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Abstract
DeepMetric Learning (DML) methods automatically extract features from data and learn a non-linear transformation from the input to
a semantically embedding space.ManyDMLmethods focused to enhance the discrimination power of the learnedmetric by proposing
novel sampling strategies or loss functions. This approach is very helpful when both the training and test examples are selected from the
same set of categories. However, it is less effective in many applications of DML such as image retrieval and person-reidentification.
Here, the DML should learn general semantic concepts from observed classes and employ them to rank or identify objects from unseen
categories. Neglecting the generalization ability of the learned representation and just emphasizing to learn a more discriminative
embedding on the observed classes may lead to the overfitting problem. To address this limitation, we propose a framework to enhance
the generalization power of existing DMLmethods in a Zero-Shot Learning (ZSL) setting by general yet discriminative representation
learning and employing a class adversarial neural network. To learn a general representation, we employ feature maps of intermediate
layers in a deep neural network and enhance their discrimination power through an attention mechanism. Besides, a class adversarial
network is utilized to force the deep model to seek class invariant features. We evaluate our work on widely used machine vision
datasets in a ZSL setting. Extensive experimental results confirm that our framework can improve the generalization of existing DML
methods, and it consistently outperforms baseline DML algorithms on unseen classes.

Keywords Deep metric learning . Similarity embedding . Zero-shot learning . General discriminative feature learning .

Adversarial neural network

1 Introduction

Distance measures have a major role in the success of many
machine learning or pattern recognition algorithms. Standard
distance or similarity measures such as Euclidean or cosine

similarity often fail to capture the semantic concepts needed
for a specific task. Thus, we need data-dependent metrics that
measure semantically similar pairs close together while eval-
uating dissimilar ones far apart.

Most research in metric learning is dedicated to
Mahalanobis distance defined as:

dM xi; x j
� �2 ¼ xi−x j

� �⊤
M xi−x j
� �

; ð1Þ

where xi,xj ∈ ℝd and M ∈ ℝd × d is a positive semi-definite
(p.s.d) matrix. SinceM ≽ 0, it can be factorized as LLT, where
L ∈ ℝd × r and r = rank (M) ≤ d. Thus,

dM xi; x j
� �2 ¼ xi−x j

� �⊤
M xi−x j
� �

¼ xi−x j
� �⊤

LL⊤ xi−x j
� � ¼ L⊤ xi−x j

� ��� ��2
2
: ð2Þ

The above equation indicates that Mahalanobis distance
learning is equivalent to finding a linear transformationmatrix
L. Despite its success, in many nonlinear datasets with com-
plex class boundaries, a linear transformation is unable to
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extract discriminative features. Besides, Mahalanobis metric
learning methods cannot process complex data such as im-
ages, text, and videos directly. Therefore, we need to first
extract features from data and then apply Mahalanobis matrix
learning algorithms.

To overcome these issues, deep metric learning (DML)
methods are proposed that jointly perform feature extraction
and learning non-linear transformation. Hence, they obtain an
optimized representation of the input data for the distance
learning task. Specifically, DML finds a non-linear function
fw(x) parameterized byw that maps x from the input space to a
semantic embedding space. In this space, similar data items
should be close together while dissimilar pairs should be kept
at a distance.

A typical DML model has three components: 1) deep neu-
ral network model, 2) sampling algorithm, and 3) loss
function.

The function fw is implemented using a deep neural net-
work such as CNNwhere the Softmax output layer is replaced
by a Fully Connected (FC) named embedding layer. The em-
bedding consists of a weight matrix L ∈ ℝh × d that projects
the output of the last hidden layer into the semantic embed-
ding space.

To learn the parameters of the deep model (i.e., w), the
network is often trained by pairwise or triplet constraints de-
fined as follows:

& Pairwise: S = {(xi, xj) | xi and xj are similar} (Similar set),
and

D = {(xi, xj) |xi and xj are dissimilar} (Dissimilar set).

& Triplets: T ¼ xi; xþi ; x
−
i

� �� �� xi should be more similar to

xþi than to x−i g. Here, xi, xþi , and x−i are named anchor,
positive, and negative data, respectively.

Many DML algorithms adopt the Siamese [1] or the Triplet
[2, 3] architecture shown in Fig. 1. Also, other forms of con-
straints such as quadruplets [4], and n-pairs [5] are introduced
in recent research.

Many sampling strategies are developed to obtain in-
formative constraints such as pairs, and triplets from the
input minibatch of data passed to the network. Some sem-
inal mechanisms include easy [6], hard [7], and semi-hard
[8] negative mining. The sampled constraints are for-
warded to the loss layer that encourages the separation
of positive and negative pairs. The loss gradient is then
backpropagated through the network to adjust the deep
network parameters.

A loss function has a key role in the training process of a
deep model. Two popular DML loss functions are contrastive
and triplet utilized in the Siamese and Triplets networks re-
spectively. Besides, many other loss functions are developed
to promote the performance of the given DML task.

Many DML methods emphasize learning a more discrim-
inative embedding function by providing novel sampling
strategies or loss functions. This approach yields a good result
where training and testing data are collected from the same set
of categories. However, this assumption is not correct in major
applications of DML such as CBIR,1 person re-identification,
ZSL,2 and FSL.3 Here, the model should learn general infor-
mative concepts from seen classes and utilize them to rank or
identify objects from unseen categories. Neglecting the gen-
eralization power of the semantic embedding and just seeking
to learn more discriminative representations of seen classes is
subject to the overfitting problem.

To address this challenge, we propose a novel framework
to enhance the generalization of DML methods in the ZSL
setting using general yet discriminative feature learning and
a class adversarial neural network.

In a typical deep neural network, the middle layers of the
network extract general and small patterns of given data. The
output of each layer is passed to the next layer to extract more
discriminative and large patterns from the input. The last hid-
den layer of the network produces the most discriminative
features, but it is dependent on the observed classes. It also
concentrates only on specific regions from the input image
needed to discriminate training classes. That increases the risk
of neglecting other important regions required to classify un-
seen categories. This problem is illustrated in Fig. 2. The fig-
ure shows the generated Grad-CAMs of some images using
fine-tuned BN-Inception neural network on the CUB200–
2011 dataset [9]. As seen, the deep model has mainly focused
on the head of birds to classify the images and omit some other
discriminative regions that might be helpful to identify unseen
objects.

Let u be the output of the last hidden layer in the
network. Most existing DML approaches use only the
feature vector u to learn a discriminative embedding.
Here, we propose to employ outputs of intermediate
layers since they have a better generalization on unseen
categories. Also, they almost cover the entire input im-
age. Now, the problem is the low discrimination power
of these feature maps. We handle this issue by attending
these features to the discriminative u feature vector. We
assign weights to the feature maps of the selected layers
according to discrimination scores obtained by an atten-
tion mechanism. Then, we form the final feature vector
by combining the weighted feature maps.

Besides, an adversarial network is employed that enforces
the deep model seeking class invariant features for the DML
task. The adversarial network increases the classification loss
on seen classes during the semantic embedding learning

1 Content-Based Information Retrieval
2 Zero-Shot Learning
3 Few-Shot Learning
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process. This approach causes the deep network to explore
more general discriminative information that is less dependent
only on the available classes for the metric learning task.
Therefore, it improves the generalization capability of the

learned semantic embedding and prevents the overfitting on
observed categories.

In summary, the major contributions of this paper are as
follows:

Fig. 2 Generated Grad-CAMs of some Birds using fine-tuned BN-Inception neural network on the CUB200–2011 [9] dataset

Fig. 1 a The Siamese architecture. b The Triplet architecture
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I. Learning general and discriminative representation by uti-
lizing intermediate feature maps of the deep model and
enhancing their discrimination power by attending them
to the feature vector obtained from the last hidden layer.

II. A general framework to enhance the generalization pow-
er of DML is proposed using a class adversarial neural
network. The framework can be applied to many existing
DML methods and improve their performance in a ZSL
setting.

III. We investigate several strategies to implement a class
adversarial module and observed the best performance
is obtained by confusing the classifier via adaptively
setting the adversarial coefficient.

IV. Extensive experiments are performed on popular image
information retrieval datasets in a ZSL setting, and our
approach improves the results of state-of-the-art DML
methods on these datasets.

The rest of the paper is organized as follows. Section 2
reviews related deep semantic embedding learning
methods. Section 3 presents our framework to enhance
the generalization power of DML in a ZSL setting.
Strategies to implement the framework are presented in
Section 4. Experimental results and comparison with
state-of-the-art methods are reported in Section 5.
Finally, the conclusion of the work and recommendations
for future studies is given in Section 6.

2 Related work

[1] developed based on a Siamese network is the first pioneer
work in the deep metric learning domain. Here, the energy
between two pairs is defined as:

EW x1; x2ð Þ ¼ f W x1ð Þ− f W x2ð Þk k: ð3Þ

The aim is to learn the network weights to minimize the
energy function for similar images and maximize it for dis-
similar ones. To this end, the following loss function is
proposed:

L W; Y ;X 1;X 2ð Þ ¼ 1−Yð ÞLG EWð Þ þ YLI EWð Þ
¼ 1−Yð Þ 2

Q
EWð Þ2 þ Y2Qexp −

2:77

Q
EW

� �
;

ð4Þ

where binary variable Y indicates that the corresponding (X1,
X2) is similar or dissimilar pair:

Y ¼ 0; for similar pair X 1;X 2ð Þ genuine pairð Þ
1; otherwise:

	

Loss functions defined on pairwise constraints such as (4)
are named Contrastive. These functions are based on absolute
distance values. However, in many applications, the relative
distances between positive and negative pairs are more impor-
tant. The triplet loss focuses on relative distances while con-
trastive loss concentrates on absolute distances. Also, a triplet
considers both negative and positive constraints at the same
time. Therefore, triplet-based methods often have superior
performance compared to pairwise counterparts.

The margin-based Hinge loss function utilized in many
triplet methods is defined as:

l xi; xþi ; x
−
i

� �� � ¼ α− d−−dþð Þ½ �þ

¼ 0; ; if d−−dþð Þ≥α
α− d−−dþð Þ; otherwise:

	
ð5Þ

Here, dþ ¼ f W xið Þ− f W xþið Þk k indicates the Euclidean
distance in the embedding space between the anchor and pos-

itive, and d− ¼ f W xið Þ− f W x−i
� ��� �� shows the distance be-

tween the anchor and negative.
Most research in DML is focused on developing a new

sampling strategy and loss functions. In the following, we
review seminal work in each field.

2.1 Sampling strategies

The simplest approach to generate positive and negative pairs
is to randomly sample pairs based on class labels. For exam-
ple, we can generate a similar pair by randomly selecting two
datapoints from the same class and create a dissimilar pair by
choosing two data items from different classes. This approach
named easy sampling [6] often results in poor performance.
[7] proposed hard negative mining that selects x−i from oppo-
site classes subject to d− < d+ condition. Facenet [8] choose a
semi-hard negative instance for each positive pair xi; xþið Þ.
Here, the negative has more distance from the anchor com-
pared to the positive example but still violates the margin
constraint (i. e. , d+ < d−, (d− − d+) < α). Figure 3 illustrates
the differences between hard, semi-hard, and easy triplets.

Since hard negative samples are too close to the anchor, the
gradient of loss has high variance and a low signal-to-noise
ratio [10]. To alleviate this issue, [10] proposed a distance
weighting sampling approach that allows exploiting different
types of triplets in a noisy environment.

N-pair [5] samples from all negative classes as shown in
Fig. 4. Hence, the loss function benefits from N − 1 negative
samples (one from each negative class) simultaneously lead-
ing to a better convergence rate in comparison with triplet-
based methods.

[11] deals with the problem that many potential triplets in a
dataset are easy and so do not affect the learned embedding.
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Hence, DML lacks enough informative samples for training.
To overcome the challenge, it generates a harder synthetic
triplet from an easy sample (z, z+, z−) by approaching z− to
z while preserving its label information.

Generally, sampling algorithms lack different aspects such
as capturing the global structure of data, low convergence rate,
and extra time to mine informative samples. To address these
challenges, proxy-based DMLmethods [12–15] proposed that
can directly learn a semantic embedding from training data
without utilizing a sampling strategy.

2.2 Loss functions

A Loss function has a crucial role in the success of a DML
algorithm. The contrastive and triplet are two widely used
losses denoted in (4), and (5) equations, respectively. Many
other losses are proposed to enhance the convergence rate and
the discrimination power of the learned metric. [16] adapts the
margin in the triplet loss by constructing a hierarchical class-
level tree. While this approach enhances the performance of
DML, it suffers from the high computation time required to
construct and update the tree.

The angular loss [17] constrains the angle at the negative
instance of the triangle determined by a triplet. Compared to
the contrastive and triplet losses, the loss benefits from robust-
ness against feature variance and having a better convergence
rate.

[4] aims to learn a better semantic embedding by sam-
pling quadruplets instead of triplets. As shown in Fig. 5, a
quadruplet is formed by adding an extra positive example
to a triplet, and the loss function uses two different mar-
gin values.

The histogram loss [18] computes a distribution-based sim-
ilarity between positive and negative pairs using the histo-
gram. It then minimizes the probability that a positive pair
has a lower similarity score than a negative.

[19] proposes the General Pair Weighting (GPW) mecha-
nism that casts the sampling in DML into a pair weighting
problem. Also, it introduces the multi-similarity loss under the
GPW framework that explores pairs and assigns weights to
them iteratively.

[20] presents Part loss for person re-identification task. It
divides the identified body in a person image into five parts
and then enforces the network to learn a representation for
each different body part. By combining discriminative

1, 2, 3

hard negative: ― < +

semi-hard negative: ( ― ― + ) <

easy negative: ( ― ― + ) ≥

Fig. 3 Illustration of different triplet sampling strategies

Fig. 4 Difference between triplet (left) and N-pair (right) distance learning. N-pair samples n-tuples that each contains an anchor (f1), a positive example
(f þ1 ), and N-1 negative samples (f þ2 ,…, f þN−1 ) [5]
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features obtained from different regions, the model achieves a
better generalization to identify unseen persons.

For each similar pair, [21] considers all negative samples
within the input mini-batch. Here, the loss function attempts to
keep away all negative samples from the positive. N-pair loss
[5] is defined on the input n-tuple as follows:

ln−pair x; xþ; x−1 ; x
−
2 ;…; x−N−1

� �� � ¼ −ln 1þ ∑
N−1

j¼1
exp S−j−S

þ

 � !

where Sþ ¼ f w xð Þ⊤ f w xþð Þ; S−j ¼ f w xð Þ⊤ f w x−j

 �

:

ð6Þ

Hence, the loss increases the similarity gap (i.e., Sþ−S−j )
between a positive pair and all N − 1 negatives simultaneous-
ly. Compared to the triplet loss, n-pair loss achieves a higher
convergence rate and better captures the global structure of
semantic embedding by considering more training examples
at a time.

Some recent work learns semantic embedding without the
need to sample tuples. For example, the clustering loss [14]
directly optimizes the NMI.4 As illustrated in Fig. 6, it con-
siders one proxy per class, and the loss brings examples to
their proxies closer while penalizing different proxies ap-
proaching each other.

Proxy NCA [13] optimizes triplet loss where the triplets are
formed by an anchor datapoint and proxies of positive and
negative classes. Here, the proxies (one per class) are learned
jointly with the semantic embedding. [15] shows that the clas-
sification loss is equivalent to a smoothed triplet loss where
each class is represented by a single center. Then, it presents
SoftTriple loss that extends classification loss by considering
multiple proxies per class. It also provides an effective regu-
larization term to determine the appropriate number of centers.

2.3 Generalizability of DML

Major applications of DML such as ZSL, FSL, person-
reidentification, CBIR, and clustering are challenging due to
the following characteristics:

1. a large number of classes,
2. few examples in some categories,
3. unseen classes during the test phase.

Much research in DML focus on increasing the discrimi-
nation power of the learned embedding using available train-
ing classes and neglect the generalizability of the embedding
on unseen categories.

MSML [22] deals with the problem by utilizing both high-
level semantic and low-level but abundant visual features. It
learns multi-scale feature maps and a multi-scale relation gen-
eration network (MRGN).

To enhance the generalizability of DML, [23] extends the
triplet to a K-tuplet network where an anchor point deals with
K negative examples at a time. That is similar to the test phase
in FSL, where a query image needs a comparison with multi-
ple different classes. The paper also provides a sampling
mechanism to mine semi-hard informative K-tuples.
However, these ideas come from previous research such as
[5] and are mainly effective to capture the global structure of
the embedding.

Adversarial learning is applied in DML to generate hard
synthetic samples from the original training information.
Unlike many approaches that ignore easy negatives, DAML5

[24] utilizes them to generate hard synthetic triplets. (Wang,
[25]) presents a similar idea. Here, as illustrated in Fig. 7, a
hard negative generator is adversarially trained jointly with the
DML to enhance the robustness of the learned embedding.

4 Normalized Mutual Information 5 Deep Adversarial Metric Learning

) ) )

Fig. 5 The quadruplet loss vs contrastive and triplet loss. a Contrastive Loss b Triplet Loss c Quadruplet Loss
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In [26], an adversarial learning approach is exploited to
enhance the performance of semantic embedding in a multi-
modal environment. To this end, it maps the text and corre-
sponding image of multi-modal data into a shared embedding,
where an adversarial classifier is employed to minimize the
gap between these modalities (i.e., text and image).

Proxy-Synthesis [27] interpolates proxies using a MixUp
[28] technique to generate synthetic proxies. They mimic un-
seen classes in training DML. Proxy-Synthesis improves the
generalization of the learned embedding on unobserved cate-
gories; however, it forms a larger batch from the input by
generating synthetic proxies and samples. Also, this method
is only applicable to proxy-based losses.

Chen and Deng [29] proposes to use adversarial learning to
enhance the performance of DML on unseen classes in the
ZSL setting. It introduces a regularization term named energy
confusion that reduces overfitting on the seen classes during
the metric learning process. The same idea is also adopted in
[30] to boost the discrimination power of an unconstrained
palmprint recognition model. The energy confusion term is
defined as:

Lec θ f ;X I ;X J
� � ¼ EeX I ;eX J

eX I−eX J

��� ���2
2

� 
¼ ∑i; jpij xi−x j

�� ��2
2
; ð7Þ

where θf denotes DML parameters. eX I and eX J are random
variables from probability distributions of ith and jth classes,
respectively. xi and xj are the corresponding observations from
these classes. Also, pij indicates joint probability distribution.
Assuming independence between the classes andeX I∼uniform X Ið Þ; eX J∼uniform X Jð Þ , pij is

pij ¼ pip j ¼
1

NI

1

N J
;

where NI and NJ are the number of instances in the ith and jth

classes. According to (7), minimizing Lec encourages overlap
between two different classes that is in contradiction with
traditional metric learning.

Our aim is also to promote the generalizability of DML.
However, instead of using regularization terms, we utilize an
adversarial classifier to increase the classification loss on seen
classes during semantic embedding learning. Besides, we
learn global and discriminative features using feature maps
of the intermediate layers through attention mechanisms.

3 Proposed model

As illustrated in Fig. 8, the proposed model consists of four
components: 1) feature extractor, 2) tuplet Sampler, 3) metric
embedding layer, and 4) classifier.

First, the input image is passed through the deep network,
and feature maps of the layers are generated. The feature maps
of the selected intermediate layers are weighted using an at-
tention mechanism and then combined to form the final fea-
ture vector. The extracted features of the input minibatch are
fed to the tuplet sampler to generate training side information.
The sampled tuples are forwarded to the metric embedding
layer and the metric loss is evaluated. Besides, the feature
vectors are given to the classifier to obtain the classification
loss. The proposed hybrid loss function is evaluated, and the
gradient is backpropagated to adjust the model parameters.
The loss enforces the model to learn a discriminative semantic
embedding that is not limited to observed categories and gen-
eralizes well on unseen classes. In the following, we discuss
each component in more detail.

3.1 Feature extractor

A deep neural network such as CNN, Encoder, or LSTM can
be utilized to extract features from data. Since DML applica-
tions are focused on images, CNN models are very popular in

Fig. 6 [14] optimizes the NMI clustering metric by considering one
proxy per class

Fig. 7 Training distance metric and adversarial generator simultaneously
to generate hard synthetic triplets (Wang, [25])
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this domain. A CNN learns hierarchical features from data,
where the initial layers extract more general and small pat-
terns, and the last layers learn abstract discriminative
concepts.

As mentioned, most DML algorithms only utilize the fea-
ture vector u ∈ ℝl of the last hidden layer from a pre-trained
convnet such as InceptionV2, VGG19, or ResNet50, which
increases the dependency of the learned metric on the seen
classes. To resolve this issue, we divide the deep model into
several sequential modules that increasingly learn discrimina-
tive and abstract patterns from the input. Figure 9 illustrates
the proposed architecture.

In Fig. 9, M ið Þ∈ℝci�Hi�Vi shows the output feature map
from the i-th module. The task of the Atti is to attend features
in M(i) to the discriminative feature vector u. The attention
weight measures the discrimination power of the features.
The final feature vector (p(i) ∈ ℝl) is formed by combining
the weighted feature maps. Finally, the Inter-Module Fusion

Component merges the attended features vectors. We imple-
ment this module by concatenating the attended vectors (p(i)

i = 1, 2, .., m). In the following, In the following, we discuss
some attention mechanisms that can be employed in our
model.

I. Multiplicative Attention:

Let qj∈ℝ
ci ; j ¼ 1; 2;…; Hi � Við Þ be a pixel in the fea-

ture mapM(i). In this approach, we measure the similarity of qj
to feature vector u as [31]:

S q j; u

 �

¼ W 1ð Þ
i q j;W

2ð Þ
i u

D E
: ð8Þ

In the above equation, the weight matrices W 1ð Þ
i and W 2ð Þ

i
are learned in an end-to-end training paradigm to increase the
similarity between qj and u. Since we aim to promote the

Fig. 8 The proposed model to
enhance the generalization of a
DML Task

Fig. 9 The Architecture of feature
extractor to learn global yet
discriminative features from the
input image
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similarity of qj to u, the weight matrixW 2ð Þ
i can be dropped to

achieve a simpler mechanism (with fewer parameters) as fol-
lows:

S q j; u

 �

¼ W 1ð Þ
i q j; u

D E
; ð9Þ

where W 1ð Þ
i ∈ℝl�ci .

II. Additive Attention

This mechanism evaluates the similarity of qj to u [31] as:

S q j; u

 �

¼ w⊤
i σ W 1ð Þ

i q j þW 2ð Þ
i u


 �
; ð10Þ

where σ is an activation function and wi is a weight vec-
tor. In practice, the additive form outperforms the multi-
plicative mechanism. However, it demands more compu-
tations and memory. Similarly, we can simplify the Eq.
(10) as:

S q j; u

 �

¼ w⊤
i σ W 1ð Þ

i q j þ u

 �

: ð11Þ

III. Multi-dimensional Attention [31]:

This mechanism replaces the weight vector wi with a ma-

trix W i∈ℝl�ci :

Fig. 10 a Inception module architecture in the Inception V2, b The Simplified architecture of the implemented feature extractor

Fig. 11 Architecture of the classification module
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S q j; u

 �

¼ W⊤
i σ W 1ð Þ

i q j þ u

 �

: ð12Þ

Thus, the output is a similarity vector a j∈ℝci where each
component in aj measures the importance or weight of the
corresponding feature in qj.

After computing the similarity function, the Softmax is

applied to normalize attention weights. More precisely, let a ið Þ

¼ S q j; u

 �h iHi�Vi

j¼1
be the attention vector obtained from

module i using multiplicative or additive mechanisms. We
normalize the a(i) using the Softmax function as follows:

eaj

ið Þ
¼ p z j jq j; u

 �

¼ Softmax a ið Þ

 �h i

j

¼
exp S q j; u


 �
 �
∑

Hi�Vi

k¼1
exp S qk ; uð Þð Þ

: ð13Þ

Here, zj is an indicator that shows which pixel in the i-th
module is attended more to the reference vector u. In other

words, the eaj
ið Þ ¼ p z j jq j; u


 �
denotes the discrimination

score or attention weight of qj. The output of the attention is
the weighted mean of pixels:

p ið Þ ¼ ∑
Hi�Vi

j¼1
eaj

ið Þ
q j; i ¼ 1; 2; ::;m: ð14Þ

In the case of multi-dimensional attention, we perform the
same procedure to each feature independently to obtain the
importance weights for that feature. In particular, let Ajk be
the k-th component of the S(qj, u) vector. Ajk k = 1, 2, …,
ci shows the unnormalized weight of k-th feature in qj. We
normalize the weights using the Softmax as:

fAjk

ið Þ
¼ p zjk jq j; u

 �

¼ exp Ajk
� �

∑
Hi�Vi

l¼1
exp Alkð Þ

: ð15Þ

Then, the output of the k-th component of p(i) is obtained as
follows:

p ið Þ
k ¼ ∑

Hi�Vi

j¼1

fAjk

ið Þ
qjk ; i ¼ 1; 2; ::;m; k ¼ 1; 2;…; ci: ð16Þ

In the following, we show the Feature Extractor as a func-
tion f(θf; .) where θf denotes the network parameters.

Table 1 Statistics of the image datasets used in our experiments

Data Set #classes #samples Evaluation Protocol

CUB-200-2011
[9]

200 11,788 The initial 100 classes (including 5864 images) for
training and the rest (100) for testing (5924 images).

CARS-196
[33]

196 16,185 The first 98 classes (including 8054 images) for
training and the remaining (98) for testing (8131
images).

Oxford Flowers-102
[34]

102 6552 The first 51 classes (including 2807 images) for
training and the remaining (51) for evaluation (3745
images).

Table 2 Specifications of
Hyperparameters of DML
methods and their adjustments

Hyper-
parameter

Description Value

model−lr Learning rate of pre-trained Inception-V2 network. 10−4

embedding−
lr

Learning rate of the embedding layer. 10−3

margin The margin of triplet sampling and hinge loss 0.01

α The degree in Angular loss. 45°

proxy−lr The learning rate of the Proxy-NCA. Adjusted from {0.01,
0.15,0.02}

μ and α The generation ratio and mix up interpolation factor in
Proxy-synthesis.

μ∈{0.5,1,2} and α=
{0.2,0.4,0.6}

dropout rate The dropout rate in the classification module. 0.1

λ0 Balances the trade-off between the metric and classification losses in
Adapt-Adv-DML.

Adjusted from {0.1,
0.5,1}

lthresh The classification loss threshold. 1.5
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3.2 Tuplet sampler

As mentioned, many DML algorithms use pairs or triplet con-
straints. Some work extends the triplet sampling to quadru-
plets [4] and N-pairs [5]. Recently, proxy-based methods are
introduced that aim to learn the semantic embedding without a
sampling procedure [13, 15].

As seen in Fig. 8, the proposed approach can be easily
applied to any DML method. In our work, the sampling pro-
cedure is selected based on the DML algorithm. The input of
this algorithm is a mini-batch B of extracted features along
with their labels.

B = {((f1, y1), (f2, y2), …, (fn, yn))}, where fi = f(θf; xi.)
The output is a set of tuples denoted by:

T ¼ T1; T 2;…; TNf g:

Note that proxy-based DML methods do not need a sam-
pling procedure. In this case, we directly pass the mini-batch B
to the metric embedding layer.

3.3 Metric embedding layer

This layer is built on top of the feature extractor. Its input of
the layer is a mini-batch of tuples generated by the sampler. As
our approach can be applied to almost any DML method, we
can generally denote this layer by the function g(θm; .) that
transforms the extracted features to the semantic embedding
space.

Let Lm be the metric loss function, we can optimize the
parameters {θf, θm} by solving the following optimization
problem:

bθ f ; bθm ¼ arg min
θ f ;θm

1

N
∑N

i¼1Lm T i; θ f ; θm
� �

: ð17Þ

Minimizing the above loss function helps learning an ap-
propriate semantic embedding space for the classes included
in the training dataset. However, it may not be suitable for the
new concepts (or even observed categories with few samples).
Thus, we should force the feature extractor to mine a more

Table 3 Information Retrieval
Results in a ZSL Setting on the
CUB-200-2011 [9] dataset

Method Extension Recall@1 Recall@2 Recall@4 Recall@8 kNN-
Acc

NMI

Triplet Loss: Base 45.39 58.86 70.41 80.44 49.14 58.17

Energy 39.94 52.65 66.12 78.53 42.35 55.87

Adapt-Adv 53.66 65.83 76.65 84.99 56.14 62.07

Angular Loss: Base 49.59 62.15 73.36 83.05 51.98 59.26

Energy 49.95 62.19 72.75 82.63 51.92 59.91

Adapt-Adv 52.68 65.11 75.86 84.5 55.60 61.78

Proxy-NCA: Base 54.02 66.83 78.07 85.7 56.74 63.62

Energy 53.83 66.49 77.67 86.38 56.48 63.62

Proxy-Syn 55.18 66.33 76.83 85.43 57.21 64.12

Adapt-Adv 57.38 68.91 78.58 87.07 60.20 65.86

Table 4 Information Retrieval
Results in a ZSL Setting on the
CARS-196 [33] dataset

Method Extension Recall@1 Recall@2 Recall@4 Recall@8 kNN-
Acc

NMI

Triplet Loss: Base 44.13 57.51 70.1 79.79 46.28 52.50

Energy 34.93 48.49 61.8 74.16 37.57 48.93

Adapt-Adv 62.51 74.23 83.22 89.45 65.18 57.71

Angular Loss: Base 59.76 71.16 79.79 86.87 61.33 55.49

Energy 60.34 71.37 80.09 87.27 62.29 55.52

Adapt-Adv 66.99 77.58 85.39 90.63 68.33 59.49

Proxy-NCA: Base 65.67 76.67 84.68 90.65 67.78 61.20

Energy 64.11 75.18 83.91 89.69 66.40 60.16

Proxy-Syn 66.35 76.43 84.32 90.33 68.48 6025

Adapt-Adv 69.94 79.66 86.37 91.42 71.76 63.53
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general representation and discard the features specific to the
observed classes. To this end, we propose to combine the
DML process with the classification module in an adversarial
manner.

3.4 Classification module

This module can be implemented by a multi-layer neural net-
work with the Softmax activation function at the last layer.
Generally, we can denote this module by h(θc; fi) where θc is
the parameters and fi is the extracted feature vector from the

input image (i.e., fi = f(θf, xi)). We train this module using the
standard Cross-Entropy loss:

Lcross−entropy xi; yi; θ f ; θc
� � ¼ −logpyi

¼ −log∑C
k¼11 yi¼kð Þ h θc; f ið Þ½ �k ; ð18Þ

where pyi is the probability of the correct label obtained by ap-

plying the Softmax on the last layer of themodule and [h(θc; fi)]k
denotes the k-th component of the classification output.
Generally, we indicate the classification loss by Lc xið ; θ f ; θcÞ.

Fig. 12 NMI and Recall@1 of the evaluated methods on the CUB-200-2011 [9] dataset

Table 5 Information Retrieval
Results in a ZSL Setting on the on
the Oxford 102 Flowers [34]
dataset

Method Extension Recall@1 Recall@2 Recall@4 Recall@8 kNN-
Acc

NMI

Triplet Loss: Base 81.55 88.89 93.59 96.58 82.22 70.16

Energy 78.24 86.28 92.02 96.05 80.24 68.42

Adapt-Adv 89.32 94.26 96.48 97.84 90.39 76.59

Angular Loss: Base 84.89 90.89 94.63 97.12 86.17 72.39

Energy 85.21 90.81 94.31 96.8 85.93 71.39

Adapt-Adv 89.64 93.94 96.56 98.16 90.31 76.05

Proxy-NCA: Base 86.3 91.24 95.33 97.38 88.38 73.79

Energy 87.42 92.26 95.59 97.68 88.44 75.42

Proxy-Syn 87.76 93.38 95.91 97.7 88.54 74.27

Adapt-Adv 91.67 95.27 97.62 98.69 92.42 80.46
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3.5 Model integration

In the training process, we aim to learn a semantic embedding
space by minimizing the metric loss (17) on the {θf, θm}
parameters. Meanwhile, we should enforce the feature extrac-
tor to discard class-specific features by utilizing the classifica-
tion module. To this end, we propose the following adversar-
ial approach.

3.5.1 Adaptive adversarial approach

In this approach, we utilize the classification module in an
adaptive adversarial setting. We observed that in the ini-
tial stages of training, minimizing the classification loss
on seen classes helps to learn a better discriminative rep-
resentation. However, in the later stages, it is necessary to
increase the classification loss (jointly with minimizing

the metric loss) to enforce the feature extractor to learn
more general discriminative features that are not limited
to available classes in the training set. Therefore, we pro-
pose the final loss function as:

Ladapt−adv B; T ; θ f ; θm; θc
� �

¼ Lm T ; θ f ; θm
� �

−λ Lc B; θ f ; θc
� �

: ð19Þ
When λ < 0, the proposed loss is optimized by minimiz-
ing both the metric and classification loss on seen classes.
After a certain classification loss is met, we change the
sign of λ and force the optimizer to increase the classifi-
cation loss.

To optimize Ladapt−adv, we first freeze the classifier pa-
rameters (i.e., θc) and minimize the loss on the feature
extractor and metric embedding layer parameters as fol-
lows:

Fig. 13 NMI and Recall@1 of the evaluated methods on the CARS-196 [33] dataset

Table 6 Ablation studies of
general discriminative feature
learning and the class adversarial
module on the Oxford 102
Flowers [34] dataset

Method Extension NMI Recall@1 Recall@2 Recall@4 Recall@8 kNN-
Acc

Triplet Loss: Base 70.16 81.55 88.89 93.59 96.58 82.22

Tri+GDFL 73.66 86.41 91.86 95.09 97.6 88.12

Tri+Adv 72.73 84.54 90.68 94.71 97.36 86.03

Adapt-Adv 76.59 89.32 94.26 96.48 97.84 90.39
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bθ f ; bθm ¼ arg min
θ f ;θm

Radv

¼ 1

N
∑N

i¼1Lm T i; θ f ; θm
� �

−
λ
n
∑n

i¼1Lc xi; θ f ; θc
� �

:ð20Þ

Subsequently, the classifier tries to minimize the classifica-
tion loss by maximizing the loss as follows:

bθc ¼ argmax
θc

Radv≡argmin
θc

λ
n
∑n

i¼1Lc xi; θ f ; θc
� �

: ð21Þ

It motivates a minimax game between the classifier and the
feature extractor. On one hand, the feature extractor confuses
the classifier by maximizing Lc, and on the other hand, the
classifier tries to find class-discriminative information in the
feature representations to identify the correct label.
Algorithm 1 summarizes the steps of the proposed adversarial
approach.

Algorithm1. The proposed adversarial approach

Inputs: {( , ), = 1,2, … , }, Controls trade-off between metric learning and classifier
objectives

Output: Learned Embedding , Feature Extractor 
1.Initialize the feature extractor with a pre-trained Convnet

2. for iter = 1,2, … _

2.1. B Get a mini-batch of data and forward it through the network to generate 

features vectors.

2.2. Obtain the tuples from the input batch using the sampling module1.

2.3. Freeze the classification module.

2.4. Optimize deep feature extractor and metric embedding parameters:

, = arg min
,

=
1

; , − ; , ,

using sophisticated neural network optimization algorithms like Adam.

2.5. Freeze the feature extractor module.

2.6. Optimize the classifier module: 

= arg max arg min ; , ,

using sophisticated neural network optimization algorithms like Adam

end;

4 Implementation details

To implement the proposed approaches, we utilize the pre-
trained Inception v2 neural network [32] as the feature extractor.6

The network consists of 5 inception modules. Figure 10a
illustrates the architecture of each module. Here, we utilize the
feature maps of intermediate layers inception_4d_output,
inception_4e_output, and inception_5a_output. The size of
feature maps in these layers are 608 × 14 × 14, 1056 × 7
× 7, and 1024 × 7 × 7, respectively. The output of the last
hidden layer is u ∈ ℝ1024.We use the additive attentionmech-
anism denoted in Eq. (11) to promote the discrimination pow-
er of the intermediate features. The output feature vectors of
attention modules are then concatenated in the Inter-Module
Fusion Component. Figure 10b shows the Simplified archi-
tecture of the implemented feature extractor.

To implement the adaptive adversarial approach, we used a
Gradient Reversal Layer (GRL) layer between the classifica-
tion module and the feature extractor. The GRL acts as an
identity operation in the forward phase. However, during the
backward stage, it multiplies the gradient with −λ and then
passes the results to the previous layer. We adjust the λ based
on the classification loss (Lc ) in each epoch as follows:

λ ¼ −tanh Lc−lthreshð Þλ0; ð22Þ
where lthresh indicates a classification loss threshold. Hence, in the
initial training epochs where Lc is high, the λ is adjusted with a
negative value. As the Lc is decreased substantially (i.e., Lc

< lthresh ), the adversarial mechanism is activated and tries to
prevent overfitting on the seen classes. The value of λ0 is chosen
from the range [.1, 1] as described in the experimental section.

The classification module is implemented by a standard
feed-forward neural network with one hidden layer followed
by a dropout operation. Utilizing dropout layers in the6 downloaded from: https://github.com/dichotomies/proxy-nca
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classification module simulates a large number of different
network architectures by randomly dropping some nodes at
the training phase. Thus, increasing the classification loss on
the simulated classifiers leads to obtain a more generalizable
representation. Besides, dropout is an effective yet cheap reg-
ularization technique that avoids overfitting and decreases the
generalization error of deep neural networks. The architecture
of the module is shown in Fig. 11.

The work is implemented using Pytorch deep learning li-
brary and the source code is publicly available at: https://
github.com/d-zabihzadeh/Adaptive-Adv-DML.

5 Experimental results

In this section, we evaluate the performance of our method
named Adapt-Adv-DML7 on some challenging datasets in the
machine vision domain. To this end, we select Triplet hinge
loss,8 Angular Loss9 [17], and Proxy-NCA10 [13] as baseline
DML algorithms and examine how much applying our frame-
work to these methods boosts their overall performance in a
ZSL setting. Also, we compare our work with the recent
Energy confusion [29, 30] and Proxy-Synthesis [27] methods
on the evaluated datasets.

Subsequently, Hyperparameter analysis and the ablation
study of components in our methods are provided. We also
visualize the attention weights obtained by the proposed fea-
ture extraction method.

5.1 Data description

The CUB-200-2011, Cars, and Flower102 are widely used
datasets selected in our work. The statistics of these datasets
are summarized in Table 1.

5.2 Evaluation metrics

To evaluate the proposed methods, we adopt standard infor-
mation retrieval metrics: Recall@k and NMI.11 Recall@k
measures the proportion of relevant images in the top-k re-
trieved results.

NMI indicates the quality of clustering. Let C = {c1, c2,
…, cn} be the clustering assignment set provided by a clus-
tering method. Given the true labels Y = {y1, y2, …, yn},
NMI is computed as:

NMI ¼ 2� I Y ;Cð Þ
H Yð Þ þ H Cð Þ ; ð23Þ

where I(;) is the mutual information, and H(.) indicates the
entropy.

Also, we evaluate the accuracy of kNN (k = 5) in the ZSL
setting. Here, a test image is classified correctly provided 3 or
more relevant (with the same label) images be among the 5-
top results.

5.3 Experimental setup

For a fair comparison, we adopt the pre-trained Inception-V2
for all evaluated methods. We found that the learning
rate=10−4 in the network is appropriate for fine-tuning.
Thus, we set lr = 10−4 for all evaluated methods. Also, similar

7 Adaptive Adversarial Deep Metric Learning
8 Source code: https://github.com/KevinMusgrave/pytorch-metric-learning
9 Source code: https://github.com/tomp11/metric_learning
10 Source code: https://github.com/dichotomies/proxy-nca
11 Normalized Mutual Information

Fig. 14 NMI and Recall@1 of Adapt-Adv DML vs λ0 values on the Oxford 102 Flowers [34] dataset
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to [29], the embedding layer learning rate is set to 10−3 (10
times faster than other layers).

Like [13], the learned embedding size is set to 64, and we
adopt the same transformations on the input images. The im-
ages are reshaped to 256 × 256, and then randomly are
cropped to 224 × 224. The batch size is also set to 64 for all
methods.

As our work concentrates improving of DML on unseen
classes, we almost keep the default values of hyper-parameters
in DML methods for all datasets and perform small adjust-
ments. To adjust the hyper-parameters, we split the training
information into 80/20 train/validation randomly and perform
a grid search. For triplet-hinge DML, we adopt the ‘semi-
hard’ sampling strategy. We also find out setting margin =
0.01 is appropriate on all the evaluated datasets. In Angular

loss, we keep the default value of α = 45° for all datasets. The
learning rate of proxy centers in Proxy-NCA is selected from
the range {0.01, 0.15, 0.02}. The proxy generation ratio (μ)
and mix up interpolation factor (α) in Proxy-synthesis are
adjusted from {0.5, 1, 2} and {0.2, 0.4, 0.6} (respectively)

Finally, in our method, we use dropout-rate=0.1, and lthresh
= 1.5 in all experiment. Also, the value of λ0 is selected from
{0.1, 0.5, 1}. Table 2 summarizes the hyper-parameters of
evaluated DML methods along with their adjustments.

5.4 Results and analysis

In the first experiment, we evaluate the proposed methods in
the CUB-200-2011, Cars-196, and Oxford Flowers-102
datasets in the ZSL setting as described in Table 1. We repeat

Fig. 15 Attended Feature maps of some training images in the CUB-200-2011 [9] dataset
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each experiment five times and report the mean of the results
in Tables 3, 4 and 5. Also, we plot the NMI and Recall@k
scores of the evaluated methods versus epochs on the test
classes in CUB-200-2011 and Cars-196 datasets in Figs. 12
and 13, respectively.

As the results indicate, the proposed method obtains a con-
siderable improvement over the baseline DML methods. It
confirms that our approach (general and discriminative feature
learning + adversarial classification module) is indeed benefi-
cial for the generalization of DMLmethods in a ZSL setting. It
learns a more generalizable and discriminative representation
from the input image and effectively prevents overfitting on
the observed classes. Meanwhile, Proxy-Synthesis shows mi-
nor improvement over the baseline loss. Note that Proxy-
Synthesis generates a larger batch from the input batch by
generating synthetic proxies and samples. However, it is less
effective compared with our method. For example, Adapt-
Adv achieves the Recall@1 = 69.94% and kNN-Acc =
71.76% on the Cars dataset, while Proxy-Synthesis reaches
Recall@1 = 66.88% and kNN-Acc = 68.48%.

Moreover, we did not observe a significant advantage from
the Energy confusion approach over the baseline methods.
The main drawback of the approach is that the confusion
coefficient λ has been fixed during the training phase.
Hence, it prevents the baseline DML to learn the discrimina-
tive features efficiently during the initial stages of training.
Besides, the energy confusion term does not consider the
structure of the embedding and randomly selects instances
from opposite classes. In contrast, our method captures the
global structure of the embedding by employing a classifica-
tion module.

5.4.1 Ablation study

In this experiment, we provide ablation studies of both gener-
al discriminative feature learning and the class adversarial
module and investigate the contribution of each component
individually. We choose the Triplet loss as a baseline and
derive two variants of the proposed Adapt-Adv as follows:

1. Tri + GDFL12: indicates triplet DML using the general
discriminative feature vector. Here, we omit the class ad-
versarial module.

2. Tri + Adv: shows triplet DML along with the class ad-
versarial module. Here, we discard the general discrimi-
native features and use the output of the last hidden layer
as the feature vector.

Table 6 reports the results. As the results show, we can
derive the following conclusions:

I. Both the general discriminative feature learning and class
adversarial module are effective and improve the perfor-
mance of the baseline DML.

II. The general discriminative feature learning is more ef-
fective in improving the baseline method.

5.4.2 Hyper parameters analysis

We evaluate the effect of the adversarial coefficient λ0 in this
experiment. To this end, we select the Triplet loss as the base-
line DML and train the Adapt-Adv DML on the Oxford 102
Flowers dataset at different λ0 values. The ZSL setting as
specified in Table 1 is adopted in the experiment. Fig. 14
depicts the NMI and Recall@1 of the Adapt-Adv DML vs
λ0 values on unseen classes.

The results indicate the effectiveness of the class adversar-
ial module. by choosing λ0 = 0, our method reduces to Triplet
DML with only general discriminative feature learning and
the performance is unsatisfactory in comparison with the other
λ0 values. As λ0 increases, the quality of the learned embed-
ding peaks around the range (0.3, 0.7) and our method sur-
passes the baseline by a large margin.

5.4.3 Visualization of attended feature maps

In the next experiment, we illustrate the attended feature maps
of the proposed feature extractor in the CUB-200-2011
dataset. Figure 15 shows some preprocessed training images
along with attended feature maps of selected layers. As seen,
the attended features cover the most important parts of the
images and each layer attends to different regions of the input
images. The inception_4d feature maps capture more general
and visual patterns of the images whereas inception_4e and
inception_5a focused on more discriminative parts of the
birds. Thus, the concatenated feature vector contains weighted
useful patterns of the input image that is useful to discriminate
both seen and unseen classes during the test stage.

6 Conclusion and future work

This paper presented a novel framework to enhance the gen-
eralization of DML methods in a ZSL setting. To this end, we
developed a generalized and discriminative feature learning
approach and also utilized an adaptive class adversarial mod-
ule. Our work can be applied to many baseline DML algo-
rithms improving their performance on unseen classes by a
large margin. The proposed methods learn a general represen-
tation covering the most discriminative parts of the input im-
age, which is useful for both the seen and unseen categories.12 General Discriminative Feature Learning
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We evaluated the proposed methods on some challenging
datasets in machine vision domains in a ZSL setting. The
obtained results were very encouraging, and the proposed
methods consistently outperformed the baselines on all eval-
uated datasets. It confirmed the necessity and significance of
our idea that adopting some general yet discriminative feature
learning as well as an adaptive confusion mechanism, is in-
deed helpful for most DML applications.

In future work, we intend to examine our feature learning
approach on different popular deep neural network architectures
and utilize the proposed framework in other applications of
DML. Besides, we aim to extend the work for semi-supervised
learning.
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