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Image captioning is a research area of immense importance, aiming to generate natural language descriptions 

for visual content in the form of still images. The advent of deep learning and more recently vision-language 

pre-training techniques has revolutionized the field, leading to more sophisticated methods and improved 

performance. In this survey article, we provide a structured review of deep learning methods in image cap- 

tioning by presenting a comprehensive taxonomy and discussing each method category in detail. Addition- 

ally, we examine the datasets commonly employed in image captioning research, as well as the evaluation 

metrics used to assess the performance of different captioning models. We address the challenges faced in this 

field by emphasizing issues such as object hallucination, missing context, illumination conditions, contextual 

understanding, and referring expressions. We rank different deep learning methods’ performance according 

to widely used evaluation metrics, giving insight into the current state-of-the-art. Furthermore, we identify 

several potential future directions for research in this area, which include tackling the information misalign- 

ment problem between image and text modalities, mitigating dataset bias, incorporating vision-language 

pre-training methods to enhance caption generation, and developing improved evaluation tools to accurately 

measure the quality of image captions. 

CCS Concepts: • Computing methodologies → Supervised learning ; Unsupervised learning ; Rein- 

forcement learning ; Neural networks; Scene understanding ; Natural language generation ; Machine 

translation; 

Additional Key Words and Phrases: Image captioning, deep learning, text generation 

ACM Reference format: 

Taraneh Ghandi, Hamidreza Pourreza, and Hamidreza Mahyar. 2023. Deep Learning Approaches on Image 

Captioning: A Review. ACM Comput. Surv. 56, 3, Article 62 (October 2023), 39 pages. 

https://doi.org/10.1145/3617592 

1

A  

i  

h  

t  

f  

A

t

A

P

p

t

h

r

©

0

h

 INTRODUCTION 

utomatic image captioning is a critical research problem with numerous complexities, attract-
ng a significant amount of work with extensive applications across various domains such as
uman-computer interaction [ 32 , 71 , 143 ], medical image captioning and prescription [ 9 , 58 , 96 ],
raffic data analysis [ 69 ], quality control in industry [ 83 ], and especially assistive technologies
or visually impaired individuals [ 2 , 27 , 46 , 85 , 110 ]. The field has undergone a revolutionary
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ransformation with the development and growth of deep learning techniques [ 3 , 4 , 99 , 115 , 116 ],
esulting in the emergence of advanced methods and enhanced performance. Automatic image
aptioning lies at the intersection of natural language processing and computer vision. This field
f research deals with the creation of textual descriptions for images without human interven-
ion. Given an input image I , the goal is to generate a caption C describing the visual contents
resent inside the given image, with C being a set of sentences C = {c 1 , c 2 , . . . , c n } where each c i 
s a sentence of the generated caption C . 

Given the recent advancements in the domain of image captioning, an updated review of the
ore recent research works can assist researchers in keeping up with the latest progress in this
eld. There exist numerous literature reviews and surveys on image captioning, providing an ex-
ensive collection of research conducted in previous years. Notably, Hossain et al. [ 52 ] authored
 comprehensive survey paper that served as an inspiration for this work’s structure. However,
nstead of a pairwise comparison like in Reference [ 52 ], we have organized our article to feature
 separate section for each method category and follow the same order of category in our discus-
ion (Section 4 ). Furthermore, most surveys typically cover works dating from 2018 and earlier,
hile more recent research is yet to be addressed. Some surveys [ 29 ] are limited in the number
f research works covered, while others [ 20 ] do not delve into the methodologies’ specific de-
ails. Additionally, considering the recent advancements of vision language pre-training methods,
mage captioning methods that fall under this category must be addressed and discussed. This cat-
gory has seldom been explored in previous survey works. The field of image captioning can be
lassified into multiple categories that differ in the captioning settings, such as dense captioning
ethods that provide captions for each entity presented in the image or whole image captioning
ethods that provide captions for the entirety of the input image. Here, we focus on reviewing

whole image” captioning methods. 
In this article, we discuss various methods of image captioning introduced in papers published

rom 2018 to 2022, followed by the most common problems and challenges of image captioning. We
rovide a comprehensive analysis of each method, covering widely used datasets and evaluation
etrics. We also compare the performance of the different covered methods before exploring future

irections in the field. The section on problems and challenges provides a detailed overview of the
nherent difficulties in image captioning and provides insight into potential solutions to address
hem. We hope to provide a thorough understanding of image captioning through this review and
ncourage continued progress in the field. 

 DEEP LEARNING-BASED IMAGE CAPTIONING 

n this section, we have organized and classified the different frameworks, methods, and ap-
roaches that were extensively used in recent research works based on their core structure. Some
erms and notations in the covered papers have been altered to maintain consistency throughout
his review. A figure demonstrating the taxonomy provided in this article is shown in Figure 1 . 

.1 Attention-based Methods 

he methods that fall under the attention-based category utilize attention mechanisms to empha-
ize the most relevant parts of the input image when generating captions. 

Attention-based methods [ 10 ] are inspired by the human attention pattern and the way the
uman eye focuses on images. When inspecting images, humans focus more on the image’s salient
eatures. The same mechanism is implemented in attention-based mechanisms. During the training
rocess, the model is shown “where to look at.” To understand the mechanism of attention-based
ethods, one can imagine a sequential decoder in which, in addition to the previous cell’s output

nd internal state, there is also a context vector under the term “c.”
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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Fig. 1. The taxonomy of the image captioning methods covered in this survey article. 
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Vector c is the weighted sum of hidden states in the encoder. 

c i = 
T x ∑ 

j= 1 

a i j h j (1)

In the statement above, a i j is the “amount of attention” that output i must pay to input j, and h j 

s the encoder state in input j. a i j is obtained by calculating softmax over attention amounts that
re shown with e on inputs and for output i: 

a i j = softmax ( e i j ) = 
exp ( e i j ) 

∑ T x 
k= 1 

exp ( e ik ) 
, (2)

e i j = f (S i−1 , h j ), (3)

here f is the model that determines how much input at j and output i are correlated, and S i−1

s the hidden state from the previous timestep. The model f can be estimated with a small neural
etwork and can be optimized with any gradient-based optimization techniques, such as gradient
escent. 
In short, attention-based image captioning methods generate a weighted sum of extracted fea-

ure vectors at each timestep in their decoder that guides the decoder module. Similar to the
ncoder-decoder framework, attention-based methods were first introduced for the machine trans-
ation problem in Reference [ 10 ]. In most of the attention-based methods, a CNN or a region-based
NN is used in the encoding stage to provide a representation of the image, and an RNN is usually
sed in the decoding stage. A block diagram of the basis of attention-based methods (which was
rst proposed by Xu et al. [ 128 ]) is shown in Figure 2 . The last layer of a Convolutional Neural Net-
ork (here, VGGnet by Simonyan et al. [ 111 ])—just before max pooling—has been used to extract

eatures from the image. The LSTM network [ 51 ] with attention has been used as the decoder. The
ultiple images surrounding the LSTM shown in this figure demonstrate the attention values over

ifferent regions of the image. The lighter areas mean a higher attention value. The colored outline
f the generated words in the caption corresponds to the regions outlined by the same colors. 
Attention-based methods are widely used in the encoder-decoder framework. Most of the re-

earch works discussed in this survey have used it as their primary framework or have combined it
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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Fig. 2. The basis of attention-based methods (best viewed in color). 
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ith other methods to improve its performance. Vinyals et al. [ 119 ] have been the first to incorpo-
ate deep learning-based encoder-decoder framework for image captioning. The presented model
n their work is inspired by machine translation, based on the findings that indicate that given a
owerful sequence model, it is possible to achieve remarkable results by directly maximizing the
robability of the correct translation. CNNs can produce a rich presentation of an input image by
mbedding it into a fixed-length vector. Vinyals et al. [ 119 ] have presented a model that uses CNN
s an image “encoder” by pre-training it for an image classification task first and using the last
idden layer as an input to an RNN “decoder” that generates sentences. The model is trained to
aximize the likelihood of the target description sentence given the training image. This work has

een used by many other researchers as a basis to expand upon and refine using other modules
nd techniques [ 128 ]. 

Anderson et al. proposed the “bottom-up and top-down” method in Reference [ 7 ]. The bottom-
p module proposes the salient regions in the image, and each of the proposed regions is repre-
ented as a convolutional feature vector. This module is implemented using Faster R-CNN [ 102 ],
hich was discussed previously. Faster R-CNN works well as a “hard” attention mechanism, since
 small number of bounding box features are selected from a large number of configurations.
aster R-CNN network is initialized with ResNet-101 [ 47 ] pre-trained for image classification on
he ImageNet dataset. Faster R-CNN is then trained using the Visual Genome [ 63 ] dataset. The
op-down module, designed to caption images, contains two LSTM networks [ 51 ] with the stan-
ard implementation. The first LSTM network operates as a top-down visual attention model, and
he second LSTM network operates as a language model. The top-down visual attention module
stimates a distribution of attention over regions and calculates the extracted feature vector as a
eighted sum over total region proposals. The captioning model takes a variably sized set of k

mage features: V = { v 1 , . . . , v k } , v i ∈ R 

D as input. Each image feature encodes a salient region of
he image. These image features can be defined as the output of the bottom-up attention model or
s the spatial output layer of a CNN. The input vector to the attention LSTM at each timestep con-
ists of the previous output of the language LSTM, the mean-pooled image features v̄ = 1 

k 

∑ 

i v i ,
nd an encoding of the word generated previously all concatenated together. The input to the lan-
uage model LSTM is composed of the attended image feature concatenated with the output of
he attention LSTM. 

The two-layer LSTM [ 51 ] structure has also been used by Yao et al. in Reference [ 136 ] as the
ttention mechanism in the final stage. (More detail on the workings of this paper is discussed in
Combining Attention-Based and Graph-Based Methods” (Section 2.3 ).) 

Gu et al. [ 41 ] have presented a multi-stage coarse-to-fine structure for image captioning. This
tructure contains multiple decoders that each work on the output of the decoder in the previous
tep, making the captions richer in every step. This paper has used the LSTM network [ 51 ] as the
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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ecoder. The structure comprises three LSTM networks, with the first LSTM presenting the coarse
etails at the first stage and reducing computations in the later stages. The other LSTMs operate as
ne-level decoders. At each stage, attention weights and hidden vectors generated by the previous
tage decoder are used as input to the next stage decoder. 

The operation of the coarse decoder is based on the general and global features of the image.
owever, in many cases, each word belongs to a small region of the image only. Using the general

eatures of the image might yield improper results due to the possible noise from unrelated
egions. Therefore, a “Stacked Attention Model [ 135 ]” is used to improve the performance of this
oarse-to-fine structure. This model enables the structure to extract visual information from finer
etails for future word predictions. The stacked model generates a spatial map that determines
he region of each predicted word. Using this stacked attention model, finer and more precise
etails are extracted, and noise is gradually reduced. Also, regions that are highly relevant to the
ords are determined. 
Huang et al. [ 59 ] have introduced a new attention-based structure containing one more level of

ttention. The structure, named Attention on Attention (AoA) , generates an “Information Vec-
or” and an “Attention Gate” with two linear transformations. An attention module f att ( Q , K , V )
perates on some queries, keys, and values denoted by Q , K , and V , respectively, and generates

ome weighted average vectors denoted by 

ˆ V . The attention module measures the similarity be-
ween Q and K and uses this similarity score to calculate weighted average vectors over V , which
s formulated as: 

a i, j = f sim 

( q i , k j ), αi, j = 
e a i, j 

∑ 

j e 
a i, j 
, (4)

ˆ v i = 
∑ 

j 

αi, j v j , (5)

here q i ∈ Q is the ith query, k j ∈ K and v j ∈ V are the jth key/value pair. f sim 

is a function that
omputes the similarity score of each k j and q i , and 

ˆ v i is the attended vector for the query q i .
ince the attention module produces a weighted average for each query regardless of the relation
etween Q and K/V , the weighted average vector can be irrelevant or misleading information. The
oA module measures the relevance between the attention results and the query. The information
ector i is generated with a linear transformation on current content (caption) and results from the
ttention component and stores both parts’ data. The attention gate д is generated from the content
nd the result from the attention component using sigmoid activation. The value inside each part
also called a channel) of this attention gate determines the level of importance of the channel in
he information vector. Both the information vector and the attention gate are conditioned on the
ttention result and the current context (i.e., the query) q . The AoA structure adds another level
f attention with element-wise multiplication of the attention gate and the information vector
nd finally produces the attended information, which contains useful data. The AoA structure is
pplied to both the encoder and decoder (termed AoANet): AoA is applied to the encoder after
xtracting image features to obtain the relation between objects present inside the image. AoA is
lso applied to the decoder to remove the attention results that are unrelated to the actual output
r are ambiguous and leave the essential and useful results. The AoA structure has been introduced
s an addition to the attention-based methods, and it can be applied to any attention method. In
he experiments conducted by the authors, a Faster R-CNN [ 102 ] pre-trained on the ImageNet [ 25 ]
nd Visual Genome [ 63 ] datasets is used to extract feature vectors from the image. 

Jiang et al. propose a novel recurrent fusion network (RFNet) in Reference [ 61 ] for the im-
ge captioning task, which uses multiple CNNs as encoders, and a recurrent fusion process is
nserted after the encoders to produce better representations for the decoder. Each representation
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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xtracted from an individual image CNN can be regarded as an individual view depicting the in-
ut image. The fusion procedure consists of two stages: The first stage produces multiple sets of
thought vectors” by exploiting the interactions among the representations from multiple CNNs;
he second stage performs multi-attention on the sets of thought vectors and generates a new
et of thought vectors for the decoder. For the experiments, they use ResNet [ 47 ], DenseNet [ 57 ],
nception-V3 [ 113 ], Inception-V4 [ 112 ], and Inception-ResNet-V2 [ 112 ] as encoders to extract five
roups of representations. Having considered reinforcement learning (RL) as a method to im-
rove image captioning performance, they have trained their model with cross-entropy loss and
ne-tuned the trained model with CIDEr optimization using reinforcement learning. 
Incorporating attention in image captioning has transformed the field considerably, enabling
ore accurate and natural caption generation. However, they do not come without flaws. One

roblem with classic attention-based image captioning is that they do not consider the relations
etween the objects detected inside the image. 

2.1.1 Injecting Spatial and Semantic Relation Information into Attention-based Methods. A
roup of attention-based methods has included the spatial and semantic relations in an image
o describe the content more appropriately. 

Pan et al. [ 93 ] introduced a novel attention method termed the “X-Linear Attention Block,”
hich emphasizes salient image features and supports multimodal reasoning through the use
f bilinear pooling. This structure employs spatial and channel-wise bilinear attention to extract
econd-order interactions. These interactions are computed by taking the outer product between
he key (representing mapped image features) and the query (representing the internal state of
he sentence decoder) using bilinear pooling to capture all second-order interactions. Following
ilinear pooling, two embedding layers predict attention weights for each region, which are then
ormalized using a softmax layer to obtain the spatial attention vector. A “squeeze-excitation”
peration is performed on the embedded outer product (feature map). The squeezing process ag-
regates the feature map across spatial regions, generating a channel descriptor. The excitation
rocess employs a self-gating mechanism with a sigmoid function on the channel descriptor, re-
ulting in the channel-wise attention vector. Finally, the outer product of the key and query, along
ith the value from bilinear pooling, is weighted summated with the spatial attention vector. The

esulting weighted sum undergoes channel-wise multiplication with the channel attention vector,
ielding the attended features. Higher-order interactions can be computed by combining multiple
-Linear attention blocks. In this work, Faster R-CNN [ 102 ] is employed for region detection. A
tack of X-Linear attention blocks is then utilized to encode the region-level features of the image
nd capture higher-order interactions between these regions. This process generates a set of en-
anced region-level and image-level features. The attention blocks are further integrated into the
entence decoder to facilitate multimodal reasoning. 

Cornia et al. [ 22 ] presented a method capable of describing an image by focusing on different
egions in different orders following a given conditioning. By means of analyzing the syntactic
ependencies between words, a higher level of abstraction can be recovered in which words can
e organized into a tree-like structure. In a dependency tree, each word is linked together with its
odifiers. Given a dependency tree, nouns can be grouped with their modifiers, thus building noun

hunks . The proposed model is built on a recurrent architecture that considers the decomposition
f a sentence into noun chunks and models the relationship between image regions and textual
hunks to ground the generation process on image regions explicitly. The model is conditioned
n the input image I and an ordered sequence of region sets R, which acts as a control signal
nd jointly predicts two output distributions corresponding to the word-level and chunk-level
epresentation of the sentence. During the generation, the model keeps a pointer to the current
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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egion and can shift to the next element in R using a Boolean chunk-shifting gate д t . To generate
he output caption, a recurrent neural network with adaptive attention is used. The probability of
witching to another chunk p (д t |R) is calculated in an adaptive mechanism in which an LSTM [ 51 ]
omputes a compatibility function between its internal state and a latent representation modeling
he state of memory at the end of a chunk. The compatibility score is compared to that of attending
ne of the regions r t , and the result is used as an indicator to switch to the next region set in R. 
The addition of spatial and semantic relations to the attention-based framework has signifi-

antly improved the quality of the captions generated by the models. Despite the improvements
chieved by this addition, some problems still remain, including the ambiguity of the captions, the
ack of grounding, heavy computations associated with the object detectors, and the requirement of
ounding-box annotations. To resolve some of these issues, other approaches to the image caption-
ng problem have been introduced, which are explained and discussed in the following sections. 

.2 Graph-based Methods for Spatial and Semantic Relations between Image 

Elements 

he methods discussed in this section utilize scene graphs to better model the spatial and semantic
elations between image elements. 

Due to their ability to represent relations between elements, graphs are used in applications in
hich the relations between elements are important [ 13 , 120 ]. Studies have shown the effective-
ess of incorporating semantic information and object attributes in generating captions of higher
uality [ 34 , 125 , 137 , 138 , 147 ]. Some research works on image captioning have used graphs to
ncorporate the spatial and semantic relations between the elements inside an image. To utilize
raphs in caption generation, two types of graph extraction are usually used: scene graph extrac-
ion from images [ 24 , 44 , 73 , 114 , 127 , 132 , 142 ] and scene graph extraction from textual data [ 6 ,
24 ]. Once a scene is abstracted into symbols, the language generation is almost independent of
isual perception [ 134 ]. Given scene abstractions “helmet-on-human” and “road dirty,” humans
an infer “a man with a helmet in the countryside” by using common sense knowledge like “coun-
ryside road dirty.” This can be considered as the inductive bias that enables humans to perform
etter than machines. 
Yang et al. [ 134 ] have integrated the inductive bias of language generation into the encoder-

ecoder framework commonly used in image captioning. The proposed method uses scene graphs
o connect the image and text modalities. A scene graph G is a unified representation that con-
ects the objects, their attributes, and their relationships in an image I or a sentence S by directed
dges. To encode the language prior, Yang et al. [ 134 ] proposed the Scene Graph Auto-Encoder

SGAE) , which is a sentence self-reconstruction network used in the I → G → D → S training
ipeline. The I → G module is a visual scene graph detector. A multi-modal GCN is introduced
nd used in the G → D module to complement the visual cues that may be ignored due to imper-
ect visual detection. D can be considered as a working memory [ 118 ] that assists in re-keying
he encoded nodes from I to S to a more generic representation with smaller domain gaps. The
roposed SGAE-based image captioning model is implemented using Faster R-CNN [ 102 ], and the

anguage decoder proposed by Reference [ 7 ] with RL-based training strategy [ 103 ]. The proposed
ramework is formulated as follows: 

Encoder : V ← I , 

Map : ˆ V ← R (V , G; D), G ← V , 

De code r : S ← 

ˆ V , 

(6)

here V denotes the extracted image features (usually extracted by a Convolutional Neural

etwork (CNN) ). The mapping module frequently used in the encoder-decoder framework for
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 



62:8 T. Ghandi et al. 

Fig. 3. The general workflow of graph-based methods. 
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mage captioning is the module that encodes the visual features from the image into a representa-
ion that is later taken as input by the language decoder. This mapping module has been modified
ccording to the formulation in Equation ( 6 ) by introducing the scene graph G into a re-encoder R
arametrized by a shared dictionary D. The Scene Graph Auto-Encoder (SGAE) learns the dic-
ionary D, which embeds the language inductive bias from sentence-to-sentence reconstruction.
ext, the encoder-decoder framework is equipped with SGAE to form the overall image captioner.
Gu et al. [ 43 ] have introduced a particular framework for training an image captioning model

n an unsupervised manner and without image-caption pairs. The framework uses a scene graph
o generate an intermediate representation of images and captions and maps these scene graphs
o their feature space using “Cycle-Consistent Adversarial Training” [ 148 ]. This paper has used
n image scene graph generator, a sentence scene graph generator, and a feature mapping mod-
le in charge of mapping image features and captions modalities together. To align scene graphs
nd captions, CycleGAN [ 148 ] is used. The unrelated image and sentence scene graphs are first
ncoded using the scene graph encoder trained on the sentence corpus. Next, unsupervised cross-
odal mapping is performed for feature alignment with CycleGAN. This work is closely related

o Reference [ 134 ]. The main difference is that the framework in Reference [ 134 ] is based on paired
ettings. CycleGAN is generally used to transform two images together, and one of its applications
s transforming two image elements together (for example, transforming an apple into an orange
r a horse into a zebra). 
Gao et al. [ 35 ] proposed a scene-graph-based semantic representation method by embedding

he scene graph as an intermediate state. The task of image captioning is divided into two phases
ermed: concept cognition and sentence reconstruction. In the first phase, a vocabulary of semantic
oncepts is built, and a novel CNN-RNN-SVM framework is used to generate a scene-graph-based
emantic representation, which is used as the input for an RNN generating captions in the second
hase. The CNN part extracts visual features, the RNN part models image/concept relationships
nd concept dependency, and the SVM part classifies the semantic concepts and outputs the rele-
ant concepts for the scene-graph-based sequence. 

The general workflow of the graph-based methods is displayed in Figure 3 . Usually, a Convo-
utional Neural Network is used to extract visual features from the image, and the semantic and
patial graph is built on the detected regions. The vertices denote regions, and the edges denote
he relationships between the regions. Next, Graph Convolutional Networks (GCNs) [ 62 ] en-
ode the regions and relationships in the scene graph. The obtained feature vector is then passed
o LSTM [ 51 ] decoders to generate captions. 

.3 Combining Attention-based Methods and Graph-based Methods 

o solve some of the issues revolving around image captioning problems and the problems re-
arding attention-based and graph-based methods, some recent research works have introduced
tructures that combine the two methodologies. 
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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As previously mentioned, the visual relations between image elements give insight into their
elative positions or interactions. To detect the visual relations between image elements, one not
nly needs to detect object locations inside the image, but also needs to detect all sorts of in-
eraction between pairs of elements. Using these visual relations will allow for a more in-depth
omprehension of images. However, the considerable diversity in object sizes and their locations
ill make the interaction detection task more difficult. 
Yao et al. [ 136 ] use a combination of Graph Convolutional Networks [ 62 ] and LSTMs [ 51 ] to

ncorporate the relations between image elements while also taking the attention-based encoder-
ecoder framework into account. Spatial and semantic relations have been integrated to enrich
mage representations in the image encoder, and learning the relationships has been considered a
lassification problem. Faster R-CNN [ 102 ] has been used for region proposals. Two spatial and se-
antic graphs are built to represent spatial and semantic relations between image contents. These

wo graphs are generated from the detected image regions, with regions being graph nodes and
he relations between them as the edges of the graph. In the spatial graph, spatial relations are con-
idered as edges, and in the semantic graph, the semantic relations are considered as edges. The
emantic graph is trained using the Visual Genome [ 63 ] dataset. To represent the image, Graph
onvolutional Networks [ 62 ] are used that incorporate the semantic and spatial relations obtained

rom their corresponding graphs. The combination of the enhanced image region representations
nd their semantic and spatial relations are then fed into an LSTM [ 51 ] decoder to generate the
aption sentences. During inference, to combine the output of the two spatial and semantic de-
oders, the distribution over the words generated by the two decoders is linear weight summated
t each timestep, and the word with the highest probability is extracted. 

The proposed model by Zhong et al. [ 145 ] decomposes the image scene graph into a set of sub-
raphs. Each sub-graph captures a semantic component of the input image. Zhong et al. [ 145 ]
esigned a sub-graph proposal network (sGPN) that learns to detect meaningful sub-graphs.
n attention-based LSTM then decodes the selected sub-graphs for generating sentences. Given
n input image I , a scene graph G = (V , E) is extracted from I using MotifNet [ 140 ], where V 

epresents the nodes corresponding to the detected objects in I and E represents the set of edges
orresponding to the relationships between object pairs. The goal is to generate a set of sentences
 = { S j } to describe different components of the image using the scene graph G. Sub-graphs are
efined as { G 

c 
i = (V 

c 
i , E 

c 
i )} , where V 

c 
i ⊆ V and E 

c 
i ⊆ E. The method aims to model the joint proba-

ility P ( C i j = ( G , G 

c 
i , C j ) |I ) , where P (C i j |I ) = 1 when the sub-graph G 

c 
i can be used to decode the

entence S j and P (C i j |I ) = 0 otherwise. P (C i j |I ) can be decomposed into three parts: 

P (C i j |I ) = P (G |I )P (G 

c 
i |G, I )P (S j |G 

c 
i , G, I ). (7)

P (G |I ) can be interpreted as the scene graph extraction phase, P (G 

c 
i |G, I ) as the scene graph

ecomposition phase and the selection of important sub-graphs for sentence generation, and
(S j |G 

c 
i , G, I ) as the decoding phase in which a selected sub-graph G 

c 
i is decoded into its cor-

esponding sentence S j , and the tokens in S j are associated to the nodes V 

c 
i of the sub-graph G 

c 
i 

the image regions in I ). 
Wang et al. [ 121 ] have used a Graph Neural Network [ 105 ] to represent the relation between

mage elements and have used a novel content-based attention framework to store image regions
reviously attended by the attention module as well. A ResNet-101 [ 47 ] network trained on the
mageNet [ 25 ] dataset is first used to extract image features. The non-linear activations of the last
onvolutional layer of this network are used as the image representation and are denoted as: 

V = 
{
v 1 , v 2 , . . . , v n | v i ∈ R 

m 

}
, (8)
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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here v i represents each of the non-linear activations of the last convolutional layer. A Graph
onvolutional Network [ 62 ] f дnn is initialized using the image features belonging to different im-
ge regions to explore relations between the visual objects in the image. This graph initializes each
ode inside the graph with a spatial representation and to derive the implicit relation-aware rep-
esentation R = { r 1 , r 2 , . . . , r n | r i ∈ R 

m } (where r i represents the nodes inside the graph), updates
he value of the nodes with hidden representation from other nodes recursively. The visual repre-
entations R are forwarded into context-aware attention model f att . Unlike some other attention-
ased models, this novel attention framework uses LSTM [ 51 ] to store the previously attended
egions. Storing these regions will aid the attention module in its future region selections. Next, a
anguage model based on LSTM, f lstm 

, uses the previous hidden state h (t−1 ) , the previously gen-
rated word embedding X t , and the output v̄ t from the attention model as input and produces the
urrent hidden state h t as the output to predict the next word. 

Chen et al. [ 18 ] have proposed a model to generate controllable image captions that actively
onsider user intentions. The paper introduces a more fine-grained control signal called Abstract

cene Graph (ASG) , a directed graph composed of three types of abstract nodes grounded in the
mage: object, attribute, and relationship. The caption generation model is based on the encoder-
ecoder framework, consisting of a role-aware graph encoder and a language decoder that con-
iders both the context and structure of nodes for attention. The decoder utilizes a two-layer
STM [ 51 ] structure, including an attention LSTM and a language LSTM. The model gradually
pdates the graph representation during decoding to fully cover information in ASG without omis-
ion or repetition and keep track of graph access status. The role-aware graph encoder contains
 role-aware node embedding to distinguish node intentions and a multi-relational Graph Convo-
utional Network for contextual encoding. 

Aiming to employ knowledge in scene graphs for image captioning explicitly, Li et al. [ 70 ] intro-
uce a framework based on scene graphs. First, the scene graph for the input image is generated
sing the method proposed in Reference [ 127 ]. A set of initial bounding boxes should be produced
o generate the scene graph. Li et al. have used the region proposal network (RPN) proposed by
irshick et al. [ 38 ] to produce a set of object proposals for the image. To capture the visual features,

he VGG-16 network is used to extract CNN features from the corresponding regions of object en-
ities. Semantic features are also obtained by extracting triplets, which are lexeme sequences that
escribe object relationships from the graph and embed them into fixed-length vectors. To utilize
oth types of information, a hierarchical attention-based fusion module is introduced that deter-
ines when and what to attend to during sentence generation. 
Xu et al. [ 129 ] proposed a framework to embed the scene graph into a compact representation

apable of capturing explicit semantic concepts and graph topology information. An input im-
ge I is processed by a CNN to generate the image features. A set of modules detect the objects,
ttributes, and related components to infer the scene graph. Next, an external vocabulary com-
iles the scene graph into the vector V con (I ). An adjacent matrix is presented where the objects
nd relationships of the graphs are used as vertices and edges. A fixed-length vector V topo (I ) is
xtracted to capture the topological information from the adjacent matrix. Xu et al. proposed an
ttention extraction mechanism that extracts sub-graphs and selects an attention graph with the
orresponding region by computing cluster nodes in the adjacency matrix. The attention region is
enoted as V att (I ). The four vectors are combined into a single representation for the scene graph,
hich is fed into the LSTM-based [ 51 ] language model. 
Lee et al. [ 65 ] have extended the top-down captioner introduced in Reference [ 7 ] and have added

n attention component for relation features. No graph convolutions are used in the proposed
odel. The authors state that using visual relations from scene graphs directly is an alternative to
CNs and avoids expensive graph convolutions. 
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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There is a different set of challenges associated with the use of scene-graphs. Scene graph ex-
raction is a difficult task on its own, and the relations between the elements are not always as
imple as pairwise relationships. Graph parsers still need improvement as well. 

.4 Convolutional Network-based Methods 

onvolutional network-based methods utilize convolutional neural networks to extract image fea-
ures and generate captions using output from a language model. Thanks to the recent advances
n convolutional architectures on other sequence-to-sequence tasks such as convolutional image
eneration [ 90 ] and machine translation [ 36 , 37 ], it is possible to consider CNNs as an effective
olution to many vision-language tasks. The methods discussed in this section have incorporated
NNs into their proposed systems. 
Inspired by the advances of CNNs in vision-language tasks, Aneja et al. [ 8 ] have presented a

onvolutional model containing three main components. The first and the last components are
nput/output word embeddings, respectively. While the middle component contains LSTM [ 51 ] or
RU [ 19 ] units in other methods, masked convolutions are used in the proposed approach. This

omponent is feed-forward without any recurrent functions, unlike the RNN approaches. 
Wang et al. [ 122 ] proposed a framework relying on Convolutional Neural Networks only to

enerate captions. The framework consists of four modules: a vision module, a language module,
n attention module, and a prediction module. The vision module is a CNN without the fully con-
ected layer, for which VGG-16 has been used. The language module is based on a CNN without
ooling. RNNs use a recurrent path to memorize context, whereas CNNs use kernels and stack
ultiple layers to model the context. The prediction module is a one-hidden layer neural network

s well. Since different levels of the language CNN represent different levels of concept, a hierar-
hical attention module has been employed where attention vectors are calculated at each level
f the language model and fed into the next level. Since the attention maps are computed in a
ottom-up manner as opposed to the RNN-based model, it is possible to train the model in parallel
ver all words in the sentence. The authors observed the effect of several hyper-parameters, such
s the number of layers and the width of the kernel belonging to the language CNN. The receptive
eld of the language CNN can be increased by stacking more layers or increasing the width of the
ernel. The experiments showed that increasing the kernel width is a better choice. 
Less attention has been paid to convolutional network-based methods compared to the cate-

ories discussed above. Convolutional network-based models help generate more entropy and, as
 result, more caption diversity. Also, they perform better in classification tasks and do not suffer
rom vanishing gradients. However, these methods still need improvement in terms of performance
ccording to the evaluation metrics. 

.5 Transformer-based Methods 

any current works have utilized Transformers to build more robust solutions for the caption-
ng problem. RNNs and LSTMs have been criticized due to their inflexibility, limitations regarding
xpression ability, and other complexities. Due to their recurrent nature, RNNs have difficulty
emorizing inputs many steps ago, which leads to high-frequency phrase fragments without re-

ard to the visual cues [ 67 ]. The limitations posed by LSTMs and RNNs as language models have
ed researchers to use alternatives such as Transformers. 

Some recent works have studied the application of Transformers [ 116 ]—mainly as the lan-
uage model. Herdade et al. [ 49 ] utilized Transformers in the proposed “Object Relation Trans-
ormer” model, which incorporates spatial relations between detected objects using geometric at-
ention. This encoder-decoder-based structure implements spatial relationships between detected
bjects inside an image using geometric attention. The object relation module presented by Hu
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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t al. [ 53 ] represents the spatial relations in the encoder. The combination of Faster R-CNN [ 102 ],
nd ResNet-101 [ 47 ] as the base Convolutional Neural Network is used for object detection and
eature extraction. Every image feature vector is processed through an input embedding layer con-
isting of a fully connected layer to reduce the dimension, followed by a ReLU and a dropout layer.
he first encoder layer of the Transformer model uses the embedded feature vectors as input, and

he subsequent layers use the output tokens of the previous encoder layers. Each encoder layer is
omposed of a multi-head self-attention layer followed by a small feed-forward neural network. 

Using the intermediate feature maps obtained from ResNet-101 [ 47 ] as input, a Region Pro-

osal Network (RPN) generates bounding boxes for the objects proposed by the network. Multi-
le neural network layers are added to predict the corresponding class for each region and correct
he bounding box for each of the proposed regions. Also, to implement geometric attention, the
alue of attention weight matrices changes: bounding box properties (such as center, width, and
eight) are combined with their corresponding attention weights using a high-dimensional em-
edding [ 116 ]. 
Liu et al. [ 77 ] introduce the Global-and-Local Information Exploring-and-Distilling

GLIED) approach that explores and distills the cross-modal source information. The Transformer-
ased structure globally captures the inherent spatial and relational groupings of the individual
mage regions and attribute words for an aspect-based image representation. Afterward, it ex-
racts fine-grained source information locally for precise and accurate word selection. They used
he RCNN-based visual features provided by Anderson et al. [ 7 ] for image regions extracted by
aster R-CNN [ 102 ]. 

Cornia et al. [ 23 ] introduce a fully attentive model called M 

2 —a Meshed Transformer with Mem-
ry for Image Captioning. The architecture is inspired by the Transformer model for machine
ranslation and learns a multi-level representation of the relationships between image regions in-
egrating learned a priori knowledge. The model incorporates two novelties: (1) image regions
nd their relationships are encoded in a multi-level fashion, in which both low-level and high-
evel relations are considered. The model learns and encodes a priori knowledge using persistent

emory vectors. (2) The sentence generation—done with a multi-layer architecture—exploits both
ow- and high-level visual relationships via a learned gating mechanism, which weights multi-level
ontributions at each stage. This creates a mesh-like connection between the encoder and decoder
ayers. The encoder is in charge of processing regions in the input image and the relationships
etween them. Simultaneously, the decoder reads the output of each encoding layer and generates
he caption word-by-word. All interactions between word- and image-level features are modeled
ia scaled dot-product attention without using recurrence. 

Huang et al. [ 59 ] used a Transformer-like encoder paired with an LSTM decoder. Li et al. [ 67 ] in-
estigated a Transformer-based sequence modeling framework named “ETA-Transformer.” They
ave proposed EnTangled Attention (ETA) , which enables the Transformer to benefit from both
emantic and visual information simultaneously. Liu et al. [ 80 ] introduce CaPtion TransformeR

CPTR) , which takes sequentialized raw images as input to the Transformer. As an encoder-
ecoder framework, CPRT is a full Transformer network that replaces the commonly used CNN in
he encoder part with the Transformer encoder. A purely Transformer-based architecture, PureT,
s designed by Wang et al. [ 123 ]. In PureT, SwinTransformer [ 82 ] replaces Faster-RCNN, and the
rchitecture features a refining encoder and decoder. 

Fang et al. [ 30 ] introduce a fully VIsion Transformer-based image CAPtioning mode (ViT-

AP) along with a lightweight Concept Token Network (CTN) , which is used to produce con-
ept tokens. The structure uses a vision transformer backbone as the stem image encoder, which
roduces grid features. CTN is then applied to predict semantic concepts. A multi-modal module
ses grid representations and Top-K concept tokens as input to perform the decoding process.
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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seudo ground-truth concepts are extracted from the image captions using a simple classification
ask, and CTN is optimized to predict them during training. 

Li et al. [ 74 ] designed a Transformer-style encoder-decoder structure called Comprehending

nd Ordering Semantics Networks (COS-Net) . A CLIP model (image encoder and text en-
oder) [ 99 ] is used as a cross-modal retrieval model that retrieves sentences semantically similar
o the input image. The semantic words in retrieved sentences are treated as the primary seman-
ic cues. A novel semantic comprehender is also introduced by the authors, which removes the
rrelevant semantic words in those primary cues and simultaneously infers missing words visu-
lly grounded in the image. Afterward, a semantic ranker sorts the semantic words in linguistic
rder. Zeng et al. [ 141 ] propose a Spatial-aware Pseudo-supervised (SP) module that uses a
umber of learnable semantic clusters to quantize grid features with multiple centroids without
irect supervision. These centroids aim to integrate grid features of similar semantic information
ogether. In addition to the SP module, a simple weighted residual connection is introduced, named
cale-wise Reinforcement (SR) module. This module explores both low- and high-level encoded
eatures concurrently. 

Nguyen et al. [ 89 ] present a Transformer-only neural architecture titled GRIT (Grid- and

egion-based Image captioning Transformer) that uses DETR-based detector along with grid-
nd region-based features. Hu et al. [ 54 ] have proposed ExpansionNet v2, which utilizes a novel
echnique titled Block Static Expansion layer. This technique processes the input by distributing
t over a collection of sequences with different lengths, which helps to explore the possibility of
erformance bottlenecks in the input length in Deep Learning methods. This layer is designed to

mprove the quality of features refinement and ultimately increase the effectiveness of the static
xpansion. The architecture of ExpansionNet v2 follows the standard encoder-decoder structure
nd is implemented on top of Swin-Transformer [ 82 ]. 

.6 Combining Transformers and Scene Graphs 

 number of the works have experimented with model designs that incorporate both Transformers
nd scene graphs. 

He et al. [ 48 ] aimed to employ the spatial relations between detected regions inside an image.
n their proposed model, each Transformer layer implements multiple sub-transformers to en-
ode relations between regions and decode information. The encoding method combines a visual
emantic graph and a spatial graph. In another architecture introduced by Chen et al. [ 17 ], the
ncoder consists of two sub-encoders for visual and semantic information. Faster-RCNN proposes
mage regions, and a scene graph is built using the detected regions. GCN is then used to en-
ich the graph representation. A semantic matrix is learned from the scene graph and fed into a
ulti-modal attention module in the decoder. This module is used to leverage multi-modal repre-

entation in caption generation. Yang et al. [ 133 ] have proposed an architecture called ReFormer,
hich generates features with relation information embedded. ReFormer explicitly expresses the
air-wise relationships between objects present inside an image. ReFormer combines scene graph
eneration and image captioning using one modified Transformer model. 

.7 Vision Language Pre-training Methods 

ome recent works have attempted pre-training paradigms to lessen the reliance of the models
n fully supervised learning. A large-scale model is pre-trained on a dataset with an enormous
mount of data by self-supervised learning. The pre-trained model is then generalized to various
ownstream tasks. 
One widely used pre-trained model is CLIP (Contrastive Language-Image Pre-Training)

 99 ]. CLIP is designed to provide a shared representation for both image and text prompts [ 88 ].
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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t has been trained on numerous images and captions using a contrastive loss, allowing for more
onsistency and correlation between its visual and textual representations. One of the recent works
tilizing CLIP in the proposed method is ClipCap by Mokady et al. [ 88 ]. The authors introduce
 model that produces a prefix for each caption by applying a mapping network over the CLIP
mbeddings. Next, a pre-trained language model (GPT-2 [ 100 ]) is fine-tuned to generate captions.
his approach is inspired by Li et al. [ 72 ], who discussed the possibility of adapting a language
odel for new tasks by concatenating a learned prefix. Barraco et al. [ 12 ] investigate the role

f CLIP [ 99 ] features in image captioning by devising an architecture composed of an encoder-
ecoder Transformer architecture. 
Hu et al. [ 56 ] present the VIsual VOcabulary pre-training (VIVO) , which aims to learn a

oint presentation of visual and text input. Unlike existing VLP models, which use image-caption
airs to pre-train, VIVO uses image-tag pairs for pre-training. In the pre-training stage, an image
aptioning model first learns to label image regions using image-tag pairs as training data. In the
ne-tuning stage, the model learns to map an image to a sentence conditioned on the detected
bjects using image-caption pairs and their corresponding object tags. The sentences are learned
rom image-caption pairs, while object tags may refer to novel objects that do not exist in image-
aption pairs. The addition of object tags allows for zero-shot generalization to novel visual objects
or image captioning. Xia et al. [ 126 ] highlight that while recent pre-training methods for vision-

anguage (VL) understanding tasks have achieved state-of-the-art performance, they cannot be
irectly applied to generation tasks. Xia et al. present Cross-modal Generative Pre-Training

or Image Captioning (XGPT) , which uses a cross-modal encoder-decoder architecture and is
irectly optimized for generation tasks. 
Li et al. [ 71 ] have proposed a pre-training method that leverages salient objects, which are usu-

lly present in both image and caption as anchor points. The method uses object tags as anchor
oints to align image and language modalities in a shared semantic space. The training samples are
efined as triplets, each consisting of a word sequence, a set of object tags, and a set of image region
eatures. This pre-training method can be applied to many vision-language tasks, including image-
ext retrieval, Visual Question Answering (VQA) , and image captioning. Many vision-language
re-training methods, including Reference [ 71 ], are built upon Bidirectional Encoder Repre-

entations from Transformers (BERT) [ 26 ]. These models use a two-stage training scheme in
hich the model first learns the contextualized vision-language representations by predicting the
asked words or image regions based on their intra-modality or cross-modality relationships on

arge amounts of image-text pairs. 
To counteract the problem of pre-training a single, unified model that is applicable to a wide

ange of vision-language tasks via fine-tuning, Zhou et al. [ 146 ] have introduced a new pre-training
ethod for a unified representation for both encoding and decoding. The unified encoder-decoder
odel, called the Vision-Language Pre-training (VLP) model, can be fine-tuned for both vision-

anguage generation (e.g., image captioning) and understanding tasks (e.g., visual question answer-
ng). This model uses a shared multi-layer Transformer network for encoding and decoding, which
s pre-trained on large amounts of image-caption pairs. The VLP model is optimized for two un-
upervised vision-language prediction tasks: bidirectional and sequence-to-sequence (seq2seq)

asked language prediction. These two tasks only differ in what context the prediction conditions
re on, which is controlled by specific self-attention masks for the shared Transformer network.
he context of the masked caption word, which is the target of prediction, consists of all the image
egions and all words on its right and left in the caption in bidirectional prediction. In contrast,
n the seq2seq task, the context consists of all the image regions and the words on the left of the
o-be-predicted word in the caption. 
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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Li et al. [ 66 ] present mPLUG, a novel vision-language foundation model designed for both cross-
odal understanding and generation. mPLUG aims to counteract some of the problems commonly
itnessed in pre-training models, such as low computational efficiency and information asymme-

ry by novel cross-modal skip-connections. These skip-connections generate inter-layer shortcuts
hat skip a specific number of layers. This method is used to improve the slow full self-attention
n the vision side. Liu et al. [ 78 ] present Prismer, a vision-language model that uses a group of
omain experts to combine their knowledge and apply it to different vision-language reasoning
asks. Prismer performs well in fine-tuned and few-shot learning, while requiring significantly less
raining data compared to other models. 

.8 Unsupervised Methods and Reinforcement Learning 

here has been a recent trend toward relaxing the reliance on paired image-caption datasets for
mage captioning. Many of the current research works employ reinforcement learning methods
ue to their unsupervised nature. The interest in unsupervised methods stems from the problem
f the models relying almost entirely on the quality and volume of the image-caption pairs in
atasets. 
One early work by Gu et al. [ 42 ] involved generating captions in a pivot language and translating

he caption to a target language. This method requires a paired image-caption dataset for the pivot
anguage but does not use a paired dataset with captions being in the target language. Another
esearch paper in this field used reinforcement learning with gradient policy along with RNNs in
016 [ 101 ]. Shetty et al. [ 107 ] proposed the first study that explored using conditional GANs [ 87 ]
o generate human-like and diverse descriptions. 

Feng et al. [ 31 ] use a set of images, a sentence corpus, and a visual concept detector for unsuper-
ised training. The images and the sentence corpus are projected into a common latent space such
hat they can reconstruct each other. The sentence corpus is prepared using the captions available
n Shutterstock [ 109 ], which is a photo-sharing platform. On this platform, each image is uploaded
ith a caption. This corpus is not related to the images and is independent. The proposed structure

omprises an image encoder, a sentence generator, and a discriminator. The Inception-V4 [ 112 ] is
sed as the image encoder, and the sentence generator and discriminator are both LSTMs [ 51 ]. 
Since no image-caption pairs exist, three new metrics have been introduced as three discrim-

nators to evaluate the model’s performance. The discriminator first distinguishes a real sentence
rom the sentence corpus from a sentence generated by the model, and the generator is rewarded
t each timestep. By maximizing this reward, the generator tries to produce plausible sentences.
owever, more than this discriminator is needed, since the quality of the generated sentence

nd its relevance to the image must also be evaluated. To do so, the model must learn the visual
ontents of the image. The generated words are rewarded if the generated caption contains words
hose corresponding visual concept is detected inside the image. This reward is called a “concept

eward.” Finally, since the performance of the model is much dependent on the performance of
he visual concept detector and these detectors only detect a limited number of objects, images
nd captions are projected into a common latent space such that they can reconstruct each other.

Chen et al. [ 15 ] proposed an image captioning framework based on conditional generative
dversarial nets as an extension of the reinforcement learning-based encoder-decoder architec-
ure. Highlighting that the conventional encoder-decoder structures directly optimize one metric,
hich cannot guarantee improvement in all metrics, the paper designed a discriminator network

o decide if a caption is human-described or machine-generated based on the idea of GANs. Two
iscriminator models have been designed and tested: a CNN-based discriminator model that uses
he conditional CNN for real or fake sentence classification, and an RNN-based discriminator
odel that consists of the standard LSTM [ 51 ], a fully connected linear layer, and a softmax output
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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Fig. 4. The general workflow of unsupervised methods. 
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ayer. The CNN-based framework was shown to improve the performance more than the RNN-
ased framework, while the RNN-based framework can save 30% training time. It was finally con-
luded that the ensemble results of four CNN-based (denoted as CNN-GAN) and four RNN-based
denoted as RNN-GAN) models could noticeably improve the performance of a single model. 

Liu et al. [ 81 ] have introduced an image captioning module and a self-retrieval module. A Con-
olutional Neural Network extracts image features, and an LSTM [ 51 ] decodes a sequence of words
ased on these features. The self-retrieval module evaluates the similarity between the generated
aptions, the input image, and some “distractors.” If the caption generator module generates dis-
inct and proper captions, then the relevance between these captions and their corresponding im-
ges must be more than the relevance between the generated captions and unrelated, distracting
mages. This condition is represented as the text-to-image retrieval error and improves the perfor-

ance of the image captioning module with back-propagation and the REINFORCE algorithm. 
Guo et al. [ 45 ] used a discriminator structure similar to that of Reference [ 31 ]. The discriminator

istinguishes whether the generated sentence is real and rewards the learner based on how real the
entences seem. Another discriminator distinguishes the style of the generated captions. Also, the
STM [ 51 ] decoder used in Reference [ 41 ] has been used as a reinforcement learning agent making
n action (prediction of the next word). After a sentence is completed, the agent will observe a
entence-level reward and update its internal state. 

A block diagram of the general workflow of the unsupervised methods is shown in Figure 4 .
GGNet [ 111 ] has been used as the image encoder, and the caption generator is an LSTM network
 51 ]. Therefore, the overall design follows the typical encoder-decoder structure. The discrimi-
ator is also an LSTM network, which determines if the given caption is real (from the sentence
orpus) or generated by the model. The generator is rewarded accordingly by the discriminator. 

Taking the issues related to supervised settings into account, such as the tedious process of
ataset preparation and the difficult training process, the unsupervised setting has been the focus
f many recent works and is expected to become more favored in the future as well. 

.9 Generating Multi-style Captions 

he papers discussed so far generate captions with a neutral tone. These generated captions usually
escribe factual data about image contents. Meanwhile, humans use many styles and tones in their
aily speech to communicate with one another. Some of these styles and tones are humorous,
ostile, and poetic. Incorporating these styles can help humans interact with the caption more
nd make the captions more attractive. Stylized captions can also be used in applications such as
hoto-sharing and Chatbots. 
Shuster et al. [ 108 ] have added tone and style as a feature to their dataset, as well as images

nd their appropriate captions. This paper has introduced a novel structure called TransResNet,
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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Fig. 5. Sample captions generated by multiple methods in different categories. “GT” indicates “Ground Truth 

Caption,” and “G” indicates “Generated Caption.” The captions are generated by Huang et al. [ 59 ] (top-left), 
Wang et al. [ 121 ] (top-right), Li et al. [ 71 ] (bottom-left), and Shuster et al. [ 108 ] (bottom-right). 
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hich projects images, captions, and their corresponding personality traits into a shared space us-
ng an encoder-decoder framework. Two classes of models have been considered: retrieval models
nd generative models. The retrieval model considers any caption in the entire dataset as a pos-
ible candidate response, whereas the generative model produces captions word-by-word via the
forementioned structure. The retrieval model has given better results. 

A structure consisting of five modules for caption generation in different styles has been intro-
uced [ 45 ] by Guo et al. The first module is a plain image encoder. Next is a caption generator
odule that outputs a sentence conditioned on a specific style. The following module is a caption

iscriminator that distinguishes a real sentence from a generated sentence. This discriminator is
rained in an adversarial manner to encourage the learner to generate more convincing captions
loser to the human language. Afterward, a style discriminator module that determines the style of
he generated caption is used. Inspired by the fact that there is some content consistency between
eutral captions and stylized captions, another module called “The Back-Translation Module” is
lso used. This module translates a stylized caption into a neutral one. (If a stylized caption is
enerated and translated to a factual and neutral caption, then we should arrive at the real factual
aption.) This process is implemented using multi-lingual neural machine translation (NMT) ,
n which the stylized captions are considered input and neutral captions are considered output. 

A figure consisting of some example captions from Sections 2.1 , 2.1.1 , 2.3 , and 2.9 in this survey
s shown in Figure 5 . Each row belongs to a specific category in which two images are displayed,
long with the captions describing them. For each image, the ground-truth caption and the gen-
rated caption are shown. 

 PROBLEMS IN IMAGE CAPTIONING 

n image captioning, researchers are usually confronted with a set of problems, some of which com-
only experienced in many artificial intelligence tasks such as the exposure bias problem [ 101 ],

he loss-evaluation mismatch problem [ 41 , 79 , 103 , 130 ], the vanishing gradient problem [ 50 ], and
he exploding gradient problem [ 39 , 95 ]. In addition, image captioning poses certain challenges
nique to the task. These challenges include object hallucination, illumination conditions, con-
extual understanding, and referring expressions. We review some of the continuing problems in
mage captioning that come, in fact, as a part of the nature of the task. 

.1 Object Hallucination 

bject hallucination [ 104 ] is a persistent problem for image captioning models, wherein the
odel detects objects that are not present in the input image. This can lead to poor performance

n visually impaired users, who require accurate and concise captions. According to a study by
acLeod et al. [ 84 ], for many visually impaired people who prefer correctness over coverage,

allucination is a severe disadvantage for a captioning model and an obvious concern. Further-
ore, object hallucination indicates an internal issue of the model. Rohrbach et al. have proposed
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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 new metric to measure object hallucination, CHAIR (Caption Hallucination Assessment

ith Image Relevance) , which measures the proportion of generated words that correspond
o objects in the input image according to ground truth sentences and object segmentations. The
HAIR metric has both per-instance and per-sentence variants, denoted as CH AI R i (Equation ( 9 ))
nd CH AI R s (Equation ( 10 )), respectively. 

CH AI R i = 
| Hallucinated objects | 
| All objects mentioned | (9)

CH AI R s = 
| Sentences with hallucinated objects | 

| All sentences | (10)

ccording to the study performed by Rohrbach et al., models that perform better on standard
valuation metrics (such as BLEU [ 94 ] and SPICE [ 6 ]) perform better on CHAIR. However,
his is not always true. It was found that the models that were optimized for CIDEr frequently
allucinated more. Also, models with attention tended to perform better on the CHAIR metric
han models that did not incorporate attention. However, this gain was primarily due to these
odels’ access to the underlying convolutional features and not the actual attention mechanism.
lso, GAN-based models decreased hallucination, implying that GAN loss is beneficial in de-

reasing hallucination. This is due to the fact that the GAN loss encourages sentences to resemble
uman-generated captions. The presence of a hallucinated object likely suggests that a sentence

s generated, and the discriminator dismisses the caption containing the hallucinated object. 

.2 Illumination Conditions 

llumination conditions are a critical factor that can impact the accuracy and reliability of the gen-
rated captions, particularly when the image is captured in low-light conditions or indoors. Poor
ighting can result in images with reduced contrast, making it difficult for the captioning model to
iscern fine details and recognize objects, people, or scenes. Moreover, the presence of shadows or
neven illumination can further hinder the model’s ability to accurately analyze the visual con-
ent. Shadows and uneven illumination can also further complicate the model’s analysis of visual
ontent. For example, an image of a black cat in a dimly lit room with uneven illumination may be
ifficult for the captioning model to recognize as a cat. To overcome these challenges, researchers
ave been actively exploring various techniques to improve the visual quality of the images [ 3 ,
 ], including contrast enhancement, color correction, and low-light image enhancement. These
echniques aim to mitigate the challenges posed by poor illumination and improve the accuracy
f generated captions. 

.3 Contextual Understanding 

mage captioning models also require the ability to understand the context of the scene, including
he relationships between objects, the spatial arrangement, and the overall atmosphere [ 34 , 125 ,
37 , 138 , 147 ]. This contextual understanding can be difficult to achieve, as it requires the caption
eneration model to have a deep understanding of the visual content and the ability to perform
easoning given the visual content. 

.4 Referring Expressions 

nother problem in image captioning is the use of referring expressions, such as “the girl with the
ed hair” or “the dog in the corner.” These expressions require the captioning models to identify
nd link the appropriate objects in the image. This can pose a challenge, especially if the objects are
artially obscured or if there are multiple similar objects in the scene, and requires a combination
f visual and linguistic understanding [ 21 ]. Referring expressions are important for improving
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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aption quality, as they provide more detailed and informative descriptions of the objects in the
mage, allowing the model to generate more accurate and nuanced captions. 

 DISCUSSION 

his section provides a comprehensive critical analysis of the methods falling in the different
ategories overviewed in Section 2 . Each method—inevitably—possesses advantages and disad-
antages. Nevertheless, considering these characteristics aids researchers in adopting a suitable
olution. The technical details of the structures and methods discussed in this section have been
xplained in Section 2 . 

.1 Using Attention 

ttention-based methods attempt to imitate the human attention mechanism by showing the
odel “where to look at” during the training process. Attention is widely used in encoder-decoder

rchitectures, where CNNs are typically used in combination with LSTMs to produce a repre-
entation for the given image and generate captions, respectively. Some of the papers focusing
n attention-based methods have mentioned low precision in region selection for attention as
 flaw of the attention-based methods. They claim that most of the attention-based methods
resented choose regions of the same size and shape without considering image contents. They
ave also mentioned that determining the optimal number of region proposals will bring about
n unresolvable tradeoff between small or large amounts of detail (or representing the image
oarsely or finely). 

One solution to this problem was proposed by Anderson et al. in Reference [ 7 ] as the “bottom-
p and top-down” method. Another problem of the attention-based methods is the “single-stage”
tructure. Most of these methods are only a single encoder-decoder attention structure, which
annot provide rich captions for the images. In the multi-stage coarse-to-fine structure proposed
y Gu et al. [ 41 ], at each stage, attention weights and hidden vectors generated by the previous
tage decoder are used as input to the next stage decoder, reducing ambiguity in the captions. This
tructure allows for a richer caption at each stage. 

Another problem associated with attention-based methods for image captioning is that a proper
orrelation between the vectors obtained from attention and caption is not guaranteed, and it
ight lead to improper results. If feature vectors do not contain valuable information, then the at-

ention model still generates a vector that is a weighted sum over candidate vectors and is unrelated
o the correct caption. To solve this issue, Huang et al. [ 59 ] have introduced an attention-based
tructure (Attention on Attention—or AoA) that contains one more level of attention. The authors
ave compared AoA with LSTM [ 51 ] and GRU networks [ 19 ]: Internal states, memories, and gates
re used in LSTMs and GRUs to implement the attention mechanism. AoA only performs two
inear transformations and does not require hidden states, making it computationally reasonable
hile outperforming LSTM. The combination of LSTM and AoA has been reported to be unstable,

ince it can reach a sub-optimal point. This means that increasing the volume of the stack and
he number of gates to improve the performance is futile. Jiang et al. [ 61 ] state that the existing
ncoder-decoder models employ only one kind of CNN to describe image content. Consequently,
he image contents will be described from only one specific viewpoint, and the semantic meaning
f the input image cannot be comprehensively understood, which will restrict the performance. To
mprove the image captioning model, the model introduced by Jiang et al. [ 61 ] extracts diverse rep-
esentations from multiple encoders. The novel recurrent fusion network (RFNet) proposed in
he paper uses multiple CNNs as encoders. Each representation extracted from an individual CNN
an act as an individual view of the image content. 
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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4.1.1 Injecting Spatial and Semantic Relation Information into Attention-based Methods. One of
he significant downsides of the methods that only use the attention mechanism as their main so-
ution for image captioning is that these methods fail to consider the spatial and semantic relations
etween image elements. Spatial and semantic relations in an image are integral to comprehension
f the image contents [ 34 , 125 , 137 , 138 , 147 ]. For example, spatial relations in an image could help
ifferentiate between “a person riding a horse” and “a person standing on a horse’s back.” Also,
elative size can help differentiate between objects with their most significant difference being
heir size, such as violins and cellos. In addition to that, incorporating these relations makes the
bject detection task more precise. 
As a possible solution, Herdade et al. [ 49 ] have introduced the “Object Relation Transformer.”

an et al. [ 93 ] have mentioned another problem about the attention-based image captioning meth-
ds: In most of these methods, only the first-order interactions between objects inside the image are
bserved. Their paper has claimed that, since the image captioning problem involves multi-modal
ata (image and text), multi-modal reasoning is needed, and observing the first-order interaction
etween features only will render more in-depth reasoning impossible. The structure proposed by
an et al. uses spatial and channel-wise bilinear attention to extract second-order interactions. 
Liu et al. [ 77 ] state that there is still great difficulty in deep image understanding, because the

ystems tend to view one image as unrelated individual segments and are not guided to compre-
end the relationships between the objects inside the image. They argue that such understand-

ng requires adequate attention to correlated image regions and coherent attributes of interest.
o do so, they have presented the Global-and-Local Information Exploring-and-Distilling

GLIED) approach. Cornia et al. [ 22 ] claim that an attention-based architecture implicitly selects
hich regions to focus on, but it does not provide a way of controlling which regions are described

nd what importance is given to each region. The model suggested in their paper is able to focus
n different regions in different orders following a given condition. Words can be organized into
 tree-like structure, and a higher level of abstraction can be recovered considering the syntactic
ependencies between words. 

.2 Using Graphs for Spatial and Semantic Relations 

raphs have been used extensively in many image captioning methods due to their ability to co-
esively represent the relation between multiple elements. These methods have utilized graphs in
wo ways: scene graphs extracted from images and scene graphs extracted from textual data. Scene
raphs have been used as a component inside encoder-decoder-based or unsupervised frame-
orks, and some have employed scene graphs along with Transformers. Graph-based methods
ose challenges of their own. Yang et al. [ 134 ] rightfully state that an ever-present problem has
ever been substantially resolved: The different variants of the encoder-decoder-based framework,
hen fed an unseen image, usually produce a simple and trivial caption about the salient objects

n the image, which is no better than a list of object detection. The model presented by Yang et al.
dds the inductive bias of language generation to the encoder-decoder framework and uses scene
raphs to connect the image and text modalities. Gu et al. [ 43 ] argue that the majority of image
aptioning studies are conducted in English, and preparing image-caption paired datasets in other
anguages requires human expertise and is time-consuming. The method introduced in their paper
ses scene graphs as an intermediate representation of the image and sentence and maps the scene
raphs in their feature space using cycle-consistent adversarial training. 

.3 Using Attention and Graphs 

onsidering how mutual correlations or interactions between objects are the natural basis for
mage description, Yao et al. [ 136 ] study the visual relationships between objects and how they can
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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e utilized for this matter. They have built semantic and spatial correlations on image regions and
sed Graph Convolutions to learn richer representations. One major challenge of image captioning

s the problem of grounded captioning. Most models do not focus on the same image regions as a
uman would while observing an image, which may lead to object hallucination [ 104 ]. 
Zhong et al. [ 145 ] addressed this problem by revisiting the representation of image scene graphs.

he key idea is to select essential sub-graphs and only decode a single target sentence from a cho-
en sub-graph. The model can link the decoded tokens back into the image regions, demonstrating
oticeable results for caption grounding. Another downside of the attention-based methods is that
hey do not incorporate the regions previously attended by the attention model. These regions
an be used in the module’s following region selections. Wang et al. [ 121 ] have integrated this
oint as well as the semantic relations between image elements in their proposed structure, which
ses a novel content-based attention framework to store previously attended image regions. Chen
t al. have discussed [ 18 ] that even though some methods focus on controlling expressive styles
r attempt to control the description contents (discussed in Section 2.9 ), they can only handle a
oarse-level signal. Their method uses a directed graph consisting of three node types grounded
n the image, which allows for incorporating user intentions. 

Li et al. [ 70 ] argue that most methods that devise semantic concepts treat entities in images
ndividually and lack helpful, structured information. Therefore, they have utilized scene graphs
long with CNN features from the bounding box offsets of object entities. Another work by Xu
t al. [ 129 ] also addresses the lack of structured information in current systems. The authors pro-
ose the Scene Graph Captioner (SGC) , which is divided into three major components: the
raph embedding model, the attention extraction model, and the language model. The attention
xtraction model is inspired by the concept of small world in the human brain. The work proposed
y Lee et al. [ 65 ] uses visual relations from scene graphs directly instead of GCNs, claiming that
t will avoid expensive graph convolutions. While the performance of some GCN-based models is
lightly better, evading graph convolutions may be reasonable in some frameworks. 

.4 Using Convolutional Network-based Methods 

STM networks [ 51 ] have been considered the standard for vision-language tasks such as im-
ge captioning and visual question answering due to their impressive ability to memorize long-
erm dependencies through a memory cell. However, training such networks can be considerably
hallenging due to the complex addressing and overwriting mechanism combined with the re-
uired processing being inherently sequential, and the significant storage required in the process.
STMs [ 51 ] also require more careful engineering when considering a novel task [ 8 ]. Earlier, CNNs
ould not perform as well as LSTMs on vision-language tasks. The recent advances in convolu-
ional structures on other sequence-to-sequence tasks have enabled researchers to use CNNs in
any other vision-language tasks. Also, CNNs produce more entropy [ 8 ], which can be helpful

or diverse predictions, have better classification accuracy, and do not suffer from vanishing gra-
ients. Aneja et al. [ 8 ] proposed a convolutional model that uses masked convolutions instead of
STM or GRU units. This work also experimented with attention by forming an attended image
ector and adding it to the word embedding at every layer. Doing so, the model has outperformed
he attention baseline [ 128 ]. With attention, the model could identify salient objects for the given
mage. Arguing that RNNs or LSTMs [ 51 ], which are widely used in image captioning, cannot be
omputed in parallel and also ignore the underlying hierarchical structure of the sentences, Wang
t al. [ 122 ] designed a framework entirely relying on CNNs. The proposed model can be com-
uted in parallel and is faster to train. However, convolutional network-based methods still need
mprovement in terms of performance. 
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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.5 Using Transformers 

he encoder-decoder framework continues to dominate the image captioning world, with the
odels only varying in details and sub-modules. The recent success of Transformers in natural

anguage processing tasks has inspired many researchers to replace the RNN model with Trans-
ormer in the decoders, aiming to benefit from its excellent performance and the possibility of
arallel training. Transformers have been the center of attention in the computer vision field as
ell, with models such as DETR [ 14 ], ViT [ 28 ], SETR [ 144 ], and IPT [ 16 ]. Liu et al. [ 80 ] have
roposed the CaPtion TransformeR (CPTR) , a full Transformer network to replace the widely
sed CNN in the encoder part of the encoder-decoder framework. Fang et al. [ 30 ] criticize the
se of object detectors as a tool to provide visual representation, stating that it may lead to heavy
omputational load and that they require box annotations. Fang et al. [ 30 ] have introduced the
etector-free ViTCAP model with a fully Transformer architecture, which uses grid representa-
ions without regional operations. 

Nguyen et al. [ 89 ] mention another issue with CNN-based detectors. CNN-based detectors
se non-maximum suppression (NMS) at the last stage of computation to remove redundant
ounding boxes. As a consequence, end-to-end training of an entire model consisting of detector
nd decoder modules becomes difficult. To overcome this problem and to reduce their high com-
utation cost, Nguyen et al. employ the Deformable DETR [ 149 ] and replace the CNN backbone
n the original design with Swin Transformer. The COS-Net model (Comprehending and Or-

ering Semantics Network) proposed by Li et al. [ 74 ] aims to unify semantic comprehending
nd ordering. COS-Net uses a CLIP model (image encoder and text encoder) [ 99 ] as a cross-modal
etrieval model that retrieves sentences semantically similar to the input image. 

Zeng et al. [ 141 ] argue that directly operating at grid features may lead to the loss of spatial
nformation caused by the flattening operation. The objective of the Pseudo-supervised (SP)

odule designed by the authors is to resolve this issue. Also, the Scale-wise Reinforcement

SR) module has been introduced to maintain the model size and improve performance. Wang
t al. [ 123 ] argue that using a network such as Faster-RCNN as the encoder divides the captioning
ask into two stages and thus limits it. The PureT model built by the authors is a pure Transformer-
ased structure that integrates the captioning task into one stage and enables end-to-end training.

ExpansionNet v2 introduced by Hu et al. [ 54 ] aims to solve the problem of performance bottle-
ecks in the input length in Deep Learning methods for image captioning. To address this issue, the
uthors introduce a new technique called Block Static Expansion, which distributes and processes
he input over a collection of sequences with different lengths. This method helps to improve the
uality of features refinement and ultimately increase the effectiveness of the static expansion. 

4.5.1 Using Graphs and Transformers. Some current captioning encoders use a GCN to rep-
esent the relation information. Yang et al. [ 133 ] highlight that these encoders are ineffective in
mage captioning due to the use of methods such as Maximum Likelihood Estimation rather than
 relation-centric loss and the use of pre-trained models to obtain relationships instead of the
ncoder to improve model explainability. Yang et al. propose the ReFormer architecture, which
pplies the objective of scene graph generation and image captioning by means of one modified
ransformer. Chen et al. [ 17 ] use the Transformer as their base architecture in the model SGGC

Scene Graph Guiding Captioning) . The encoder is composed of two sub-encoders named vi-
ual encoder and semantic encoder. In the visual encoder sub-component, a Transformer encoder
onsisting of N identical encoding layers has been used instead of the general CNN-based en-
oder to capture the relationships between visual regions better. Scene graphs have been used as
dditional guidance for decoder generation. While Transformers are suitable for self-supervised
retext tasks on large-scale data, training can become expensive and burdensome. There is a need
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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or more economic Transformer-based large-scale multi-modal models that can be achieved by
eans of incorporating more inductive bias about vision and language data [ 131 ]. 

.6 Using Vision-language Pre-training for Image Captioning 

LP has remarkably contributed to the recent advances in image captioning and is currently the
ominant training method for VL tasks. In VLP approaches, a large-scale model is usually pre-
rained on massive amounts of data using self-supervised learning and then generalized to adapt
o downstream tasks. References [ 71 , 143 , 146 ] have extensively observed the effect of pre-training
bjective methods and architectures. The scale of the pre-training dataset is also believed to be a
rucial factor in outstanding performance. VLP helps alleviate some of the problems experienced
n conventional image captioning methods. The conventional methods typically need to minimize
he gap between the visual and textual modals and are therefore resource-hungry [ 88 ]. Excessive
raining time and numerous trainable parameters are also required, reducing their practicality.
owever, given new samples, the models need to be updated to adapt to new inputs. This brings

bout the need for lightweight models with faster training times and fewer parameters. 
It has recently been observed that powerful vision-language pre-trained models improve zero-

hot performance dramatically and reduce training time. One such pre-trained model is CLIP [ 99 ].
okady et al. [ 88 ] have leveraged CLIP encoding as prefix to the captions in their ClipCap model.
 lightweight Transformer-based mapping network is trained from the CLIP embedding space and
 learned constant. The GPT-2 network is used as the language model to generate captions given
he prefix embeddings. Taking note of the fact that salient objects are usually present in both image
nd the corresponding caption, the pre-training method proposed by Li et al. [ 71 ] leverages these
bjects as anchor points to tackle issues such as ambiguity and a lack of grounding. Zhou et al.
resented a pre-training method for a unified representation for encoding and decoding in Refer-
nce [ 146 ]. The VLP model proposed in this paper has the advantage of unifying the encoder and
ecoder and learning a more universal contextualized vision-language representation, which can
e fine-tuned for generation and understanding tasks easily. This unified procedure results in a
ingle model architecture for the two distinct vision-language prediction tasks (bidirectional and
eq2seq). This alleviates the need to train multiple pre-training models for different tasks without
ignificant performance loss. To fine-tune for the image captioning task, the VLP model is fine-
uned on the target dataset using the seq2seq objective. Hu et al. [ 56 ] point out that while many
LP methods have been introduced that learn vision-language representations through training

arge-scale Transformer models, most are designed for understanding tasks. The few solutions
hat can be applied to image captioning [ 71 , 146 ] use paired image-caption data for pre-training,
hich cannot improve zero-shot performance. VIVO, proposed by Hu et al., learns vision-language

lignment on image-tag pairs. Since caption annotations are not needed, many existing vision
atasets originally prepared for tasks such as image tagging or object detection can be used. Xia
t al. [ 126 ] emphasize that VL generation tasks necessitate the ability to learn generation capa-
ilities as well as the ability to understand cross-modal representations. Also, Xia et al. explain
hat the pre-trained models developed for understanding tasks only provide the encoder, and sep-
rate decoders need to be trained to enable generation. In addition to this deficiency, none of the
re-training tasks are designed for the whole sentence generation. The XGPT takes advantage of a
ross-modal encoder-decoder architecture and is directly optimized for VL generation tasks. Three
enerative pre-training tasks have been designed to countervail the lack of pre-training objec-
ives for generation tasks, namely: Image-conditioned Masked Language Modeling (IMLM) ,
mage-conditioned Denoising Autoencoding (IDA) , and Text-conditioned Image Feature

eneration (TIFG) . Li et al. [ 66 ] mention computational inefficiency and information asymme-
ry as some of the shortcomings of existing pre-trained models. Li et al. [ 66 ] have proposed the
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 



62:24 T. Ghandi et al. 

m  

c  

a  

p  

r  

v  

t  

a

4

T  

t  

n  

v  

w  

t  

e  

t  

c  

s  

c  

c  

s  

h
 

u  

d  

(  

p  

o  

t  

e  

g  

c  

p  

a  

t  

o

4

S  

t  

e  

h  

m  

r  

t  

i  

A

PLUG model, which incorporates a novel cross-modal fusion mechanism with cross-modal skip-
onnections to alleviate these problems. Liu et al. [ 78 ] point out the data insensitivity problem
nd heavy computations associated with current vision-language problem and take a different ap-
roach in their model Prismer to learn domain knowledge via distinct and separate sub-networks,
eferred to as experts. Prismer includes modality-specific experts that encode multiple types of
isual information directly from their corresponding network outputs. The expert models are pre-
rained and frozen individually and are connected through lightweight trainable components. This
pproach results in a significant reduction in total network parameters. 

.7 Using Unsupervised Methods and Reinforcement Learning 

he research works discussed in the aforementioned categories used a combination of images and
heir corresponding captions to train the structures they introduced and generated captions for
ew images while optimizing metrics. Training these supervised methods is challenging and in-
olves some problems. One problem is that most of the research on image captioning has only
orked on generating captions in the English language, and a proper dataset consisting of cap-

ions in multiple languages is not available. Preparing such a dataset requires the skills of human
xperts and is very time-consuming. Preparing a dataset of images and their corresponding cap-
ions is generally a difficult task. The Microsoft COCO dataset [ 76 ], which is widely used in image
aptioning, is much smaller than other datasets specifically designed for the object detection task,
uch as ImageNet and Open Images [ 23 ]. Microsoft COCO dataset [ 76 ] has 100 object classes only;
onsequently, the models trained on this dataset fail to generalize for new images that were not
overed in the dataset. A considerable part of image captioning research is moving towards un-
upervised methods to solve these issues. The early works improved the diversity of the captions;
owever, they sacrificed overall performance. 
Feng et al. [ 31 ] have used a sentence corpus, a visual concept detector, and a set of images for

nsupervised training. The model is composed of an image encoder, a sentence generator, and a
iscriminator. The results obtained from this research work have been criticized by Gu et al. [ 43 ]
discussed in Section 2.2 ). It has been explained that considering the limitations imposed by su-
ervised learning, this research work has not achieved significant results, and the performance
f the proposed model is not satisfactory. Gu et al. [ 43 ] use an unsupervised method (CycleGAN)
o align the scene graph and the captions. Chen et al. [ 15 ] point out one issue with conventional
ncoder-decoder structures: Many directly optimize one or a combination of metrics. This can not
uarantee consistent improvement over all metrics. As a solution, Chen et al. have designed a dis-
riminator network based on the idea of GANs, which judges if a caption is human-generated or
roduced by a machine. Liu et al. [ 81 ] have introduced a system consisting of a captioning module
nd a self-retrieval module. The notable part of this work is the self-retrieval module (which uses
he REINFORCE algorithm) that improves the performance of the aforementioned structure while
nly training on partially labeled data. 

.8 Captioning in Multiple Styles 

ome of the papers covered in this survey generate captions in multiple styles, with some of
hese styles being humorous or hostile. The structure called “TransResNet,” presented by Shuster
t al. [ 108 ], considers two classes of models: retrieval and generative. While the retrieval model
as given better results, a disadvantage of the retrieval models for caption generation is that these
odels do not produce a new caption and only choose a caption from a massive dataset. The

etrieval models usually generate general and repetitive captions. This pushes many researchers
o use unsupervised methods. Guo et al. [ 45 ] have stated that incorporating appropriate styles
nto captions will enrich their clarity and appeal and allows for user engagement and social
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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nteractions. The structure presented by Guo et al. is composed of five modules for caption
eneration in different styles. 
Stylized captions can help improve user interaction. However, since neutral captions that report

actual data are more appropriate for visually impaired individuals, stylized captions may not be
he best choice to utilize in assistive technologies. 

 DATASETS AND PERFORMANCE COMPARISON 

he methods discussed in previous sections use various datasets and are evaluated with multiple
valuation metrics. In this section, we review the datasets and metrics widely used in recent re-
earch works in depth. The available datasets for the image captioning task are still small compared
o that of object detection, and the evaluation metrics have many limitations. Considering the in-
reasing importance of the image captioning task, preparing richer datasets and more accurate
etrics can be vital to the growth and improvement of the task. 

.1 Datasets Used by Recent Works 

5.1.1 Microsoft COCO. The MS COCO dataset [ 76 ] is a vast dataset for object detection, image
egmentation, and image captioning. This dataset contains many features, such as image segmen-
ation, 328,000 images, 91 object classes, and 5 captions for each image. 

5.1.2 F lickr30K, F lickr30K Entities, and F lickrStyle10k. The F lickr30K dataset [ 139 ] is introduced
or the automatic image captioning and grounded language understanding task. This dataset
ontains 31,000 images collected from the Ficker website, along with 158k captions written by
umans. This dataset contains a detector for everyday objects, a color classifier, and a bias toward
electing larger objects. The Flickr30K Entities dataset [ 97 ] is based on this dataset and contains
58k captions from Flickr30K with 244k coreference chains that link mentions of the same entities
n images. The dataset also contains 276k manually annotated bounding boxes corresponding to
ach entity. The FlickrStyle10k dataset [ 33 ] contains 10k images with captions of varying styles.
raining data consists of 7k images, and the testing and evaluation data consist of 2k and 1k

mages, respectively. Each image has captions in different styles, such as poetic, humorous, and
eutral (factual). 

5.1.3 Visual Genome. Unlike the other dataset discussed that only had one caption for the entire
mage, this dataset [ 63 ] presents a separate caption for each image region. This dataset comprises
even parts: region descriptions, object bounding boxes, attributes, relationships, region graphs,
cene graphs, and question-answer pairs. The Visual Genome dataset contains more than 108k im-
ges, with each image having an average of 35 objects, 26 attributes, and 21 pairwise relationships
etween objects. 

5.1.4 TextCaps. This dataset [ 110 ] aims to help train visual assistants for visually impaired
ndividuals, focusing on presenting captions for images with written text inside them. This dataset
resents 145k captions for 28k images. 

5.1.5 VizWiz-Captions. This dataset [ 46 ] has been introduced as a dataset appropriate for im-
ge captioning for visually impaired individuals. This dataset consists of 23,431 training images
nd 117,155 training captions, 7,750 validation images, 38,750 evaluation captions, 8,000 images,
nd 40,000 testing captions. The images have been taken directly by visually impaired individuals.

5.1.6 Google’s Conceptual Captions. This dataset [ 106 ] consists of approximately 3.3 million
mages and captions. The images have been collected from the Internet first, along with the “alt-
ext” associated with them. These image-caption pairs have then been filtered and processed to
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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Table 1. Most Common Datasets 

Dataset Total Images Objects/Image Object Classes Captions/Image 

Visual Genome [ 63 ] 108,077 36.17 80,138 5.4m R.D. 
MS COCO [ 76 ] 330,000 7.57 91 5 
Flickr30K Entities [ 97 ] 31,783 8.7 44,518 5 
OpenImagesV6:V.R. [ 40 ] 375,000 8.4 - 1 
Flickr30K [ 139 ] 31,000 - - 5 
FlickrStyle10K [ 33 ] 10,000 - - 2 
OpenImagesV6:L.N. [ 98 ] 849,000 - - 1 
SentiCap [ 86 ] 3171 - - 6 
TextCaps [ 110 ] 28,408 - - 5 
VizWiz-Captions [ 46 ] 39,181 - - 5 
nocaps [ 1 ] 15,100 - 680 11 
Conceptual Captions [ 106 ] 3 mil < - - 1 

Details (R.D. Indicates “Region Descriptions,” L.N. Indicates “Localized Narratives,” and V.R. Indicates “Visual 

Relationships”). 
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xtract appropriate captions for the images that describe image contents. This dataset is split into
raining and evaluation splits. There are 3,318,333 image-caption pairs in the training split and
5,840 image-caption pairs in the evaluation split. 

5.1.7 Nocaps. The Novel Object Captioning at Scale (nocaps) dataset [ 1 ] has been presented
o encourage the development of captioning models that can surpass the limitation of visual con-
epts in existing datasets. The introduced benchmark is composed of 166,100 human-generated
aptions describing 15,100 images from the Open Images validation and test sets. The training
ata consists of Open Images image-level labels and object bounding boxes in addition to COCO
mage-caption pairs. Considering that Open Images contains many more object classes not present
n COCO, about 400 object classes in test images have almost no associated training captions. 

5.1.8 Open Images V6: Visual Relationships and Localized Narratives. The Open Images
ataset [ 64 ] contains various sections for object detection, image segmentation, object relation-
hips, and more. The dataset includes approximately 9 million images in 600 different classes. Each
mage contains an average of 8.4 objects. One section of this dataset is the Visual Relationships
ection, which contains 329 tertiary relationships for 375k images. The most recent version of this
ataset is available at Reference [ 40 ]. In 2020 and the sixth version of the Open Images dataset, a
ew section under the name of “Localized Narratives” was added [ 98 ]. This new section contains
 million and 671k images from the Open Images Dataset. A human describer has described each
mage in the dataset via a voice recording while moving their computer mouse on the regions
hey were describing. Since the words of the caption are in sync with the mouse movements, the
ocation associated with each word is available. 

The details regarding datasets discussed in this section have been summarized in Table 1 . 

.2 Evaluation Metrics for Image Captioning Methods 

he metrics discussed below fall into two categories: the text evaluation metrics and the caption

valuation metrics. The text evaluation metrics evaluate machine-generated text portions inde-
endently. Most of these metrics were introduced for evaluating the text generated by machine
ranslation models. The caption evaluation metrics evaluate the captions generated by the models
nd have been designed specifically for the image captioning task. 
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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5.2.1 BLEU (Bilingual Evaluation Understudy). BLEU [ 94 ] is an evaluation metric for machine-
enerated texts. Separate parts of a text are compared against a set of reference texts, and each
art receives a score. The overall score is an average over these scores; however, the syntactical
orrectness is not evaluated. The performance of this metric varies based on the references used
nd the size of the generated text. The BLEU metric is a widely used metric due to it being a pioneer
n evaluating machine-generated texts, being independent of language, their simplicity, high speed,
ow cost, and being quite comparable with human judgment. BLEU counts the consistent n-grams
n the machine-generated text and the reference text. n-grams are a contiguous sequence of n items
n a text in the field of computational linguistics and probability. These items can be phonemes,
yllables, letters, words, or base pairs. The number “n” determines the number of grams that will
e compared against each other. Usually, BLEU-1, BLEU-2, BLEU-3, and BLEU-4 are computed
sing the BLEU metric. To compute BLEU-n, the n-grams of 1 to “n” are computed, and each is
ssigned one single weight. Next, the geometric mean of these n-grams is calculated according to
hese weights. For example, when computing BLEU-4, the n-grams of 1 to 4 are calculated, and
ach is given the value 0.25 as their weight, followed by the geometric mean being computed over
hese values. This metric does have some disadvantages, such as the fact that the computed scores
re only high when the generated text is short. Also, in some cases, a high score achieved using
his metric is unreliable and does not mean a higher-quality text. 

5.2.2 ROUGE (Recall-Oriented Understudy for Gisting Evaluation). ROUGE [ 75 ] is a set of met-
ics that evaluates the quality of text summarization. ROUGE determines the quality of a summary
y comparing it to other ideal human-created summaries: the number of overlapping units, such as
-grams, word sequences, and word pairs between the machine-generated summary and the ideal
ummaries are counted. Multiple measures are introduced: ROUGE-N (which counts the overlap of
-grams between the machine-generated summary and the ideal summary; ROUGE-1 and ROUGE-
 are subsets of ROUGE-N), ROUGE-L (which is essentially longest common subsequence-based
tatistics and considers sentence-level structure similarity naturally and automatically finds the
ongest co-occurring in sequence n-grams), ROUGE-W (which is based on weighted longest com-

on subsequence that prefers consecutive longest common subsequences), ROUGE-S (which is
ased on skip-bigram co-occurrence, with skip-bigram being any pair of words in their sentence
rder), and ROUGE-SU (which is based on skip-bigram plus unigram co-occurrence), with each
eing used in a specific application. This metric does not perform well for evaluating summaries
n more than one text. 

5.2.3 METEOR (Metric for Evaluation of Translation with Explicit Ordering). This metric [ 11 ]
ompares word segments against reference texts. This method is based on the harmonic mean
f unigram precision and recall (recall is weighted higher than precision). METEOR has features
uch as stemming and synonymy matching in addition to the standard exact word matching. This
etric makes a better correlation at the sentence level or segment level. 

5.2.4 CIDEr (Consensus-based Image Description Evaluation). This metric [ 117 ] is explicitly
esigned for evaluating image captions and descriptions. In contrast to other metrics working
ith only five captions per image—which makes them unsuitable for evaluating the consensus
etween the generated captions and human judgments—CIDEr reaches this level of consensus
sing term-frequency inverse document frequency (TF-IDF) . CIDER is technically an
nnotation modality for automatically computing consensus. A measure of consensus encodes
ow often n-grams in the candidate sentence are present in the reference sentences. Also, n-grams
ot present in the reference sentences must not exist in the candidate sentences. Furthermore,

ower weight must be given to n-grams frequently appearing across all images in the dataset,
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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Table 2. The Independent Results 

Ref B-1 Ref B-2 Ref B-3 Ref B-4 

Zhong et al. [ 145 ] 90.7 Li et al. [ 74 ] 69.1 Li et al. [ 74 ] 54.9 Zhong et al. [ 145 ] 59.3 

Nguyen et al. [ 89 ] 84.2 Pan et al. [ 93 ] 66.8 Pan et al. [ 93 ] 52.6 Li et al. [ 66 ] 46.5 
Hu et al. [ 54 ] 83.5 Liu et al. [ 80 ] 66.6 Liu et al. [ 80 ] 52.2 Li et al. [ 74 ] 42.9 
Li et al. [ 74 ] 83.5 Jiang et al. [ 61 ] 64.7 Jiang et al. [ 61 ] 50.0 Hu et al. [ 54 ] 42.7 
Yang et al. [ 133 ] 82.3 Li et al. [ 70 ] 63.2 Li et al. [ 70 ] 48.3 Nguyen et al. [ 89 ] 42.4 
Cornia et al. [ 23 ] 82.0 Liu et al. [ 81 ] 63.1 Liu et al. [ 81 ] 48.0 Li et al. [ 71 ] 41.7 
Liu et al. [ 80 ] 81.7 Gu et al. [ 41 ] 62.5 Gu et al. [ 41 ] 47.9 Pan et al. [ 93 ] 40.7 
Pan et al. [ 93 ] 81.7 Chen et al. [ 17 ] 60.7 Wang et al. [ 121 ] 46.5 Cornia et al. [ 23 ] 40.5 
Huang et al. [ 59 ] 81.6 Wang et al. [ 121 ] 60.3 Chen et al. [ 17 ] 46.2 Liu et al. [ 78 ] 40.4 
Li et al. [ 67 ] 81.5 Aneja et al. [ 8 ] 55.3 Aneja et al. [ 8 ] 41.8 Huang et al. [ 59 ] 40.2 

Top 10 Methods - BLEU-1, BLEU-2, BLEU-3, and BLEU-4 (B: BLEU [ 94 ], Ref: Reference). 

Table 3. The Independent Results 

Ref M Ref R Ref C Ref S 

Zhong et al. [ 145 ] 40.1 Zhong et al. [ 145 ] 71.5 Cornia et al. [ 22 ] 209.7 Cornia et al. [ 22 ] 48.5 

Li et al. [ 66 ] 32.0 Hu et al. [ 54 ] 61.1 Chen et al. [ 18 ] 204.2 Chen et al. [ 18 ] 42.1 
Liu et al. [ 78 ] 31.4 Li et al. [ 74 ] 61.0 Zhong et al. [ 145 ] 166.7 Zhong et al. [ 145 ] 30.1 
Hu et al. [ 55 ] 31.4 Nguyen et al. [ 89 ] 60.7 Li et al. [ 66 ] 155.1 Li et al. [ 66 ] 26.0 
Li et al. [ 74 ] 30.8 Fang et al. [ 30 ] 60.1 Hu et al. [ 55 ] 145.5 Hu et al. [ 55 ] 25.5 
Nguyen et al. [ 89 ] 30.6 Barraco et al. [ 12 ] 59.9 Nguyen et al. [ 89 ] 144.2 Hu et al. [ 54 ] 24.7 
Hu et al. [ 54 ] 30.6 Yang et al. [ 133 ] 59.8 Hu et al. [ 54 ] 143.7 Li et al. [ 74 ] 24.7 
Li et al. [ 71 ] 30.6 Pan et al. [ 93 ] 59.7 Li et al. [ 74 ] 143.0 Li et al. [ 71 ] 24.5 
Fang et al. [ 30 ] 30.1 Cornia et al. [ 23 ] 59.5 Li et al. [ 71 ] 140.0 Liu et al. [ 78 ] 24.4 
Barraco et al. [ 12 ] 30.0 Liu et al. [ 80 ] 59.4 Barraco et al. [ 12 ] 139.4 Nguyen et al. [ 89 ] 24.3 

Top 10 Methods (M: METEOR [ 11 ], R: ROUGE [ 75 ], C: CIDEr [ 117 ], S: SPICE [ 6 ], Ref: Reference). 
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ince they are likely to contain less information. To encode this, Vedantam et al. [ 117 ] performed
 TF-IDF weighting for each n-gram. A version of CIDEr called CIDEr-D exists as a part of the
icrosoft COCO evaluation server. 

5.2.5 SPICE (Semantic Propositional Image Caption Evaluation). The SPICE metric [ 6 ] is a met-
ic for evaluating image captions based on semantic context. This metric measures how well ob-
ects, attributes, and the relations between them are covered in image captions. A scene graph is
sed to extract the names of different objects, attributes, and the relationships between them from

mage captions. The metric utilizes semantic representations produced by this graph. 
The discussed methods are far from human judgment in terms of quality due to various factors.

sing external knowledge databases along with evaluation metrics can help improve evaluation
uality. 

.3 Comparing Independent Results 

any research works have reported their results independently, as well as the results reported by
he Microsoft COCO servers. 

In this section, we list the results reported independently by the works covered in this survey in
ables 2 and 3 . We have listed the best results for the research works that reported results under
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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ifferent settings (for example, optimization using different loss functions). The best performances
re highlighted with boldface font. 

Among the research works covered in this survey paper, Reference [ 145 ] (which introduces
 sub-graph proposal network along with an attention-based LSTM decoder) has had the best
esults in BLEU-1 (90.7) and BLEU-4 (59.3), as well as METEOR [ 11 ] (40.1) and ROUGE [ 75 ] (71.5),
hile Reference [ 74 ] (COS-Net, a model that uses CLIP image and text encoder as a cross-modal

etrieval model) has had the best results in BLEU-2 (69.1) and BLEU-3 (54.9). Also, Reference
 22 ] (Show, Control, and Tell) has achieved the best CIDEr and SPICE results (209.7 and 48.5,
espectively). 

A recurring pattern among the best-performing methods presented in Tables 2 and 3 is the ap-
lication of Transformers, scene graphs, and vision language pre-training methods [ 12 , 17 , 18 , 23 ,
0 , 54 , 55 , 59 , 66 , 67 , 70 , 71 , 74 , 78 , 80 , 89 , 93 , 133 , 145 ]. These methods owe their performance to
he capabilities of Transformers, scene graphs, and vision language pre-training methods. Trans-
ormers are capable of capturing complex relationships between objects and their surroundings,
aking them particularly effective in handling long-range dependencies in image sequences. Scene

raphs, however, represent the relationships between objects within an image and allow for effi-
ient inference of the visual content. Another desirable feature of graphs is their ability to represent
omposite and unstructured data types, as they provide a flexible and efficient way to model the
omplex relationships and interconnections between various entities within a system. In addition
o Transformers and scene graphs, some of the high-performing image captioning methods in
ables 2 and 3 utilize vision language pre-training techniques [ 12 , 55 , 66 , 71 , 74 , 78 ]. These meth-
ds involve training a model on large datasets that consist of both visual and textual information,
llowing the model to learn a joint embedding space. By pre-training on such datasets and ac-
uiring knowledge from multiple modalities, the model can effectively learn to understand visual
ontent and generate natural language descriptions. The integration of these techniques in cap-
ioning models has led to a notable improvement in their overall performance, as evidenced by the
esults presented in Tables 2 and 3 . 

 CHALLENGES AND THE FU T URE DIRECTIONS 

espite the abundance of solutions and methods presented to solve the image captioning problem,
ome challenges and open problems remain. The performance of the supervised methods relies sig-
ificantly on the quality of the datasets. However, datasets can not cover the real world regardless
f how massive they are, and the applicability of supervised methods is limited to the set of objects
he detector is trained to distinguish. However, datasets with image-caption pairs inevitably con-
ain more examples of a specific situation (one example being: “man riding a skateboard”). These
xamples in the training data falsely bias the model towards generating more captions similar to
hose examples rather than including actual detected objects [ 70 ]. The supervised paradigm overly
elies on the language priors, which can lead to the object-hallucination phenomenon as well [ 74 ].

The problems associated with the supervised methods encourage researchers to devise unsu-
ervised techniques. However, due to the different properties of image and text modalities, the
ncoders of image and sentence cannot be shared. Therefore, the critical challenge in an unpaired
etting is the gap of information misalignment in images and sentences [ 43 ]. The current unsu-
ervised image captioning methods still need to catch up in performance rankings. 
One promising direction of research is using scene graphs for image captioning. However, de-

pite the many possibilities unveiled by scene graphs, discussed extensively in the previous sec-
ions, utilizing them comes with challenges. Constructing scene graphs is a complicated task in
tself, and due to the interactions between objects being beyond simple pairwise relations, inte-
rating scene graphs is quite tedious [ 129 ]. Also, scene graph parsers are still not as powerful
ACM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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 120 , 134 ]. According to some of the works that studied the impact of scene graphs on the quality
f the captions, scene graphs are effective only if pre-training of the scene graph generators is
one with visually relevant relation data [ 65 ]. 
VLP methods have been used to resolve some of the flaws with supervised methods and ob-

ect detector-based designs. However, most VLP approaches are catered to understanding tasks,
nd generation tasks such as image captioning demand more capabilities. A number of the recent
orks covered in this article have aimed to fulfill this need. However, this field needs more investi-
ation and analysis. Moreover, detector-free designs have a rising popularity. In these designs, the
etector is removed for the vision-language pre-training in an end-to-end fashion [ 30 ]. Also, a gen-
ral visual encoder replaces the detector and is used to produce grid features for later cross-modal
usion. However, the construction of a stronger detector-free image captioning model still needs
nvestigation. Despite the challenges faced when working with scene graphs, vision language pre-
raining methods, and Transformers, almost each one of the best-performing models according to
valuation metrics uses one or a combination of these techniques, as shown in Section 5.3 . This
urther proves the potential of these techniques in solving the image captioning problem and are
romising tools for the future of generative tasks. Specifically, graphs are valuable in representing
omplex relationships and interconnections between different entities, particularly for compos-
te, semi-structured, and unstructured data that may not be easily handled by other types of data

odels. Considering the recent advancements in generative artificial intelligence such as large

anguage models (LLMs) [ 92 ] and multimodal language models (MLLMs) [ 5 , 60 , 68 , 91 ], the
eed for representation methods capable of handling such data types will become more and more
isible and felt in near future. 

Another gap in the literature is the lack of focus on the application of image captioning for the
isually impaired. Describing images can be the core of a vision assistant designed to aid the visu-
lly impaired in their daily lives: One can be informed of potential dangers in their environment
nd have a general understanding of what is happening around them. Considering the issues men-
ioned earlier and gaps, unsupervised learning and unpaired setting are of great potential. Also, the
raph-based approach is expected to become even more popular in the near future. LLMs, MLLMs,
nd Transformers in combination with vision-language pre-training methods are also very likely
o become standard practice. 

 CONCLUSION 

his article has covered recent image captioning methods, provided a taxonomy of the approaches,
nd mentioned their features and properties. We also discussed the common problems in image
aptioning, reviewed datasets and evaluation metrics, compared the performance of the covered
ethods and algorithms in terms of experimental results, and highlighted the challenges and fu-

ure directions in image captioning. Despite the numerous methods and solutions presented for
he image captioning problem, there are still some major problems and challenges for which few
olutions have been suggested. However, the generated captions still need to be higher in quality
nd are far from human-generated captions. Also, the datasets cannot cover the infinite real world.
he evaluation metrics still need to be improved and are still not ideal for evaluating the precise
erformance of the models. However, VLP methods are frequently used in recent works and have
hown promising performance. VLP methods and Transformers are likely to be inseparable com-
onents of models in the future of image captioning. 
Moreover, more research needs to be done on visual assistants for visually impaired individu-

ls. Preparing such an assistant requires certain features to be implemented, making it different
rom the other applications of image captioning. The best models presented by the research works
o not perform well as visual assistants and do not consider the specific demands and needs of
CM Computing Surveys, Vol. 56, No. 3, Article 62. Publication date: October 2023. 
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isually impaired people. A proper caption for a visually impaired person includes the most im-
ortant aspects of the image first and the other noticeable details afterward. The surroundings
nd finer details must also be described, such as details about the textures and the position of
bjects relative to each other. Therefore, a caption appropriate for the needs of visually impaired
ndividuals is denser and contains much more detail compared to the captions generated by con-
entional methods and models. Also, the caption generation process may be altered in a way that
he initial caption provided to the user can be more general and shorter. The caption may become
enser and more detailed upon the user asking more questions about the image. Considering the
mportance of the aforementioned issues and the growing number of visually impaired individu-
ls, a noticeable lack of an efficient solution remains. Valuable research work in this field would
e automatic image captioning with a particular focus on creating a visual assistant for visually
mpaired individuals. 
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