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A B S T R A C T   

The reliability of controlled structures has been a subject of considerable concern in recent years. The present 
study investigated the effects of a probabilistic fuzzy logic controller (PFLC) as an intelligent controller and a 
linear quadratic regulator (LQR) controller as a classic controller on the reliability of a structure. Monte Carlo 
reliability analysis has been used to determine the reliability of the controlled structures. A single-degree-of- 
freedom (SDOF) system and multiple-degree-of-freedom (MDOF) structures with different tendon arrange-
ments were considered. The structures were subjected to random Gaussian white noise as excitation and the 
variables considered were random Gaussian samples with a dispersion coefficient of 10%. The probability of 
failure could be estimated by PFLC at up to 10-5 as the threshold level increased in MDOF structures. Moreover, 
the results indicate that PFLC was more accurate than the LQR controller for a lower probability of failure 
because the associated limit state function includes stochastic uncertainty.   

1. Introduction 

The concept of reliability and safety in the structural control of civil 
engineering structures has been of major concern in recent decades. 
Different control systems have been proposed in consideration of the 
uncertainties and complexities present in engineering structures. Per-
formance loss and instability and even structural failure indicate the 
occurrence of extreme vibration as a result of unforeseen structural 
control criteria. 

Uncertainties and complexities can result from different sources and 
through the lack of information. The features of uncertainty differ and 
include linguistic (non-stochastic) uncertainty and stochastic uncer-
tainty. Conventional fuzzy logic is a mechanism through which lin-
guistic complexity can be managed and controlled. This requires the 
application of expert knowledge in the form of rules for unknown 
membership functions (MFs). However, the information available about 
the creation of fuzzy rules also contains non-stochastic uncertainty. To 
better consider uncertainty, a type-2 fuzzy logic system and interval 
type-2 fuzzy logic systems have been developed [1–10]; however, sto-
chastic uncertainty has not been considered in fuzzy logic systems. 
Stochastic uncertainty is described by possibility and a random proba-
bility distribution. 

A fuzzy logic system (FLS) with probabilistic features must be 

employed to process uncertainties which include both fuzzy and likeli-
hood aspects. A probabilistic fuzzy logic system (PFLS) was introduced 
by Meghdadi and Akbarzadeh [11] which utilizes a three-dimensional 
(3-D) MF model to demonstrate stochastic uncertainty. A probabilistic 
MF requires 3-D information comprising one dimension for the input 
signal, one for the fuzzy grade in [0, 1] and one for the associated 
likelihood. The third dimension can be used to evaluate and express 
stochastic uncertainties using a probability distribution function (PDF). 

Li et al. [12] and Liu et al. [13] proposed a simple tutorial for 
modeling and learning PFLS when both fuzzy and stochastic un-
certainties occur. Zhang and Li [14] introduced a unified probabilistic 
fuzzy inference method to improve PFLS performance. Further, Zhang 
et al. [15] proposed a reasonable model of wind speed estimation using 
probabilistic fuzzy theory. 

As the complexities and uncertainties of civil engineering structures 
increase and there is great need for controlling their effects, a probabi-
listic fuzzy logic controller (PFLC), as a probabilistic active control 
strategy, could be applicable. A PFLC can be used to better consider both 
linguistic and stochastic uncertainties, as uncertainty can cause a 
decrease in efficiency and increase the probability of failure. Studies 
have demonstrated that the reliability and safety of buildings can be 
improved by adding active control to structural engineering systems. 

Spencer et al. [16] introduced a reliability-based optimal control 
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approach for a seismically excited single-story structure with parametric 
uncertainty. Their research focused on increasing the safety and reli-
ability of a structure by minimizing its intense response. They used 
probabilities, the first-order reliability method second-order reliability 
method and Monte Carlo (MC) simulation. Spencer et al. [17] investi-
gated the Kalman filter, linear quadratic regulator (LQR) and phase- 
corrected controllers to assess the reliability of SDOF structures. The 
Kalman filter and acceleration feedback controllers were considered for 
a three-story building. 

Battani et al. [18] proposed an approach to use a control mechanism 
in reliability evaluation of a structural system. A three-story building 
with an active mass damper actuator on the third floor was considered. 
The structural responses considered were the acceleration of each floor, 
ground acceleration and actuator displacement. Sensitivity analysis was 
performed in the global reliability assessment. May and Beck [19] used 
an active mass driver benchmark system where controllers were pro-
posed to reduce the failure probability of closed-loop procedures. To 
approximate the probability integrals, an asymptotic approach was 
applied to determine the efficiency of the process. 

Venini and Mariani [20] proposed a state-space structure on which to 
conduct reliability analysis of unpredictable structures using an active 
controller and probabilistic excitation. In both the controlled and un-
controlled states, the reliability was measured using asymptotic tech-
niques that did not require conversion to normal variations. For control 
synthesis, linear quadratic Gaussian (LQG) and H-infinity (H∞) ap-
proaches were used to obtain the statistics of the managed device. 

Field and Bergman [21] established a relationship between a desir-
able degree of reliability for a given system and configuration of the 
state covariance that allowed this level of reliability. The resulting 
configuration of the state covariance controller ensured that the speci-
fied reliability level was possible for a closed-loop system. This method 
was extended to single-story and two-story structures. Shariatmadar and 
Behnam [22] proposed a subset simulation method to compute small 
failure probabilities for controlled structures. 

A non-probabilistic time-dependent reliability approach combined 
with active control theory was introduced by Wang et al. [23] to 
investigate the reliability of controlled buildings. The uncertain struc-
tural responses were analyzed by a closed-loop control. An integral non- 
probabilistic time-dependent reliability evaluation then was carried out 
for the active control procedure. In functional implementation, because 
of the of inadequate sample data, the distributions of some parameters 
may not be precisely understood. To overcome this problem, Zhang et al. 
[24] suggested a likelihood-unreliability hybrid approach to determine 
the reliability index and structural reliability according to chance the-
ory, which can be applied to solve the problem of integrating likelihood 
and unreliability theories. 

In consideration of uncertainties from various sources, Wang et al. 
[25] proposed a novel two-stage dimension-reduced dynamic reliability 
evaluation method for improving the efficiency of LQR-controlled 
structures. To simplify the system uncertainty process, non- 
probabilistic approaches to quantifying uncertainty were proposed by 
Wang et al. [26]. A controller that has been designed using a deter-
ministic system may fail when applied to a real system because the 
parameters remain undetermined in real engineering. To solve this 
problem, Liu and Wang [27] proposed the methods of uncertain vibra-
tion active control systems with non-probabilistic time-dependent reli-
ability and artificial neutral networks. 

To the best of the authors’ knowledge, no study has been focused on 
reliability analysis of probabilistic active controlled structures in which 
a PFLC has been applied to civil engineering structures. The PFLC is a 
combination of fuzzy and stochastic theories. The present study inves-
tigated the effects of two structural control systems on the reliability 
analysis of engineering structures with uncertain specifications that 
have been subjected to a dynamic random load which has been formu-
lated using Gaussian white noise. One of the control strategies uses an 
intelligent PFLC as a probabilistic active controller and the other uses a 

classic LQR controller. 
Monte Carlo reliability analysis has been used to estimate the reli-

ability of controlled buildings. The dynamic parameters of structures 
such as the mass, stiffness and damping variables have been considered 
as random Gaussian variables with a variation coefficient of 10%. To this 
end, a single-degree-of-freedom (SDOF) system which uses active 
tendon control and a three-story multiple-degree-of-freedom (MDOF) 
system which uses different placements of active tendons were consid-
ered. These systems have been experimentally examined by Chung et al. 
[28,29]. An intelligent PFLC and classic LQR controller were imple-
mented to compare the performance of these strategies for estimating 
the failure probability of displacement covariance and corresponding 
reliability index. It was found that the PFLC performed better for 
reducing the structural failure of covariance responses. The advantages 
of the intelligent controller over the classic one have been highlighted in 
this paper. 

2. Reliability-based probabilistic control design 

In motion equations for a structure, it is possible to consider unre-
liability as random variable Δ. This random variable is a q-dimensional 
vector with mean µΔ, covariance σΔ and a joint likelihood distribution. 
The equations of motion for an n-DOF building can be represented in the 
framework of state-space as [17]: 

ż = A(Δ)z+B(Δ)u+E(Δ)w (1)  

where the measurement equation is [17]: 

y = C(Δ)z+D(Δ)u+F(Δ)v (2)  

where z is a 2n-dimensional vector of velocity and displacement, A is a 
2n×2n system plant matrix, u is an r-dimensional input vector, B is a 2n 
× 2n matrix describing the position of the applied control forces, w is an 
l-dimensional vector of excitation, E is a 2n × l matrix defining the ef-
fects of the excitation method on the building, y is an m-dimensional 
measuring vector, C is an m × 2n output matrix of the combined 
measured states, D is an m×r feed-through matrix, v is an m-dimensional 
vector for measuring noise and F is an m × m matrix that affects mea-
surement noise. 

White noise is the mathematical idealization of a stationary random 
process with no correlation between the values of the process at different 
times. Parameter [w′v′]′ denotes a white noise vector of zero mean and 
autocorrelation function as [17]: 

E
[

w
v

]

= 0 (3)  

E
[{

w(t)
v(t)

}

{w′

(t + τ) v′

(t + τ) }
]

= 2πSδ(τ) (4)  

where E[⋅] denotes the mathematical expectation, S denotes a matrix of 
uniform spectral density and δ denotes the Dirac function [17]. 

The principle of covariance control was developed in the 1980s [30]. The fundamental 

quantities, which are the product of impulsive inputs and initial conditions, are added one at a 

time to the structure described by Eqs. (1) and (2). These quantities are of special importance 

in the formulation of covariance theory. The total sum effect of all excitations applied one at a 

time satisfies [31]: 

0 = XuwxAT +AXuwx +BUBT +DWDT +X0 (5)  

where Xuwx = X + Xw + Xx, U is the square of the matrix of input 
impulsive disturbance magnitudes, W is the square of the matrix of 
disturbance magnitudes, matrix Xw contains information about system 
excitation caused by impulsive perturbation w(t), X contains information about system exci-

tation due to impulsive inputs in u(t) and matrix Xx contains information about the excitation 

of the system caused by initial condition X0 [31]. 

The formulation of covariance theory is based on these basic concepts. One reason for the 
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development of covariance control theory is that the requirements for many engineering 

systems are stated in terms of the variance of state variables [31]. 
Failure occurs when a safe area first appears in one of the reaction 

values for a device model. The safe area is limited by the failure 
thresholds at different failure possibilities. It is often assumed that 
structural failure will occur when the magnitudes of the structural 
response exceed specified values. Failure is expected to occur in a 
structure when displacement covariance response σx exceeds allowable 
value σ0. 

In the context of structural reliability, the definition of a limit state is 
applied to better identify failure. A limit state is the boundary between 
the desirable and undesirable performance of a structure against failure. 
This boundary can also be mathematically interpreted using a limit state 
function [32]. When using the stationary covariance matrix response for 
stochastic structures, the limit state equation can be written as [17]: 

gi(Δ; u) = σ0i − σxi [Δ; u] (6)  

where σxi [Δ; u] denotes the ith stationary displacement covariance 
response and depends on the uncertainty parameter and chosen control 
technique and σ0i denotes the target value [17]. The failure probability 
is proportional to the probability of undesirable output [32]; thus, it can 
be described using the limit state function as [17]: 

Pf = P(gi(Δ; u) ≤ 0) (7)  

2.1. Reliability analysis 

The current study used the MC algorithm to determine the structural 
reliability of a structural model. The MC simulation makes it possible to 
evaluate the estimation of failure probability which satisfies Eq. (8) as 
[33]: 

Pf =
1
N
∑N

i=1
I(Δ) (8)  

where I(Δ) is defined as [33]: 

I(Δ) =

{
1ifg(Δ; u) ≤ 0
0ifg(Δ; u) > 0

}

(9)  

and N independent sets of simulated values of Δ are generated using the 
probability distribution of each random variable. The likelihood of 
structural failure is determined using MC reliability analysis as [33]: 

Pf =
NH

N
(10)  

where NH is the total number of failures. 

3. Structural model 

Two structural models have been used for probabilistic reliability 
analysis in the present study. The first is a single-degree-of-freedom 
(SDOF) model with active tendons, which was empirically investi-
gated by Chung et al. [28]. The second is a three-degree-of-freedom 
(3DOF) single-bay building with an active tendon controller. This 
structure is comparable to one reported on by Chung et. al [29]. The 
active tendon system contains two activators, a control element and four 
prestressed cables. In structures with MDOF, for each degree of freedom, 
two activators, a controller and four additional prestressed cables are 
required. These structures were selected because of their wide spread 
popularity. 

3.1. SDOF structural model 

The active tendon SDOF system is shown in Fig. 1(a). In the static 
state, the prestress force of each tendon is denoted as R. Eqs. (11) and 
(12) govern the motion of uncontrolled and controlled SODF buildings, 
respectively, with active tendons as: 

mẍ+ cẋ+ kx = − mẍg (11)  

mẍ+ cẋ+ kx = − mẍg − 4kcucosα (12)  

where × is the horizontal relative displacement, u is the activator situ-
ation, c, k, and m are the damping, stiffness and mass of the building. 
respectively, kc is the stiffness of the tendons and xg is the ground ac-
celeration. The definition of the equations of motion in state-space is: 

ż =

⎡

⎣
0 1

−
k
m

−
c
m

⎤

⎦z+

⎡

⎣
0

−
4kccosα

m

⎤

⎦u+
[

0
− 1

]

ẍg (13)  

where z = [x ẋ]
′

. The controller is realized by assuming that the ground 
acceleration can be modeled as Gaussian white noise. The SDOF model 
parameters are listed in Table 1. 

Fig. 1. Modeled structures: (a) SDOF model with active tendons [24]; (b) MDOF systems with active tendons [29].  

Table 1 
Model parameters of SDOF structures [17].   

Mean (µ) Standard deviation (σ) 

c (lb-s/in) 9.02 0.902 
k (lb/in) 7934 793.4 
m (lb-s2/in) 16.69 1.669 
kc (lb/in) 2124 0 
α (◦) 36 0  
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3.2. Structural MDOF model 

More complicated structures have been used as MDOF systems with 
different tendon controller positions. Each system is a single-bay three- 
story structure exposed to 1-D earthquake excitation (Fig. 1b). In case A, 
tendons exist only on the first floor. Cases B and C have tendons on all 
floors; however, all actuators are located on the ground floor in case C 
[34]. The mass, stiffness and damping matrices for a simple shear frame 
are shown in Eq. (14) and the equations of motion for controlled 
structures in cases A, B and C are given in state-space form in Eqs. (15), 
(16), and (17), respectively. 

κQCL ≥ QUF[M] =

⎡

⎣
m1 0 0
0 m2 0
0 0 m3

⎤

⎦, [C] =

⎡

⎣
c1 + c2 − c2 0
− c2 c2 + c3 − c3

0 − c3 c3

⎤

⎦, [K]

=

⎡

⎣
k1 + k2 − k2 0
− k2 k2 + k3 − k3

0 − k3 k3

⎤

⎦

(14)  

[M]Ẍ + [C]Ẋ + [K]X = − [M][1]Ẍg − 4Kccosα

⎡

⎣
u1
0
0

⎤

⎦ (15)  

[M]Ẍ + [C]Ẋ + [K]X = − [M][1]Ẍg + 4Kccosα

⎡

⎣
− 1 1 0
0 − 1 1
0 0 − 1

⎤

⎦

⎡

⎣
u1
u2
u3

⎤

⎦ (16)  

[M]Ẍ + [C]Ẋ + [K]X = − [M][1]Ẍg − 4Kc

⎡

⎣
u1cosα
u2cosβ
u3cosθ

⎤

⎦ (17)  

where ci, ki and mi, respectively, are the damping, stiffness and mass of 
the ith floor of the structure. The state of the activator is denoted as u. 
Eqs. (15)-(17) can be written in matrix form as: 

Msẍ+Csẋ+Ksx = Bsu − MsΓsẍg (18) 

If the state vector is defined as z = [x′ ẋ
′

]
′

, Eq. (1) can be rewritten 
in the framework of the state-space matrices as: 

A =

[
0 I

− M− 1
s Ks − M− 1

s Cs

]

, [B] =

[
0

M− 1
s Bs

]

,E =

[
0

− Γs

]

(19) 

In this paper, the controller is assumed to be deterministic and the 
simulation parameters, damping, stiffness and mass are Gaussian 
random variables. A dispersion coefficient of 10% has been considered 
for the random variables. There is no correlation between the mass, 
damping and stiffness of different floors. The model parameters are 
defined in Table 2 as described by Chung et al. [29]. 

4. Control methods 

4.1. LQR controller 

In the LQR controller, all state variables must be measured and state 
feedback control must be used. The state feedback LQR controller was 
identified by modeling the ground acceleration as Gaussian white noise. 
The quadratic performance indices for the SDOF and MDOF structures 
are shown in Eqs. (20) and (21), respectively, as: 

J = lim
T→∞

1
T

E
[ ∫ T

0

(
kx2 + γkcu2)dt

]

(20)  

J = lim
T→∞

1
T

E
[ ∫ T

0

(
x′ Ksx + γkcu2)dt

]

(21)  

where γ is a control scheme factor. As γ increases, more weight is given 
to incoming energy and, as γ decreases, more weight is put on the strain 
energy [29]. 

4.2. Probabilistic fuzzy logic controller 

There are four main components of PFLS: probabilistic fuzzification, 
fuzzy rules, probabilistic fuzzy inference engine and probabilistic 
defuzzification (Fig. 2). 

The rule base was developed from expert knowledge. These rules are 
stated in IF-THEN form as [14]: 

Rule i: If.x1 is Ã1,i and x2 is Ã2,i… and xn is Ãn,i, then y is B̃i (22). 
where Ã1,i (j = 1, 2, …, n) (i = 1, 2, …, J) is a priori for the jth input 

variable xj, in the ith rule, and B̃i is a subsequent section associated with 
output parameter y [14]. In PFLS, the antecedents and consequents are 
probabilistic fuzzy sets (PFSs). 

4.3. Probabilistic fuzzification 

The fuzzification methods of PFLS are based on the probabilistic 
fuzzy sets. The incorporation of primary MF and secondary PDF leads to 
PFS in probabilistic fuzzy theory [13]. For input variable ×, membership 
grade µ(x) with the secondary PDF becomes a statistical variable. The 
primary MF of PFSs Ãj,i and B̃i can be employed as [15]: 

μ(xj,i) = exp

(

−

(
xj − cj,i

)2

2ξ2
j,i

)

(23)  

where µ(xj,i) is the primary fuzzy membership grade and ξj,i and cj,i, 
respectively, are the width and center of the PFS. The secondary PDF is 
described in the primary MF by randomization of the parameters 
(Fig. 3). 

In this study, center cj,i is a Gaussian distributed variable. It is feasible 
to write the secondary PDF as [15]: 

pÃj,i
(μj,i, xj) =

1
2
̅̅̅̅̅
2π

√
μj,iσj,i

̅̅̅̅̅̅̅̅̅̅̅̅
− 2ξ2

j,i

lnμj,i

√

×

⎛

⎜
⎝exp

⎛

⎜
⎝

−

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2ξ2

j,ilnμj,i

√
+ xj − uj,i

)

2σj,i
2

2⎞

⎟
⎠+ exp

⎛

⎜
⎝

−

(
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2ξ2

j,ilnμj,i

√
+ xj − uj,i

)

2σj,i
2

2⎞

⎟
⎠

⎞

⎟
⎠ (24)  

where μj,i ∈ [0,1] is the primary fuzzy degree parameter, pÃj,i
(μj,i, xj) is 

the probability density function and σj,i and uj,i, respectively, are the 
standard deviation and mean of the Gaussian distribution in terms of cj,i. 

Table 2 
Three-story model parameters [29].    

Mean 
(µ) 

Standard deviation (σ) 

c1 (lb-s/in)  2.6 0.26 
c2 (lb-s/in)  6.3 0.63 
c3 (lb-s/in)  0.35 0.035 
k1 (lb/in)  5034 503.4 
k2 (lb/in)  10,965 1096.5 
k3 (lb/in)  6135 613.5 
m1 (lb-s2/in)  5.6 0.56 
m2 (lb-s2/in)  5.6 0.56 
m3 (lb-s2/in)  5.6 0.56 
kc (lb/in)  2124 0 
θ (◦)  65 0 
β (◦)  55 0 
α (◦)  36 0  
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4.4. Probabilistic fuzzy inference engine 

As PFS consists of a continuous probability density function, the 
inference engine of PFLS can be obtained using a probabilistic frame-
work. Nonlinear mapping between input domain X1 × X2×⋅⋅⋅×Xn and 
output domain Y can be represented using the probabilistic fuzzy 
inference engine as [14,15]: 

RÃ1,i×⋯×Ãn,i→B̃i
(x, y) (25) 

Fuzzy relationship set Ri in Y can be determined using Eq. (26) for 
input × = (x1,…,xn) and the associated MFµX(x) as [15]: 

μRi
(y) = μA1,i

◦μA2,i
◦⋯◦μAM,i

◦μBi
(26)  

where μAj,i 
and μBi 

describe the fuzzy membership grade. Symbol “o” 
denotes a t-norm operation [15]. In this study, minimum operation has 
been used. The probabilistic fuzzy inference in the ith rule is [15]: 

μRi
(y) pRi = p( T

j=1
n

μAj,i
(yi)*μBi

(y)) = p(min(μA1,i
(x1),⋯, μAM,i

(xM))*μBi
(y))

(27)  

where pRi is the probability density function of μRi
(y) and T, and * de-

notes the minimum functioning [15]. The PDF of the input firing level 
can be written as [14,15]:  

where μAi (x) is the firing level of the input variable in the ith rule and 
P(μÃj,i

(xj)) is the cumulative distribution function (CDF) of μÃj,i
. The PDF 

of inference PFS p(μRi
(y)) can be presented as [14,15]: 

p(μRi
(y)) = p(min(μAi (x), μB̃i

(y)))

= p(μAi (x))(1 − P(μB̃i
(y))) − P(μAi (x))p(μB̃i

(y))+ p(μB̃i
(y)) (29)  

where P(μB̃i
(y)) and P(μAi (x)) are the CDF of μB̃i

(y) and μAi (x), respec-
tively. 

4.5. Probabilistic defuzzification 

The defuzzification technique is related to the fuzzy sets. As the 
inference engine is based on probabilistic fuzzy sets, the defuzzification 
method is associated with probability. Thus, a probabilistic defuzzifi-
cation is proposed herein. The probabilistic defuzzification produces the 
final crisp output y based on the mathematical expectation of probabi-
listic output yPFLS as [15]: 

y = E(yPFLS) =
∑

yPFLS⋅P(yPFLS) (30)  

where P(yPFLS) is the probability of yPFLS. The probabilistic output of the 
probabilistic fuzzy logic system can be calculated based on the center-of- 
the set probabilistic defuzzification method as [14]: 

yPFLS =

∑J
i=1yiμAi
∑J

i=1μAi

(31)  

where yi is the center of probabilistic fuzzy set B̃i in rule i, J is the 
number of rules and μAi is the firing level in rule i. 

One limitation of probabilistic theory is the challenge of obtaining 
the likelihood distribution of the product of parameters yi and μAi . To 
overcome this inadequacy, it is proposed to replace yi with the mathe-
matical expectation of yi as shown in Eq. (32) [15]. The discretization 
method is then required to obtain yPFLS using Eq. (33) [15]. In this 

process, firing level µA
i (p(µA

i ) > 0) should be discretized into Q regions 
[μAi,ti , μAi,ti ] which are centered at μAi,1 , μAi,2 , ..., μAi,Q ’; thus, associated 
probability P(μAi,1 ), P(μAi,2 ), ...,P(μAi,Q ) can be estimated using Eq. (34) 
[15]. 

yPFLS =

∑J
i=1E(yi)μAi
∑J

i=1μAi

(32)  

yPFLS =

{∑J
i=1E(yi)μAi,ti
∑J

i=1μAi,ti

}

, ti ∈ {1, ...,Q} (33) 

Fig. 2. Structure of PFLS [14].  

p
(
μAi

(x)
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μÃi,j

(
xj
)
))]

+p
(
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P(μAi,ti ) =

∫ μAi,ti

μAi,ti

p(μAi )d(μAi ) (34) 

Every possible combination of {μA1,t1 ,μA2,t2 , ...,μAJ,tJ } (ti = 1,⋯,Q, i =

1,⋯,J) and the associated probabilities should be considered in order to 
detect both yPFLS and the related P(yPFLS) as [15]: 

p(yPFLS) =
∏J

i=1
p(μAi,ti ) (35)  

4.6. Probabilistic fuzzy logic scheme 

A probabilistic fuzzy logic controller uses uncertain data received 
directly from the structure. In this study, PFLC applies the displacement 
and velocity of the structure as input variables, each with three primary 
MFs and the active control force as an output variable with seven pri-
mary MFs. Two input variables are used to define the fuzzy space and 
describe the efficiency of the PFLS strategy for the control problem. 

Gaussian functions are expressed as the specified mean and standard 
deviation. Thus, Gaussian functions describe uncertainty more accu-
rately than other functions (e.g. triangular, trapezoidal, z-shaped and s- 
shaped functions). Therefore, the Gaussian primary MF for the input and 
output variables can be implemented as described in Eq. (23) using the 
common interval of [-1, 1]. 

PFLC is used here as a stochastic active controller. The membership 
function is thus transformed from a simple mathematical model to a 
probability parameter. Integrating the Gaussian and probability within 
the membership function is believed to give a better answer. Here, PFS 
has been constructed by randomly selecting the center of the Gaussian 
fuzzy set; thus, MF becomes a random parameter that can be introduced 
by the secondary PDF function. As presented in Eq. (24), the standard 
deviation and mean of the fuzzy sets are secondary PDF features of each 
primary MF. 

Fig. 4(a) and 4(b) depict the suggested primary MFs for the input and 
output variables. For both the inputs and output, the same standard 
deviation is assumed for the center of the fuzzy sets. The mean centers of 
the primary MFs are − 1, 0, 1 for the input variables and − 0.75, − 0.5, 

− 0.25, 0, 0.25, 0.5, 0.75 for the output variable. Table 3 shows the fuzzy 
variables [10] and the inference rule is presented in Table 4. 

5. Results and discussion 

Two control strategies have been considered when studying the ef-
ficiency of controlled structures in reliability analysis: the classic LQR 
controller and intelligent PFLC. The mass, stiffness and damping vari-
ables used for SDOF and MDOF structures were random Gaussian vari-
ables with a 10% dispersion coefficient. The structures were exposed to 
dynamic random loading modeled as Gaussian white noise. MC reli-
ability analysis was used to assess the reliability of the controlled 
structures. In the design of the LQR controller, a full-state feedback 
closed-loop system has been used. Control design parameter γ = 1 was 
chosen as the performance index for the LQR controller (Eqs. (20) and 
(21)). 

Spencer et al. [17] showed that the selection of a smaller γ value 
allows more weight to be placed on the strain energy, which will obtain 
a smaller covariance matrix (RMS) response for displacement. In 
optimal control theory, the focus is on finding the control gain matrix 
which can be solved using the Riccati algorithm. Table 5 presents the 
gain matrices of the SDOF and MDOF systems. Table 6 lists the nominal 
covariance responses of displacement and velocity (σx and σx) for the top 
floor of the SDOF and MDOF structures exposed to unit intensity white 
noise. 

The results in Table 6 for the SDOF model indicate that PFLC reduced 
the covariance responses of the displacement and velocity of the top 
floor by 38.6% and 50.6%, respectively, compared to the LQR 
controller. Moreover, as compared to the LQR controller, PFLC reduced 
the displacement covariance response. These results for the top floor in 
cases A, B and C were 12.5%, 36.1% and 20%, respectively (Table 6), 
and the corresponding results for the velocity response were 17.6%, 
9.83% and 15.2%, respectively. The simulation results for the SDOF and 
MDOF structures show that PFLC was able to reduce the RMS responses 
of the top floor. 

Fig. 5(a) and 5(b) show the failure probability results of the 
controlled displacement covariance responses of the SDOF structure and 
MDOF structures using the LQR controller and PFLC for different 

Fig. 3. Probabilistic fuzzy set.  
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threshold levels of σ0. As shown in Fig. 5(a), MC reliability analysis of 
the SDOF structure determined failure probabilities of up to 10-5 for both 
the PFLC and LQR controllers. However, the results indicate that the 
PFLC resulted in the smallest failure probability compared to the LQR 
controller because of the higher threshold level. As shown in Table 7 for 
the SDOF structure, the likelihood of a displacement covariance 
response being greater than 0.0126 in were 9.90e-1 and 2.00e-5, 
respectively, for the LQR controller and PFLC. This indicates a signifi-
cant reduction in the failure probability. 

As shown in Fig. 5(b) for case A, the use of the LQR controller and 
PFLC caused a slight variation (in the failure probability) at large failure 

probabilities. It can be seen that the MC reliability analysis measured the 
failure probabilities of up to 10-4 and 10-5 for increasing threshold levels 
for the LQR controller and PFLC, respectively (Fig. 5(b)). The occurrence 
of failure decreased with the use of the intelligent PFLC, which increased 
the reliability index. The robustness of the controlled-response effi-
ciency in case A for both PFLC and the LQR controller as obtained by MC 
reliability analysis is shown in Table 7. The limit state probabilities of an 
MC displacement response greater than 0.077 in were 2.52e-1 and 
1.00e-5, respectively, for the LQR controller and PFLC. However, the 
reliability indices for the LQR controller and PFLC were 1.9558 and 
4.2650, respectively. 

Fig. 4. Membership functions: (a) primary MFs of input variables; (b) primary MFs of output variables.  
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In case B, with tendons on all floors, MC reliability analysis showed 
that PFLC led to a lower failure probability than the LQR controller for 
threshold levels of σ0 < 0.0345 in (Fig. 5(b)). Further, the results for σ0 
> 0.0345 in indicate that PFLC led to a greater failure probability than 
the LQR controller for large responses. The failure probability for σ0 =

0.0345 in was about 7.75e-2 for both PFLC and the LQR controller. 
However, the failure probability decreases smoothly for PFLC compared 
to the LQR controller (Fig. 5(b)). 

Fig. 5(b) shows that MC reliability analysis for the LQR controller 
provided a failure probability of up to 2.00e-5 for a threshold level of σ0 
= 0.042 in and that an increase in the threshold level to 0.20 in in the 
PFLC led to a failure probability of about 6.00e-5. For example, Table 7 
presents the probability of exceedance of a specified displacement 
threshold level which is less than 0.0345 in for case B. As shown, PFLC 
produced a failure probability of about 8.00e-2 at a threshold level of σ0 
= 0.033 in, while the corresponding value for the LQR controller was 

about 1.119e-1. The reliability values at a threshold level of σ0 = 0.033 
in were 1.30 and 1.20, respectively, for PFLC and the LQR controller. 

As shown in Fig. 5(b) for case C, MC reliability analysis determined 
the failure probability up to 10-5 for both PFLC and the LQR controller as 
the threshold level increased. The controlled structure in case C using 
PFLC caused a decrease in the failure probability compared to the LQR 
controller for a threshold level of σ0 < 0.0325 in. The results also showed 
that, at a threshold level of σ0 = 0.0325 in, the failure probability was 
about 5.20e-4. Finally, PFLC increased the failure probability for a 
threshold level of σ0 > 0.0325 in compared to the LQR controller. For 
example, Table 7 shows the probability of exceedance of a specified 
displacement threshold level of σ0 < 0.0325 in for case C. As shown, 
PFLC produced a failure probability of about 2.92e-2 at a threshold level 
of σ0 = 0.025 in, while the corresponding value for the LQR controller 
was about 3.03e-1. The reliability values at a threshold level of σ0 =

0.025 in were 1.89 and 0.52, respectively, for PFLC and the LQR 
controller. 

Fig. 6(a) and 6(b) show the CDF for the controlled displacement 
covariance response of the SDOF and MDOF structures. The use of PFLC 
for the SDOF structure reduced the controlled displacement response 
compared to use of the LQR controller (Fig. 6(a)). 

Fig. 6(b) shows the CDF for cases A, B, and C for both PFLC and the 
LQR controller to compare to the efficiency of the traditional LQR 
controller and intelligent PFLC on the failure probability of controlled 
displacement responses for MDOF structures. In case A, the PFLC caused 
a substantial decrease in the roof level displacement covariance 
response compared to the LQR controller. A greater probability of large 
responses in the displacement covariance resulted from the use of the 
LQR controller compared to PFLC. The corresponding nominal response 
for PFLC on the top floor in case A was about 12.5% less compared to the 
classic LQR controller (Table 6). 

Fig. 6(b) shows that the CDF for the controlled structure in case B 
with PFLC was a wide distribution function. However, the correspond-
ing results for the LQR controller show a narrow function for the same 
samples. Also, in case C, PFLC significantly decreased the displacement 
covariance response of the roof level compared to the LQR controller. 

When comparing the safety of the controlled buildings with PFLC, 
case A had the most responses for the same failure probability compared 
to cases B and C. Considering a failure likelihood of 0.20 (20%) as the 
threshold level, Fig. 6(b) shows that the corresponding controlled 
covariance responses were about 0.0512, 0.0113 and 0.0169 in for cases 
A, B and C, respectively. Moreover, the failure probability of the 
displacement covariance response at σx = 0.018 in was about 48% for 
PFLC in cases B and C. Note that, for displacement covariance responses 
of less than 0.0181 in, the failure probability in case C was larger than 
for case B using PFLC. However, the failure probability decreased in case 
C in comparison with case B for σx > 0.0181 in. 

PFLC as a probabilistic active controller reduced the displacement 
covariance response and the corresponding failure probability more 
effectively than did the LQR controller. The results of MC reliability 
analysis show that the placement of active tendons on the first floor in 
both the PFLC and LQR controllers was sufficient. However, the use of 
active tendons on all floors was insufficient for reducing the failure 
probability and displacement responses. In case B, the LQR controller 
actually produced a much smaller failure probability than the PFLC for 
all relatively large threshold levels of displacement. The active tendons 
on the top floors in case B had the side effect of them experiencing re-
action forces in the direction opposite to the principle control forces. 

In case C, the reaction forces were supported by the ground, so the 
top floor RMS displacement response was smaller than that in case B 
(using the LQR controller). However, PFLC was able to reduce the 
displacement covariance responses in case B for a failure probability of 
less than 50% compared to case C. By contrast, for failure probabilities 
greater than 50%, the displacement covariance response increased 
compared to case C. It can be concluded that the ability of the PFLC 
approach to handling stochastic uncertainty in fuzzy rules reduced both 

Table 3 
Fuzzy variables.  

MF Variable Definition 

Input P positive 
Z zero 
N negative 

Output PB positive big 
PM positive medium 
PS positive small 
Z zero 
NS negative small 
NM negative medium 
NB negative big  

Table 4 
Inference rules for PFLS.  

Displacement Velocity 
N Z P 

N PB PM PS 
Z PS Z NS 
P NS NM NB  

Table 5 
Transfer function for controllers with SDOF and MDOF.   

Control gain matrix (G) 
SDOF − 1.0969 − 0.0717 
Case A − 2.6315 1.6872 − 0.0281 − 0.0646 − 0.0273 − 0.0099 

Case B  − 1.1264  0.1119 0.0453  − 0.0365  − 0.0158  − 0.0132  
1.0777  − 1.1220 − 0.0533  0.0207  − 0.0308  − 0.0137  

− 0.1181  1.1065 − 1.-258  0.0026  0.0197  − 0.0363 
Case C  − 1.3385  0.4691 0.1108  − 0.0453  0.0021  0.0028  

− 0.1124  − 0.8408 0.3168  0.0015  − 0.0425  0.0033  
0.0585  − 0.0819 − 0.5044  0.0015  0.0024  − 0.0393  

Table 6 
Nominal RMS displacement and velocity for top floor of SDOF and MDOF 
structures using LQR controller and PFLC.   

Nominal covariance responses 
σx (in) σx(in/s) 
No 
control 

LQR 
controller 

PFLC No 
control 

LQR 
controller 

PFLC 

SDOF  0.1688  0.0162  0.0099  3.6862  0.4940  0.2442 
Case 

A  
0.6648  0.0624  0.0546  9.9477  1.1646  0.9598 

Case 
B  

0.6133  0.0310  0.0198  9.4697  0.6576  0.5929 

Case 
C  

0.6582  0.0236  0.0189  9.9450  0.5766  0.4887  
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the structural responses and failure probability and, subsequently, 
increased the reliability index. It is important to note that the reported 
results relate to the specific case analyzed and that a wider range of 
analyses seems necessary. 

6. Conclusion 

This study investigated the efficiency of probabilistic active control 
using a probabilistic fuzzy logic system for MC reliability analysis of civil 
engineering structures with uncertain characteristics subject to a dy-
namic random load which was modeled by Gaussian white noise. The 

Fig. 5. Failure probability for PFLC and LQR controller using MC reliability analysis: (a) SDOF structure; (b) cases A, B and C.  
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mass, stiffness and damping variables of the structures were considered 
to be random Gaussian parameters. The dispersion coefficient of these 
parameters was assumed to be 10%. 

The active tendon system was investigated using structural models 

with a SDOF system and with a three-story MDOF system. The intelligent 
PFLC and classic LQR controller were implemented and their perfor-
mances were compared for estimating the failure probability of 
displacement covariance and the corresponding reliability index of the 

Table 7 
Reliability assessment results of LQR controller and PFLC for SDOF and MDOF structures.   

SDOF Case A Case B Case C  
P (σx ≥ 0.0126) Reliability index, β P (σx ≥ 0.077) Reliability index, β P (σx ≥ 0.033) Reliability index, β P (σx ≥ 0.025) Reliability index, β 

LQR 9.90e-1 0 2.52e-1  1.9558 1.119e-1  1.20 3.03e-1  0.52 
PFLC 2.00e-5 4.1075 1.00e-5  4.2650 8.00e-2  1.30 2.92e-2  1.89  

Fig. 6. CDF of controlled displacement covariance response for PFLC and LQR controllers: (a) SDOF structure; (b) cases A, B and C.  
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structures. The CDF of the SDOF structure indicated that PFLC reduced 
the controlled displacement covariance response compared to the LQR 
controller. Thus, the MC reliability analysis of the SDOF structure 
showed that PFLC provided a lower failure probability for the same 
displacement response compared to the LQR controller. 

The PFLC was able to estimate the failure probability up to 10-5 in 
MDOF structures as the threshold levels increased. The failure proba-
bility of the displacement covariance responses of the top floors in cases 
A, B and C indicated that PFLC is more accurate than the LQR controller 
in terms of the lower probability of an extreme displacement covariance 
response. Reliability analysis in case B, with tendons on all floors, 
showed that PFLC produced the smallest displacement for a failure 
probability of less than 48% compared to case C. However, reliability 
analysis in case C performed better for failure probabilities of greater 
than 48%. Since PFLC is a combination of linguistic and stochastic un-
certainties, the results for the PFLC are more accurate and reliable than 
the LQR controller. 

It is important to note that these results were obtained by assuming 
earthquake excitation as Gaussian white noise. It is strongly recom-
mended that this research be continued on the benchmark structures 
using far-field and near-field earthquake excitation. 

Funding 

The authors declare no specific funding for this work. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This research did not receive any specific grant from funding 
agencies in the public, commercial or not-for-profit sectors. 

References 

[1] Karnik NN, Mendel JM. Introduction to type-2 fuzzy logic systems. IEEE Int Conf 
Fuzzy Syst Proc, 2: 915-920. Anchorage, AK, USA; 1998a. 

[2] Karnik NN, Mendel JM. Type-2 fuzzy logic systems: type-reduction. IEEE Int Conf 
Syst 2:2046-205. San Diego, CA; 1998b. 

[3] Karnik NN, Mendel JM, Liang Q. Type-2 Fuzzy Logic Systems. IEEE Trans Fuzzy 
Syst 1999;7(6):643–58. 

[4] Liang Q, Mendel JM. Interval Type-2 Fuzzy Logic Systems: Theory and Design. 
IEEE Trans Fuzzy Syst 2000;8(5):535–50. 

[5] Karnik NN, Mendel JM. Centroid of a type-2 Fuzzy Set. Inf Sci 2001;132(1–4): 
195–220. 

[6] Mendel JM, John RIB. Type-2 Fuzzy Sets Made Simple. IEEE Trans Fuzzy Syst 
2002;10(2):117–27. 

[7] Mendel JM, John RIB, Liu F. Interval Type-2 Fuzzy Logic Systems Made Simple. 
IEEE Trans Fuzzy Syst 2006;14(6):808–21. 

[8] Mendel JM. Advances in Type-2 Fuzzy Sets and Systems. Inf Sci 2007;177(1): 
84–110. 

[9] Golnargesi S, Shariatmadar H, Razavi HM. Seismic Control of Buildings with Active 
Tuned Mass Damper through Interval Type-2 Fuzzy Logic Controller Including Soil- 
Structure Interaction. Asian J Civ Eng 2018;19(2):177–88. 

[10] Shariatmadar H, Golnargesi S, Akbarzadeh-T M.R. Vibration Control of Buildings 
Using ATMD against Earthquake Excitations through Interval Type-2 Fuzzy Logic 
Controller. Asian J Civ Eng (Bhrc).15 (3): 321-338; 2014. 

[11] Meghdadi AH, Akbarzadeh-T MR. Probabilistic Fuzzy Logic and Probabilistic Fuzzy 
Systems. 10th IEEE Int. Conf. on Fuzzy Syst. 2: 1127–1130. Melbourne, VIC, 
Australia; 2001. 

[12] Li HX, Liu Z. A Probabilistic Fuzzy Logic System: Learning in the Stochastic 
Environment with Incomplete Dynamics. IEEE Int. Conf. on Syst., 383-388. San 
Antonio, TX; 2009. 

[13] Liu Z, Li HX. Probabilistic Fuzzy Logic System: a Tool to Process Stochastic and 
Imprecise Information. IEEE Int. Conf. on Fuzzy Syst. 848-853. Jeju Island; 2009. 

[14] Zhang G, Li HX. An Efficient Configuration for Probabilistic Fuzzy Logic System. 
IEEE Trans Fuzzy Syst 2012;20(5):898–909. 

[15] Zhang G, Li HX, Gan M. Design a Wind Speed Prediction Model Using Probabilistic 
Fuzzy System. IEEE Trans Industr Inform 2012;8(4):819–27. 

[16] Spencer Jr BF, Kaspari DC, Sain MK. Structural control design: a reliability-based 
approach. Proceedings of 1994 American Control Conf. – ACC’94. 1: 1062-1066. 
Baltimore, MD, USA; 1994a. 

[17] Spencer Jr BF, Sain MK, Won CH, Kaspari DC, Sain PM. Reliability- Based measures 
of Structural Control Robustness. Struct Saf 1994;15(1–2):111–29. 

[18] Battaini M, Casciati F, Faravelli L. Reliability Analysis of Controlled Structures. 
Proceedings Intell. Inf. Syst. IIS’97, 589-593. Grand Bahama Island; 1997. 

[19] May BS, Beck JL. Probabilistic Control for the Active Mass Driver Benchmark 
Structural Models. Earthq Eng Struct Dyn 1998;27(11):1331–46. 

[20] Venini P, Mariani C. Reliability as a measure of Active Control Effectiveness. 
Comput Struct 1999;73(1–5):465–73. 

[21] Field Jr RV, Bergman LA. Reliability-based approach to linear covariance control 
design. J Eng Mech 1998;124(2):193–8. 

[22] Shariatmadar H, Behnam-R G. Active Control of Structures and Reliability Analysis 
by Subset Simulation Method. NationalPark-Forschung in Der SCHWEIZ 
(Switzerland Research Park Journal) 2013;102(3). 

[23] Wang L, Wang X, Li Y, Lin G, Qiu Z. Structural time-dependent Reliability 
Assessment of the Vibration Active Control System with unknown-but-bounded 
Uncertainties. Struct Control Health Monit 2017;24(10):e1965. 

[24] Zhang L, Zhang J, You L, Zhou S. Reliability Analysis of Structures Based on a 
Probability-Uncertainty Hybrid Model. Qual Reliab Eng Int 2019;35(1):263–79. 

[25] Wang L, Liu J, Zhou Z, Li Y. A Two-Stage Dimension-Reduced Dynamic Reliability 
Evaluation (TD-DRE) Method for Vibration Control Structures Based on Interval 
Collocation and Narrow Bounds Theories. ISA Trans 2022. 

[26] Wang L, Zhou Z, Liu J. Interval-Based Optimal Trajectory Tracking Control Method 
for Manipulators with Clearance Considering Time-Dependent Reliability 
Constraints. Aerosp Sci Technol 2022;128:107745. 

[27] Liu J, Wang L. Two-Stage Vibration-Suppression framework for Optimal Robust 
Placements Design and Reliable PID Gains Design via Set-Crossing Theory and 
Artificial Neural Network. Reliab Eng Syst Saf 2023;230:108956. 

[28] Chung LL, Reinhorn AM, Soong TT. Experiments on Active Control of Seismic 
Structures. J Eng Mech 1988;114(2):241–56. 

[29] Chung LL, Lin RC, Soong TT, Reinhorn AM. Experimental Study of Active Control 
for MDOF Seismic Structures. J Eng Mech 1989;115(8):1609–27. 

[30] Hotz A, Skelton RE. Covariance Control Theory. Int J Control 1987;46(1):13–32. 
[31] Robinson, W. A Pneumatic Semi-Active Control Methodology for Vibration Control 

of Air Spring Based Suspension Systems. Graduate Theses and Dissertations, Iowa 
State University; 2012. 

[32] Nowak AS, Collins KR. Reliability of Structures. Boston: McGraw-Hill; 2000. 
[33] Tee KF, Khan LR, Chen H-P. Probabilistic Failure Analysis of Underground Flexible 

Pipes. Struct Eng Mech 2013;47(2):167–83. 
[34] Nigdeli SM, Boduroglu MH. Active tendons for seismic control of buildings. Int J 

Civil Environ Eng 2010;4(8):267–73. 

A. Jalali and H. Shariatmadar                                                                                                                                                                                                               

http://refhub.elsevier.com/S2352-0124(23)00642-2/h0015
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0015
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0020
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0020
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0025
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0025
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0030
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0030
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0035
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0035
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0040
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0040
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0045
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0045
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0045
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0070
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0070
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0075
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0075
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0085
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0085
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0095
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0095
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0100
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0100
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0105
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0105
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0110
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0110
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0110
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0115
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0115
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0115
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0120
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0120
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0125
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0125
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0125
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0130
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0130
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0130
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0135
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0135
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0135
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0140
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0140
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0145
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0145
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0150
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0160
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0165
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0165
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0170
http://refhub.elsevier.com/S2352-0124(23)00642-2/h0170

	Reliability analysis of controlled structures based on probabilistic active controller
	1 Introduction
	2 Reliability-based probabilistic control design
	2.1 Reliability analysis

	3 Structural model
	3.1 SDOF structural model
	3.2 Structural MDOF model

	4 Control methods
	4.1 LQR controller
	4.2 Probabilistic fuzzy logic controller
	4.3 Probabilistic fuzzification
	4.4 Probabilistic fuzzy inference engine
	4.5 Probabilistic defuzzification
	4.6 Probabilistic fuzzy logic scheme

	5 Results and discussion
	6 Conclusion
	Funding
	Declaration of Competing Interest
	Acknowledgments
	References


