓE
3 = Γ3 . (2.10)

The spinor indices in the Euclidean case are raised and lowered with the Euclidean charge conjugation matrix
CE = −ΓE

2 [34]. Alternatively, one may start with (2.12) and use the following analytic continuation;

PE
2 = −iP0 , PE

1 = P1 , JE = iJ , ZE = iZ . (2.11)

– 4 –
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3 Asymptotic symmetries

In this section, we explore the question, what are the symmetries that act on the phase
space of the theory at finite temperature? We confine the phase space of the theory by
adopting the following boundary conditions on the gauge field

Au = T (u)P+ + P− + P(u)J + ψ(u)Q1 , Ar = 0 . (3.1)

The set of field configurations (3.1) defines our phase space. Of course, the full phase space
is determined by adding the on-shell configuration for the B-field. However, as we shall see
for the purpose of this section it is enough to focus on (3.1). We postpone the discussion
on the B-field to the next section. Boundary conditions (3.1) effectively define the theory
within the truncated algebra where the generators U1, Q2, and K are turned off. The
bosonic part of the boundary condition (3.1) was introduced in [20] which reproduces the
flat Rindler-type black hole in the metric formulation in the Bondi-gauge, see section 5.
The fermionic extension on this background in (3.1) along Q1 is introduced from the fact
that in the superalgebra, this generator has the only non-trivial commutator with P−,
resulting in a linear equation to solve as demanded by the Hamiltonian reduction. This
consistent set of boundary conditions are preserved δεA = O(δA) by the following gauge
transformation

ε = ε+P+ + εP− + εJJ + σZ + εQQ1 + χU2 (3.2)

where

ε+ = T ε+ σ′ − 1
2ψχ, (3.3a)

εJ = Pε+ ε′ , (3.3b)

εQ = ψε− 1
2Pχ− χ

′ . (3.3c)

The following gauge transformation is then induced on the state-dependent functions

δT = ε+
′ − Pε+ + T εJ + ψεQ = T ′ε+ 2T ε′ − Pσ′ − 3

2ψχ
′ − 1

2ψ
′χ+ σ′′ , (3.4a)

δP = εJ
′ = (Pε+ ε′)′ , (3.4b)

δψ = εQ
′ − 1

2(PεQ − ψεJ) = 3
2ψε

′ + ψ′ε+ 1
4
(
P2 − 2P ′

)
χ− χ′′ . (3.4c)

The transformation rule (3.4) determine the conformal weights of each field as 2 for T , 1
for P and 3/2 for ψ. The twisted Sugawara combinationM = P2−2P ′ plays a role similar
to the stress tensor with conformal weight 2.

Euclidean theory. We consider the theory at finite temperature T = 1/β by performing
a Wick rotation u → iu ≡ τ and working in Euclidean periodic Bondi time τ ∼ τ + β.
Since the theory is defined at finite temperature, we can introduce varied generators of
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symmetries acting on the phase space using the invariant pairing between the parameter
of gauge transformation and the fluctuations of the connection [22, 35]

δC = κ

∮
〈δAτ , ε〉 , (3.5)

where Aτ = −iAu and the circle integration is defined as
∮

=
∫ β

0 dτ . These generators are
defined by using the invariant bilinear form of the theory (2.13). Due to the Euclidean
analytic continuation, we should replace ∂u in all equations (3.4) with i∂τ , however, these
equations remain unchanged with ′ ≡ ∂τ once we also Wick rotate variables due to their
conformal weights,

P → iP , T → −T , ψ → i3/2ψ , ε→ −iε , σ → σ , χ→ i−1/2χ . (3.6)

We can split the varied generators (3.5) according to the parameters of gauge transfor-
mation

δC = δC[ε] + δC[σ] + δC[χ] (3.7)

where after applying the Wick rotation (3.6) we get

δC[ε] = κ

∮
(δT ε+ b δPεJ) , δC[σ] = −κ

∮
δPσ , δC[χ] = −κ

∮
δψ χ . (3.8)

These pairings are integrable and coincide with pairing in the coadjoint orbit method
between adjoint and coadjoint vectors. We then introduce the Fourier-mode generators

Ln = C[ε = e
2π
β
inτ ] = κ

∮ (
T + b

(1
2P

2 − P ′
))

e
2π
β
inτ

, (3.9a)

Pn = C[σ = e
2π
β
inτ ] = −κ

∮
P e

2π
β
inτ

, (3.9b)

Ψr = C[χ = e
2π
β
irτ ] = −κ

∮
ψ e

2π
β
irτ
, (3.9c)

with n ∈ Z and r ∈ Z/2 if the fermionic sector fulfills anti-periodic (Neveu-Schwarz)
boundary conditions and r ∈ Z for periodic (Ramond) boundary conditions.

We can use the definition of Poisson brackets δ2C1 = [C1, C2] where upon inserting the
variations (3.4) into (3.9) leads to the commutators and anti-commutators

[Ln, Lm] = (n−m)Ln+m + bκm3δm+n,0 , (3.10a)
[Ln, Pm] = −mPn+m − iκm2δm+n,0 , (3.10b)

[Ln,Ψr] =
(
n

2 − r
)

Ψn+r , (3.10c)

{Ψr,Ψs} = Mr+s − 2κ s2δr+s,0 , (3.10d)

whereMn = − 1
2κ
∑
q Pn−qPq+inPn and some appropriate rescalings of the generators have

been implemented. One can check that the Jacobi identities are all satisfied. Especially
the non-trivial Jacobi identity among (Lm,Ψr,Ψs) holds,

{Ψr, [Ψs, Lm]} − {Ψs, [Lm,Ψr]}+ [Lm, {Ψr,Ψs}] = 0 . (3.11)

– 6 –
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In the infinite dimensional algebra (3.10) if we shift the zero modes as L0 → L0 + bκ/2 and
P0 → P0+iκ, the last terms on the right hand side of (anti-)commutators in (3.10a), (3.10b)
and (3.10d) change such that we get the supersymmetry algebra (1.1) with c = 12bκ. The
wedge subalgebra of (1.1) is then spanned by the subset {P0, P−1, L0, L1, Ψ±1/2} with the
following non-zero (anti-)commutators;4

[L0, L1] = −L1 , [L1, P−1] = P0 , [L0, P−1] = P−1 ,

[L0,Ψ±1/2] = ∓1
2Ψ±1/2 , [L1,Ψ−1/2] = Ψ1/2 , (3.12)

{Ψ1/2,Ψ−1/2} = −iP0 +O(1/κ) , {Ψ−1/2,Ψ−1/2} = −2iP−1 +O(1/κ) .

In the semi-classical large-κ limit we can then pick the vacuum of the theory by demanding
that it is invariant under this subalgebra which corresponds to the six-dimensional super-
Maxwell algebra with the following identification;

L1 =P− P0 =−Z, L0 =−J, P−1 =P+, Ψ1/2 =
√
−2iU2, Ψ−1/2 =

√
−2iQ1 . (3.13)

Alternatively one may consider the following six-dimensional subalgebra of the infinite-
dimensional algebra (1.1) which is spanned by the subset

{
P0, P±1, L0,Ψ±1/2

}
, as

[L0, P1] = −P1 , [L0, P−1] = P−1 ,

[L0,Ψ±1/2] = ∓1
2Ψ±1/2 , {Ψ−1/2,Ψ−1/2} = −2iP−1 , (3.14)

{Ψ1/2,Ψ−1/2} = −iP0 , {Ψ1/2,Ψ1/2} = −iP1 .

The superalgebra (3.14) is isomorphic to the N = (1, 1) 2D super-Poincaré algebra with L0
as the boost generator and P± as translation generators, ψ±1/2 as Majorana-Weyl super-
charges and P0 as a real central term. Wedge subalgebras (3.12) and (3.14) essentially define
two distinct flat vacua in a theory whose ultimate asymptotic symmetries are the same
as (1.1). It would be interesting to explore the quantum theory defined by the Minkowski
vacuum (3.14),5 though our focus here is on the first supersymmetric vacuum (3.12) which
has the interpretation of a 2D supersymmetric Rindler space-time compatible with our
boundary conditions (3.1).

In addition to these two flat vacua, the infinite-dimensional algebra (1.1) is also com-
patible with the AdS2 vacuum. In this case its subalgebra is spanned by the subset{
P0, L±1, L0,Ψ±1/2

}
,

[L0, L1] = −L1 , [L1, L−1] = 2L0 , [L0, L−1] = L−1 ,

[L0,Ψ±1/2] = ∓1
2Ψ±1/2 , [L1,Ψ−1/2] = Ψ1/2 , (3.15)

{Ψ1/2,Ψ−1/2} = −iP0 , {L−1,Ψ1/2} = −Ψ− 1
2
.

The bosonic part of this superalgebra is SL(2,R)×U(1).
4We could alternatively choose the subalgebra to be spanned by {P0, P1, L0, L−1,Ψ±1/2}. In this case

one needs to do the shift in (3.10) as P0 → P0 − iκ.
5For 2D dilaton SUGRA based on N = (1, 1) supersymmetry we refer to [36].
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4 Variational principle

The action principle tells that the physical equations of motion must extremize the action.
This implies that our action should be differentiable (at least on-shell). A generic variation
of the BF bulk action (2.6) when equations of motions hold, equals to a boundary term

δI0 ≈ κ
∮
〈B, δAτ 〉 , (4.1)

where ≈ denotes on-shell equality. This variation is generically non-zero and thus the
action is not differentiable at on-shell configurations and thus the variational principle is ill-
defined. In order to make the theory well-defined we need to define our action functional up
to an appropriate boundary term I∂ = κ

∮
L such that the improved action is differentiable,

I[B,A] = I0 + κ

∮
L . (4.2)

In general, the fields B and A are independent off-shell. However, we can relate them using
the field equation dB+ [A,B] = 0 such that the varied action κ

∮
δL cancels the boundary

term (4.1). Our method for finding the boundary Lagrangian L is to use half of the field
equations to write the boundary integrand in (4.1) as a total integrable quantity V = −L
up to possible extra variation terms δVi;

〈B, δAτ 〉 ≈ δV + CiδVi + · · · (4.3)

where · · · are total derivative terms on-shell and thus can be thrown away. The final
variation of the action (4.2) is thus

δI ≈ κ
∮
CiδVi . (4.4)

Now if we use all field equations to show that Ci’s are indeed constants of motions, they can
be drawn out of the integral and we are left with some integrability conditions δ

∮
Vi = 0

which should be solved and finally, we have δI ≈ 0. In the following, we apply this method
first to the case of JT supergravity as an example and then to the supersymmetric (twisted-)
ĈGHS model (or Cangemi-Jackiw supergravity) which is the focus of our work.

4.1 Jackiw-Teitelboim supergravity

The JT supergravity has a BF-theory description in terms of the osp(2,1) superalgebra.
The details of the derivation of the (super-)Schwarzian boundary term can be found in [37]
based on superfield formalism. Here in this section, we rederive the boundary action using
our method described above. Our starting point is the variation of the action which in this
case is given by

δIJT
0 = κ

∮
〈B, δAτ 〉 = κ

∮
(xδL − 2ρδψ) (4.5)

– 8 –
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where (ψ,L) and (x, ρ) are boundary values of the gauge field A and the scalar field B

correspondingly. The following equations relate these two sets

Lx2 + 1
2xx

′′ − 1
4(x′)2 + 3xψρ+ 2ρρ′ − C = 0 , (4.6)

3
2ψx

′ + ψ′x− Lρ− ρ′′ = 0 , (4.7)

where C is a constant. With some manipulation, we can solve the second-order differential
equation of ψ in terms of a Grassman variable η as,

ψx
3
2 − x

(
ρ√
x

)′
− Cηx−

1
2 = const. , with

(
η√
x

)′
= ρx−

3
2 . (4.8)

The x-dependence in the denominator of the change of variable between ρ to η is such
that the conformal weight is preserved. This choice also matches with the superconformal
transformation encountered in the superfield formalism [37, 38]. As we shall see later this
choice also works for the case of ĈGHS supergravity.

We can now use the field equations (4.6) and (4.8) for substituting and integrating the
varied boundary action (4.5),

xδL = δ
C

x
+ Cδ

1
x
− 1

2
(
xδ(x′/x)

)′ − δ (3ψρ+ 2ρρ
′

x

)
+ δx

(
3ψρ
x

+ 2ρρ
′

x2

)
, (4.9)

ρδψ = 1
2δx

(
3ψρ
x

+ 2ρρ
′

x2

)
+ 1

2δ
ρρ′

x
+ δ

(
Cρη

x2

)
+ 1

2Cδ
(
ηη′

x

)
+ · · · , (4.10)

where in the last term of the second equality we used the relation (4.8) and · · · are total
derivative terms which we ignore. Finally, we have

xδL − 2ρδψ = δ

(
C

x
(1 + 2ηη′)− 3

(
ψρ+ ρρ′

x

))
+ Cδ

(1
x

(1− ηη′)
)
. (4.11)

This shows that the Lagrangian density is integrable providing that

δ

∮ 1
x

(1− ηη′) = 0 . (4.12)

We can identify the integrand as

f ′ = x̂

x
(1− ηη′) , (4.13)

where the constant x̂ is a fixed quantity (δx̂ = 0) and f ′ is a quasiperiodic function,
∮
f ′ = β.

The boundary action is thus identified as minus the integral of the total variation term
in (4.11). After some algebra, we can write the boundary action in terms of (f, η) upon
using the relation (4.8) and (4.13),

IJT
∂ [f, η] = −κ

∮ [
(1 + 2ηη′)Lx− 1

4(1 + ηη′)x
′2

x
− η′η′′x

]
= −κx̂

∮ 1
f ′

[
(1 + ηη′)L − 1

2Sch(f)− 3
2η
′η′′ − 1

2ηη
′′′
]

(4.14)

where Sch(f) = f ′′′

f ′ −
3
2
f ′′2

f ′2 is the Schwarzian derivative. We can also read the on-shell
action by substituting ψ from (4.8) into (4.11),

IJT
on-shell = −x̂κC

∮
f ′ = −x̂κCβ . (4.15)
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4.2 Cangemi-Jackiw supergravity

Now we apply the same method to the case of ĈGHS supergravity with the A field config-
uration given in (3.1) and the B-field being a fundamental field in the Maxwell superalge-
bra (2.12)

B = x+(u)P+ + x1(u)P− + Y (u)J + x0(u)Z + φ(u)Q1 + ρ(u)U2 . (4.16)

The inner product of the B-field (4.16) and variation of the gauge field (3.1) then gives

〈B, δAu〉 = x1δT + (b Y − x0)δP + ρδψ . (4.17)

It turns out that x0, x1 and ρ are independent state-dependent functions and other non-
zero elements in (4.16) are solved using half of the field equations dB + [A,B] = 0 (along
Z, P− and U2 generators),

x+ = T x1 + x′0 −
1
2ψρ , (4.18a)

Y = Px1 + x′1 , (4.18b)

φ = ψx1 −
1
2Pρ− ρ

′ . (4.18c)

There exist three more equations along J , P+ and Q1 which solve the derivatives of de-
pendent fields respectively as

Y ′ = 0 , (4.19a)

x+′ + T Y − Px+ + ψφ = 0 , (4.19b)

φ′ − 1
2Pφ+ 1

2ψY = 0 . (4.19c)

The last two equations in (4.19) can be rewritten in terms of independent variables as

T ′x1 + 2T x′1 − Px′0 + x′′0 −
3
2ψρ

′ − 1
2ψ
′ρ = 0 , (4.20a)

ψ′x1 + 3
2ψx

′
1 − ρ′′ +

1
4(P2 − 2P ′)ρ = 0 . (4.20b)

Using the field equations (4.19)–(4.20), we can show that the theory has three independent
constants of motion

C1 ≡
1
2
(
Px1 + x′1

)
, (4.21a)

C2 ≡ T x1
2 + x0

′x1 − 2x0C1 −
3
2ψρx1 + ρ′ρ , (4.21b)

C3 ≡ ψx1
3
2 − x1

(
ρ
√
x1

)′
+ C2

1
η
√
x1
, (4.21c)

where the last constant of motion is fermionic in which we introduced the Grassman variable
η as

ρx1
− 3

2 =
(

η
√
x1

)′
. (4.22)
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As we will see in a bit, it is very useful to write all free fields in terms of Ci and (x0, x1).
As an example, for the b-term in (4.17) one can simply verify that

Y δP = 2C1δ
2C1 − x′1

x1
= 2δC

2
1
x1

+ 2C2
1δ

1
x1

+ · · · (4.23)

where · · · are total derivative terms (on-shell). Writing (T ,P, ψ) in terms of Ci, plugging
them in the variation terms of the integrand (4.17) and manipulate the variations such
that we have the general pattern in (4.3), we obtain

x1δT − x0δP = δ
C2
x1

+ C2δ
1
x1

+ 2C1δ
x0
x1

+ δ

(3
2ψρ+ ρρ′

x1

)
− δx1

(3
2
ψρ

x1
+ ρρ′

x2
1

)
+ · · · ,

ρδψ = δx1

(3
2
ψρ

x1
+ ρρ′

x2
1

)
+ 1

2δ
ρρ′

x1
− δ

(
C2

1ρη

x2
1

)
− C2

1

(
−δρη
x2

1
+ 3

2
ρηδx1
x3

1

)
+ ρx

−3/2
1 δC3 + · · · . (4.24)

If we use the relation (4.22), the last term in (4.24) is a total derivative (on-shell) and the
next to last term simplifies to

−1
2C

2
1

[
δ

(
ηη′

x1

)
+
(
ηδη

x1

)′ ]
. (4.25)

We are almost done, however, if we compare (4.25) with the expected format (4.3) we
notice that it is not still of the CiδVi + · · · form. We thus use the identity C2

1δV1 =
2C1δ(C1V1)− δ(C2

1V1) to meet the requirements of (4.3) with V1 = −ηη′/(2x1) here.6

In the Euclidean theory after the Wick rotation of the u-coordinate all equations
in (4.20)–(4.25) remain intact with ′ ≡ ∂τ once we also Wick-rotate all independent vari-
ables due to their conformal weights as in (3.6) and

x0 → x0 , x1 → −ix1 , ρ→ i−1/2ρ , η → i3/2η . (4.26)

Finally after applying Aτ = −iAu and the Wick rotation (3.6) and (4.26), we have

〈B, δAτ 〉 = δ

(
C2
x1

+ 3
2

(
ψρ+ ρρ′

x1

)
+ C2

1

(
− ρη

x2
1

+ 2b
x1

+ ηη′

2x1

))
+
(
C2 + 2bC2

1
)
δ

1
x1

+ 2C1δ

(
x0
x1
− C1

ηη′

2x1

)
. (4.27)

We thus consider the boundary action as the minus sign of the integral of the first line in
the parenthesis in (4.27). Upon substituting C1 and C2 from (4.21) and (4.22) and ignoring
boundary of boundary terms we get

I∂ = −κ
∮ [
T x1 − x0P −

x0x
′
1

x1
+ ρρ′

2x1
+ 1

4x1

(
Px1 + x′1

)2 (3
2ηη

′ + 2b
)]

, (4.28)

6If we apply this to the 2bC2
1δ(1/x1) term, the change in the total variation term and the integrability

condition for x0 returns the same term in the final action as it is now.
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with ρρ′/x1 = η′η′′x1 + 1
2ηη

′(x′′1 − 1
2x
′2
1 /x1) − 1

2ηη
′′x′1. The whole action (4.2) is now

differentiable δI ≈ 0 if the following integrability conditions are satisfied

δ

∮ 1
x1

= 0 , δ

∮ (
x0
x1
− C1

ηη′

2x1

)
= 0 . (4.29)

It is important to notice that in deriving the integrability conditions (4.29) we assumed that
C1 and C2 are constants on-shell so that they can be drawn out of the integral. However,
the integrability conditions (4.29) are now treated completely off-shell. We can solve these
conditions by introducing two quasi-periodic functions (f, g),

x1 = x̂1
f ′
, x0 −

1
4ηη

′(Px1 + x′1) = x̂1 g
′ ◦ f , (4.30)

where ◦ refers to a composition of functions and g′ ◦ f = ∂g/∂f . The integrability condi-
tion (4.30) signifies that x̂1 is the zero mode of x1 (

∮
f ′ = β) where we assume δx̂1 = 0.

Comparing integrability conditions and the ansatz (4.29)–(4.30) with the ones for Jackiw-
Teitelboim supergravity (4.12)–(4.13), we find that here the supersymmetric extension ap-
pears in the field redefinition of g′ rather than f ′. We can rewrite the boundary Lagrangian
in terms of (f, g, η) as fundamental fields by plugging (x0, x1) from (4.30);

I∂ [f, g, η] =− κx̂1

∮ 1
f ′

[
T +

(
b+ 1

4ηη
′
)M

2 −
(

(g ◦ f)′ + 1
4ηη

′′
)
P + (g ◦ f)′′

+ η′η′′ + b Sch(f) + 1
2ηη

′′′
]
, (4.31)

where M = P2 − 2P ′. In deriving the final result (4.31), the identity 1
2
∮
Af ′′2/f ′3 =∮

[(A Sch(f) +A′′)/f ′] is used for a given function A and boundary terms are thrown away.
In order to gain more information about the fields (f, η, g) we can work out their

transformation rule under the large gauge symmetry (3.2). Asymptotic symmetries (3.2)
act on the dilaton multiplet (x1, x0, ρ) as,

δx1 = εx′1 − ε′x1 ,

δx0 = εx′0 − σ′x1 + 1
2(ρχ)′ + 1

2Pρχ ,

δρ = −1
2ρε

′ + ρ′ε+ 1
2x
′
1χ− x1χ

′ .

(4.32)

From their definition (4.30), the following transformation are then induced on f , η and g,

δf = εf ′ , (4.33a)

δη = εη′ − 1
2ηε

′ − χ , (4.33b)

δ(g ◦ f) = −σ + ε(g ◦ f)′ + 1
2

(
η′ + 1

2Pη
)
χ , (4.33c)

where we used (4.22) as ρ = −1
2ηx

′
1+η′x1. The infinitesimal reparametrization transforma-

tion ε in (4.33) confirms that f and g are the diffeomorphisms and a generic (quasi-)periodic
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function on the circle respectively. Moreover g transforms under σ and χ while f is invari-
ant. The very fact that we can integrate the transformation on the dilaton fields which are
generically in terms of (f ′, g′, η′), to transformation on fields (f, g, η) confirms that the field
redefinition (4.22) and (4.30) and thus the integrability conditions (4.29) are correct. Of
course, it is understood that only a subset of this set of transformations (generated by the
subalgebra (3.12)) are symmetries of the boundary action (4.31) which defines an effective
theory for the Goldstone modes (f, η, g).

5 Thermodynamics

The bosonic part of the ĈGHS supergravity (2.6) admits a Ricci-flat black hole solution
which is consistent with the field configuration (3.1) once we apply a finite gauge transfor-
mation with the group element g = exp(−rP+). The resultant non-zero zwiebein elements
e+
u = T (u) + rP(u), e−u = 1 and e+

r = −1 lead to the zero-mode solution [19]

ds2 = 2(P̂r + T̂ ) du2 − 2 du dr . (5.1)

The horizon is at rH = −T̂ /P̂. Using the field equations (4.18)–(4.19) for the zero mode
solution we have

Ŷ = P̂x̂1 , φ̂ = ψ̂x̂1 , x̂+ = T̂ x̂1 , ρ̂ = 0 , (5.2)

where all hatted fields are constants.
Now that we have made the variational principle well-defined (in the Euclidean theory),

we are ready to compute the value of the Euclidean on-shell action for this true (black hole)
saddle of the action. For simplicity, we consider the zero-mode solution of the theory. Plug-
ging in the zero-mode solution (5.2) after applying the corresponding Wick-rotation (3.6)
and (4.26) into the first line of (4.27), the boundary Euclidean on-shell action (the bulk
term is zero) is

Ion-shell = −κβ
x̂1

(
Ĉ2 + b

2 Ŷ
2
)

(5.3)

where Ĉ2 = T̂ x̂2
1 − P̂x̂0x̂1.

5.1 Holonomy condition

The regularity condition of the black hole solution (5.1) at the horizon in the Euclidean
signature translates to imposing a Holonomy condition on the Euclidean gauge field Aτ =
−iAu with Au being defined in (3.1), along the thermal cycle τ ∼ τ + β to be trivial,

Hol(Aτ ) = exp
[∮

Aτ

]
∈ Z(G) . (5.4)

This condition suggests that the Holonomy belongs to the center of the 2D Maxwell group
Z(G). The group element eA belongs to the center of the group iff for any arbitrary
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member of the group g = eX we have eAeX = eXeA where upon applying the lemma to
the Baker-Campbell-Hausdorff formula we must have

[A,X] + 1
2[A, [A,X]] + 1

3! [A, [A, [A,X]]] + . . . = 0 . (5.5)

Imposing this condition to our Euclidean gauge field, with A=−iβ
(
T̂ P++P−+P̂J+ψ̂Q1

)
and X a generic element in the 2D super-Maxwell algebra, we have two solutions as the
non-trivial center (assuming P̂ 6= 0)

ψ̂ = 0 , P̂ = ±2πn
β

, or ψ̂ 6= 0 , P̂ = ±4πn
β

, n ∈ N , (5.6)

and there is no restriction on T̂ in both cases. As we can see, in the case where the fermionic
gauge field ψ is non-zero our solution is regular if P̂ is quantized in 4π× temperature T . We
should emphasize that in (5.6) we should choose the minus sign to ensure that u in the black
hole solution (5.1) is time-like. Using the value P̂ = −4π/β and the on-shell action (5.3)
we are now ready to evaluate the entropy of our regular black hole solution (5.1)

S = − (1− β∂β) Ion-shell

= 4πκ (rHx̂1 + x̂0 + 4πbT x̂1) = 4πκ
(
X̂H − bŶ

)
, (5.7)

where X̂H = rHx̂1 + x̂0, is the value of the dilaton field X at the horizon and Ŷ = −4πT x̂1
is the on-shell value of the scalar field Y . This entropy is two times bigger than the entropy
for the same black hole solution with zero fermionic gauge component (ψ = 0). We notice
that in this case the value of the zero mode of the auxiliary field, Ŷ , is also doubled. The
thermodynamic properties of the ψ = 0 case have been considered in [22] where it was
shown that the value of the specific heat C = T∂TS for the case b 6= 0 (twisted-ĈGHS) is
finite and linear in T . Here for ψ 6= 0, it will be C = (4π)2κbT x̂1 which is 4 times bigger
than the case ψ = 0.

Supersymmetric solution. Is the supersymmetry preserved by our background (3.1)
as a ‘supersymmetric’ solution? The requirement that the residual susy transformation do
not change our background fields corresponds to δχP = δχT = δχψ = 0. From (3.4) the
first requirement is automatically satisfied while other conditions lead to

−3
2ψχ

′ − 1
2ψ
′χ = 0 , 1

4 P̂
2χ− χ′′ = 0 . (5.8)

The solution to these equations (assuming P̂ 6= 0) are as follows

χ(u) = c1e
P̂u
2 + c2e

− P̂u2 , ψ(u) = c3χ(u)−3 . (5.9)

Thus the first Holonomy-consistent black-hole solution (ψ̂ = 0 and P̂ = −2πn/β) is super-
symmetric where the spinor χ is given by (5.9). In the Euclidean theory, since we define
our boundary theory on a circle τ ∼ τ + β where τ = iu and P̂ → iP̂ ≡ P̂E = −2iπn/β,
these solutions are anti-periodic consistent supersymmetric solutions.
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5.2 Stabilizer subalgebra

The stabilizer of the Wick-rotated (u → iu) background (5.1) can be interpreted as the
isometry group of the Euclidean version of the flat connection (3.1). In order to achieve
them we need to solve the stabilizer condition δT = δP = δψ = 0 in the Euclidean case.
We thus Wick-rotate the functions and parameters of gauge transformation as mentioned
in (3.6) such that the form of the variations (3.4) is preserved.

For the zero-mode Euclidean solution consistent with the Holonomy condition (P̂E =
−2πin

β , ψ = 0, T = T̂ ) we are led to a pair of non-trivial differential equations for (ε, σ, χ)

δP =
(
− 2πin

β
ε+ ε′

)′
= 0 , (5.10a)

δT = 2ε′T̂ + 2πin
β

σ′ + σ′′ = 0 , (5.10b)

δψ = 1
4

(
− 2πin

β

)2
χ− χ′′ = 0 , (5.10c)

which are solved in terms of some integration constants;

ε = ε0 + ε
n
e

2π
β
inτ

, (5.11a)

σ = σ0 + σ−ne
− 2π
β
inτ − T̂ β2πin εne

2π
β
inτ

, (5.11b)

χ = χ
n/2
e
π
β
inτ + χ

−n/2
e
−π
β
inτ

. (5.11c)

In this case the functions (ε, σ) are periodic while the spinor function χ is anti-periodic.
We can thus identify it with the NS sector. In this case we see that our infinite-dimensional
super warped-Virasoro symmetry algebra (3.10) breaks to the N = 1 graded extension of
Maxwell algebra as was anticipated in (3.12) (for n = 1) as the wedge subalgebra.

Alternatively, if we consider the second Holonomy-consistent zero-mode solution (P̂E =
−4πin

β , ψ = ψ̂ 6= 0, T = T̂ ) we have

δP =
(
− 4πin

β
ε+ ε′

)′
= 0 , (5.12a)

δT = 2ε′T̂ + 4πin
β

σ′ − 3
2 ψ̂χ

′ + σ′′ = 0 , (5.12b)

δψ = 3
2 ψ̂ε

′ + 1
4

(
− 4πin

β

)2
χ− χ′′ = 0 , (5.12c)

which are solved as

ε= ε0 + ε2ne
4π
β
inτ

, (5.13a)

σ= σ0 +σ−2ne
− 4π
β
inτ− β

4πin

[(
T̂ −3ψ̂2β

8πin

)
ε2ne

4π
β
inτ−ψ̂

(
3χ−ne

− 2πi
β
inτ+χne

2π
β
inτ
)]
, (5.13b)

χ= χne
2π
β
inτ + χ−ne

− 2π
β
inτ+ ψ̂β

2πinε2n e
4π
β
inτ

. (5.13c)

In this case the functions (ε, σ, χ) are all periodic and we can identify it with the Ramond
sector.
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5.3 Canonical charges

We can obtain the same value for the entropy in the Lorenzian theory where the Hamilto-
nian formulation applies and one can define the canonical charges of the model. Canonical
charges associated with a gauge transformation A → A + dε in a BF theory like in any
other gauge theory are defined on codimension-2 surfaces, which in two dimensions are
points. They are defined as [39]

δQ[ε] = κ〈ε, δB〉 . (5.14)

Here ε is the set of allowed gauge transformations given in (3.2). The canonical charge (5.14)
associated with the Killing vector ξ = ∂u which becomes null at the horizon gives the
entropy as a conserved quantity from the first law of thermodynamics TδS = δQ[ξ]. A
generic gauge transformation in the first order formulation of gravity (the BF-theory in
this case) induces a diffeomorphism on-shell with ε = Aµξ

µ. We thus have

TδS = κ〈Au, δB〉 . (5.15)

This formula defines the first law of thermodynamics in our BF theory. Applying it to
the zero mode solution (5.2) in the presence of fermionic modes and integrating it (with
δT = 0) we recover the entropy (5.7).

6 Conclusion

In this paper, we considered the gauge theory formulation of the matterless conformally
scaled CGHS supergravity dubbed ĈGHS model or CJ gravity. By imposing suitable
boundary conditions we addressed different holographic visions on the would-be bound-
ary quantum theory such as asymptotic symmetries, effective action, and entropy. The
asymptotic symmetries span the supersymmetric warped Virasoro algebra (3.10), where
the anti-commutators of the supersymmetric generators are quadratic twisted Sugawara
construction of the null U(1) current algebra. The presence of null currents (abelian Heisen-
berg subalgebra) in the asymptotic symmetry algebra seems to be a generic feature in flat
space holography [35, 40–49]. Our analysis confirms that this feature remains valid in the
supersymmetric case — for other studies on asymptotic symmetries in flat space-time, su-
pergravity sees e.g. [50, 51]. It would be interesting to investigate the unitary and short
representation of the infinite-dimensional superalgebra (3.10). The boundary action (4.31)
ensures a well-defined variational principle. It is the supersymmetric extension of the
warped-Schwarzian theory at level zero [19] and thus should be the geometric action of
the corresponding supergroup. It would be interesting to derive this action from group-
theoretical arguments as the geometric (group) actions on coadjoint orbits of the super
warped-Virasoro group see e.g. [45, 52]. Such extensions of the Schwarzian action are key
links between gravity and field theory sides. It is thus curious to obtain this supersymmet-
ric action from the supersymmetric charged SYK model in a double scaling limit in the
spirit of [20]. Since we have black hole solutions in our theory we computed the entropy
by both evaluating the on-shell action and calculating the canonical charges. The essential
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difference with the non-supersymmetric case is due to the holonomy condition which ne-
cessitates the zero mode of P which basically is the Rindler acceleration, to be quantized
in 4πT instead of 2πT . This is due to the presence of the fermionic degrees of freedom
which double the value of the entropy.

Recently the ĈGHS theory is conjectured to acquire a dual quantum matrix ensemble
description similar to JT gravity [27, 28, 53] which can potentially capture non-perturbative
effects. Finally, it would be interesting to embed more dilaton-gravity theories in the 2D
holography setup — see recent papers [54–56] and their references.
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