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Abstract 13 

The gradual accumulation of noisy evidence for or against options is the main step in the perceptual 14 

decision-making process. Using brain-wide electrophysiological recording in mice (Steinmetz et al., 15 

2019), we examined neural correlates of evidence accumulation across brain areas. We demonstrated that 16 

the neurons with Drift-Diffusion-Model-like firing rate activity (i.e., evidence-sensitive ramping firing 17 

rate) were distributed across the brain. Exploring the underlying neural mechanism of evidence 18 

accumulation for the DDM-like neurons revealed different accumulation mechanisms (i.e. single and 19 

race) both within and across the brain areas. Our findings support the hypothesis that evidence 20 

accumulation is happening through multiple integration mechanisms in the brain. We further explored the 21 

timescale of the integration process in the single and race accumulator models. The results demonstrated 22 

that the accumulator microcircuits within each brain area had distinct properties in terms of their 23 

integration timescale, which were organized hierarchically across the brain. These findings support the 24 

existence of evidence accumulation over multiple timescales. Besides the variability of integration 25 

timescale across the brain, a heterogeneity of timescales was observed within each brain area as well. We 26 

demonstrated that this variability reflected the diversity of microcircuit parameters, such that 27 

accumulators with longer integration timescales had higher recurrent excitation strength. 28 

 29 
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Significance Statement 32 

In this paper we characterized the perceptual decision-making process across the mouse brain. Our 33 

findings shed more light on the decision-making process by analyzing the brain-wide electrophysiological 34 

recording dataset. This paper contains a comprehensive analysis to characterize different aspects of the 35 

evidence accumulation process, including the distribution of accumulator-like neurons, the timescale of 36 

information integration, accumulation architecture, and the relationship between accumulators’ timescale 37 

and their integration circuit properties. 38 

 39 

1- Introduction 40 

Decision-making, the process of choosing between options, is a fundamental cognitive function. Different 41 

types of decision-making, including perceptual (Gold & Shadlen, 2007) and value-based decision-making 42 

(Hunt et al., 2012), is thought to be characterized by a gradual accumulation of noisy evidence for or 43 

against options until a threshold is reached and a decision is made. The study of the evidence 44 

accumulation process started within cognitive psychology, where researchers explored sequential 45 

sampling models, i.e., the drift-diffusion model (DDM), using behavioral data (Ratcliff & McKoon, 46 

2008). In these models, noisy information is accumulated over time from a starting point toward a 47 

decision boundary.  48 

Later studies on the neural basis of decision-making developed computational models for the 49 

accumulation process using neurons showing signatures of the drift-diffusion model, referred to as DDM-50 

like neurons (Mazurek et al., 2003; Wang, 2002). DDM-like neurons exhibit ramping-like firing rate 51 

activity modulated with stimulus coherency. These studies explored some brain regions containing DDM-52 

like neurons, such as the posterior parietal cortex (PPC) (Roitman & Shadlen, 2002; Shadlen & 53 

Newsome, 2001), frontal eye field (FEF) (Ding & Gold, 2012; Kim & Shadlen, 1999), striatum (Ding & 54 

Gold, 2010), and superior colliculus (Horwitz & Newsome, 1999) in monkeys, as well as the frontal 55 

orienting field (FOF) and PPC (Hanks et al., 2015) in rats. 56 

Although previous studies on the neural basis of decision-making explored a few brain regions showing 57 

the neural correlate of evidence accumulation, the distribution of DDM-like neurons across the brain is 58 

still unknown. Recent brain-wide electrophysiological and calcium imaging studies in mice revealed that 59 

neurons involved in decision-making are distributed across the brain (Steinmetz et al., 2019; Zatka-Haas 60 

et al., 2021). These findings motivated us to explore the existence of choice-selective neurons that have 61 

DDM-like firing rate activity across the brain. Similar to the drift-diffusion process, these neurons have 62 

ramping-like firing rates associated with the strength of stimulus evidence, such that stronger evidence 63 
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levels lead to a faster ramping of firing rate and vice versa. However, these patterns of activity can be 64 

explained by different accumulation mechanisms, i.e., single (DDM) and dual accumulators (Bogacz et 65 

al., 2006). Although several accumulation models have been proposed in previous studies (Machens et al., 66 

2005; Mazurek et al., 2003; Usher & McClelland, 2001; Wong & Wang, 2006), we examined the popular 67 

accumulator circuits (i.e., single and race accumulators) to characterize the underlying neural mechanism 68 

of evidence accumulation.  69 

Moreover, the distributed coding of evidence accumulation suggests multiple timescales over this 70 

cognitive process (Chen et al., 2015). This property stems from the fact that each brain area exhibits a 71 

distinct timescale leading to a hierarchical organization that largely follows the anatomical hierarchy 72 

(Chen et al., 2015; Honey et al., 2012; Imani et al., 2023; Murray et al., 2014; Pinto et al., 2022; Rossi-73 

Pool et al., 2021). As such, we used the brain-wide electrophysiological recording data recently published 74 

by (Steinmetz et al., 2019) to investigate the distribution of DDM-like neurons and the underlying neural 75 

mechanisms of evidence accumulation across the brain. We demonstrated that evidence accumulation is a 76 

distributed process across the brain that is happening through multiple accumulation mechanisms. Our 77 

findings revealed that some areas are unilateral and strongly prefer the single accumulation mechanism. 78 

On the other hand, some areas are bilateral and contain subpopulations with both single and dual 79 

accumulation mechanisms. We further studied the timescale of integration using the simulated data from 80 

accumulator models across the brain. The results demonstrated that the accumulator microcircuits have 81 

distinct timescales, which were organized hierarchically across the brain, suggesting the existence of 82 

evidence accumulation over multiple timescales. Moreover, we observed a heterogeneity of integration 83 

timescales within each brain region, reflecting the diversity of recurrent connection strength of the 84 

accumulators. Our findings support the hypothesis that microcircuits with longer integration timescales 85 

have higher recurrent connection strength.  86 

 87 

2- Materials and Methods 88 

2-1 Behavioral task 89 

We used a publicly available dataset published recently by (Steinmetz et al., 2019). The dataset comprises 90 

behavioral and physiological data from ten mice over 39 sessions on a two-alternative unforced choice 91 

task. Mice sit on a plastic apparatus with their forepaws on a rotating wheel, surrounded by three 92 

computer monitors. At each trial that was started by briefly holding the wheel, visual stimuli (Gabor patch 93 

with sigma 9 and 45° direction) with four grading levels were displayed on the right, left, both, or neither 94 
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screen (Figure 1a). The stimulus was presented in the mouse's central monocular zones, and the animal 95 

did not need to move its head to perceive it.  96 

Mice earned water by turning the wheel to move the stimulus with the highest contrast to the center of the 97 

screen or by not turning the wheel if neither stimulus was displayed. Otherwise, they received a white 98 

noise sound for one second to indicate an improper wheel movement. Therefore, three types of trial 99 

outcomes (right turn, left turn, and no turn) leads to reward. After the stimulus presentation, a random 100 

delay interval of 0.5–1.2s was considered, during which the mouse could freely turn the wheel without 101 

incentive. At the end of the interval, an auditory tone cue (8 kHz pure tone for 0.2s) was played, at which 102 

point the visual stimulus position became coupled with the wheel movement. 103 

 104 

2-2 Neural recording 105 

Recordings were made in the left hemisphere using the Neuropixel electrode arrays from approximately 106 

30,000 neurons in 42 brain areas in 39 sessions. Using the Neuropixel probes with the ability to record 107 

from multiple brain regions produced data simultaneously recorded from several regions in each session. 108 

The neural activity of the regions was divided into seven main groups according to the Allen Common 109 

Coordinate Framework (CCF) atlas (Wang et al., 2020) (Figure 1b). We performed all the analyses on 110 

these groups of regions. 111 

 112 

2-3 Single neuron decoding analysis 113 

We performed the single neuron decoding using the area under the receiver operating characteristic 114 

(auROC) analysis. The auROC metric was initially employed to measure the neuron’s choice probability 115 

based on the Mann–Whitney U statistic (Britten et al., 1996). Using this nonparametric statistical method, 116 

we can measure the differences between spike count distributions of two conditions (or behavioral 117 

outputs) to examine whether the neuron’s firing rate is significantly greater than the other condition. 118 

According to the task design, the stimulus and choice encoding are highly correlated and cause the 119 

decoding analysis. To overcome this limitation, we used combined condition auROC analysis to compute 120 

stimulus selectivity, choice probability, detect probability, and evidence selectivity. The trials were then 121 

divided into different groups according to the task conditions, and the weighted average of the auROC 122 

values across conditions was considered the final decoding result. For this analysis, the neuron's spikes 123 

were binned at 0.005s and smoothed using a causal half-Gaussian kernel with a standard deviation of 124 

0.02s. We also z-scored the firing rate of the neurons by subtracting the mean and dividing by the 125 

standard deviation calculated during the baseline period (-0.9s to -0.1s, stimulus aligned) across all trials. 126 
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 127 

2-3-1 Stimulus selectivity 128 

We computed the contra stimulus selectivity using the combined condition auROC metric. Accordingly, 129 

the trials were divided into 12 groups based on the different choice alternatives (right, left, NoGo) and 130 

stimulus contrast levels (0, 0.25, 0.5, 1) presented on the left screen. We then applied the Mann–Whitney 131 

U statistic to measure the stimulus selectivity by comparing the spike counts of a neuron within the trials 132 

with the right stimulus higher than zero with the trials having the right stimulus equal to zero. The final 133 

stimulus selectivity was measured using the weighted average across 12 conditions.  134 

 135 

2-3-2 Choice Probability 136 

Using the combined condition auROC statistic, we tested whether the neurons encode the choice. To 137 

compensate for the effect of the stimulus conditions, we divided the trials into 12 groups based on 138 

different combinations of right and left stimulus contrast levels, ignoring equal contrast conditions. 139 

Within each condition, we used the Mann–Whitney U statistic to compare the spike count of the trials 140 

with right/left choice with another choice in a window ranging from -0.3s to 0.1s (aligned with wheel 141 

movement). A weighted average was then utilized to compute the final choice probability over different 142 

conditions. The absolute deviation of auROC from the chance level was considered as the choice 143 

selectivity: 𝐶𝑃 =  |𝑎𝑢𝑅𝑂𝐶 − 0.5|. 144 

 145 

2-3-3 Detect probability 146 

We also measured how well the neural activity encodes whether or not the animal turned the wheel 147 

correctly and referred to this measurement as 'Detect probability' (Hashemi et al., 2018). Accordingly, the 148 

trials were divided into 12 groups based on the different combinations of the right and left stimulus 149 

contrast levels, excluding the conditions with equal contrast levels. We then measured whether the Hit 150 

(correctly turning the wheel) trials had greater neural activity than the Missed trials using the Mann–151 

Whitney U statistic during the stimulus epoch (-0.1s to 0.3s). The level of selectivity for this measurement 152 

was calculated as the deviation of auROC from the chance level: 𝐷𝑃 =  𝑎𝑢𝑅𝑂𝐶 − 0.5. 153 

 154 

2-3-4 Evidence selectivity 155 

We measured how a neuron can encode the evidence (difference of right and left stimulus contrast levels) 156 

and defined it as 'Evidence selectivity'. The trials were divided into nine groups according to the number 157 
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of evidence levels (ranging from -1 to 1 with a step size of 0.25). We then tested to see whether the group 158 

of trials with the higher evidence level had greater neural activity than all those groups with lower 159 

evidence. Final evidence selectivity was calculated by taking the weighted average of auROC values 160 

across eight group comparisons. Absolute deviation of auROC from the chance level was considered as 161 

the measure of evidence selectivity: 𝐸𝑆 =  |𝑎𝑢𝑅𝑂𝐶 − 0.5|. 162 

 163 

2-3-5 Significant auROC selectivity 164 

We also performed the auROC analysis on the shuffled trial labels to identify significantly selective 165 

neurons. We created the distribution of the auROC on the shuffled trials by repeating the shuffling 166 

process 100 times. The selectivity of a neuron at time t was considered significant if the value of the true 167 

auROC was outside the confidence interval of the shuffled auROC values. We restricted our analysis to 168 

the time points with at least two significant neighbors to correct the multiple comparisons. 169 

 170 

2-4 Neuron latency 171 

Evidence accumulation usually starts after a latency, mainly related to the visual encoding state (Roitman 172 

& Shadlen, 2002). In this study, we restricted the evidence accumulation analysis to the neural activity 173 

within the window starting at the end of latency until 50ms after wheel movement. We used auROC 174 

analysis to compute latency which appears like the time of significant change in neural activity compared 175 

with the baseline activity.  176 

Accordingly, the spike counts of the Go trials having reaction times within the range (0.15s to 0.5s) were 177 

smoothed using a causal boxcar filter of size 100ms during (-0.5s to 0.5s) aligned to stimulus onset. We 178 

then computed the average firing rate across neurons within each trial, followed by the Mann–Whitney U 179 

statistic to compare the neural activity of trials within the stimulus (0s to 0.5s) and a point in the baseline 180 

(-0.1s) epochs. The significance level (p-value < 0.05) was employed to detect the samples with 181 

significant neural activity changes. We restricted our analysis to the significant points with at least two 182 

significant neighbors to correct for multiple comparisons. The latency was then selected as the first time 183 

point with significant changes in neural activity. 184 

 185 

2-5 Demixed principal component analysis (dPCA) 186 

Most neurons, especially in the higher cortical areas, encode different types of task information and 187 

display a mixed selectivity (Kobak et al., 2016). This complexity in response selectivity of the neurons 188 
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can conceal their expressed information. To overcome this limitation, we exploited the advantage of 189 

demixed principal component analysis (dPCA) to decompose the population neural activity into a few 190 

latent components, each capturing a specific aspect of the task (Kobak et al., 2016). The resulting dPCA 191 

subspace captures most variation in the data and decouples different task-related components.  192 

According to the dPCA analysis, we prepared a matrix 𝑋 × × ×  containing marginalized activity of N 193 

neurons over four stimulus contrast levels (1, 0.5, 0.25, 0) and two decision alternatives (Hit and Missed) 194 

during T time points within the stimulus epoch (-0.1s to 0.3s). We excluded the neurons having an 195 

average total spike count lower than one during the reaction time boundary (from stimulus onset until 196 

wheel movement). We first divided trials into four groups to construct the matrix based on the 197 

contralateral stimulus contrast levels. Within each group, the average trial activity of each neuron was 198 

then computed based on whether or not the animal turned the wheel. The dPCA algorithm was applied to 199 

the neural population matrix to construct a latent subspace with 20 task-related principal components. The 200 

resulting components characterized the decision (𝑋 ), stimulus (𝑋 ), stimulus-decision interaction 201 

(𝑋 ), and condition-independent (𝑋 ) information by estimating task-specific decoders 𝐹  and encoders 202 𝐷  using the following loss function (Kobak et al., 2016):  203 𝐿 =  ‖𝑋 − 𝐹 𝐷 𝑋‖   , 𝛼 ∈ 𝑡, 𝑠𝑡, 𝑑𝑡, 𝑠𝑑𝑡 (1) 

We computed the explained variances 𝑅  (R-squared) of the neurons by projecting the neural activity to 204 

the task-specific principal components using the decoder matrices 𝐷  and reconstructing the neural 205 

activity with the decoder matrices 𝐹  as follows: 206 

𝑋 =  14 12 1𝑇 𝑋  
𝑅 = 1 −  ∑ ∑ ∑ (  )∑ ∑ ∑ ( )   ,      𝛼 ∈ 𝑠𝑡, 𝑑𝑡 (2)

We then separated the neurons into stimulus, decision, and interaction groups within each brain region 207 

using their task-related R-squared values (𝑅  , 𝑅 ) and fuzzy C-means clustering algorithm (Bezdek, 208 

2013). We excluded the neurons within the stimulus and interaction clusters from further analysis.  209 

 210 

2-6 Integration timescale 211 

We measured the integration timescale of the subpopulations using the spike count autocorrelation 212 

structure of the simulated neural activity. Accordingly, we simulated fixed-length trials of duration 200ms 213 
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for each subpopulation using the preferred (single or race) accumulator model during a 50-times sampling 214 

process. We then estimated the timescale of simulated neurons within each sample set of trials and 215 

considered the average timescale across the 50 samples as the final timescale for the subpopulation. To 216 

estimate the timescale of simulated neurons at each sampling iteration, we computed the Pearson's 217 

correlation of binned spike counts between each pair of time bins 𝑖𝛥 and 𝑗𝛥 (𝑗 > 𝑖, 𝛥 =  0.025𝑠) across 218 

trials. The resulting autocorrelation values follow an exponential decay which can be explained using the 219 

following equation (Murray et al., 2014): 220 

𝑅(𝑘𝛥)  =  𝐴 × (𝑒𝑥𝑝(− 𝑘𝛥𝜏 )  +  𝐵) (3) 

where A is the amplitude, B indicates the contribution of timescales longer than the observation window, 221 𝑘𝛥 is the time lag, and 𝜏 denotes the timescale.  222 

We fitted equation (3) to the combined autocorrelation structure of the simulated neurons within each 223 

subpopulation using the Levenberg-Marquardt method. The time lag with the greatest autocorrelation 224 

reduction was selected as the starting point for overcoming the negative adaptation (Murray et al., 2014). 225 

We tried five different initial parameter values to select the best model having the lowest mean square 226 

error (MSE) value. We eventually computed the average of timescales across 50 sets of simulated trials. 227 

Similarly, the global population-level timescale of each brain region was estimated based on the 228 

combined autocorrelation structure of the simulated neurons. We bootstrapped subpopulations within 229 

each brain area 100 times to compute the confidence interval of the population-level timescales. We 230 

further applied a Wilcoxon rank sum test on the bootstrapped samples to test for significant differences 231 

between regions. 232 

 233 

2-7 Recurrent switching linear dynamical system (rSLDS) 234 

We employed a general framework proposed by (Zoltowski et al., 2020) for modeling the evidence 235 

accumulation process. Different evidence accumulation models are formulated in this framework as a 236 

recurrent switching linear dynamical system (rSLDS). The rSLDS contains multiple discrete states 237 𝑧 ∈ 1, … , 𝐾  and each state is associated with specific linear dynamics (Figure 3a) as follows: 238 𝑥 ~𝑁(𝐴 𝑥 + 𝑉 𝑢 + 𝑏 , 𝑄 ) (4) 

where 𝑥 ∈ 𝑅  is the continuous state, 𝑢 ∈ 𝑅  represents input streams, 𝑄 ∈ 𝑅 ×  is the noise 239 

covariance matrix, and the matrices 𝐴 ∈ 𝑅 ×  and 𝑉 ∈ 𝑅 × , and vector 𝑏 ∈ 𝑅  denote the state-240 

specific dynamic parameters. Transition probabilities between discrete states are parameterized as 241 

follows: 242 
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𝑝(𝑧 , 𝑥 ) ∝ 𝑒𝑥𝑝 𝑅 𝑥 + 𝑟 (5) 

where 𝑅 ∈ 𝑅 ×  and 𝑟 ∈ 𝑅  parameterize the influence of the continuous state on the discrete 243 

state transitions. The observation model was used to map the continuous latent variables 𝑥  into the 244 

overserved variable 𝑦  using the Poisson distribution of a generalized linear model as follows: 245 𝑦 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑓(𝐶𝑥 + 𝑑)∆ ) (6) 

where 𝑓(𝑥) = 𝑙𝑜𝑔 1 + 𝑒𝑥𝑝 (𝑥)  is the Softplus function, and ∆  denotes the size of time bins. The weight 246 

parameter 𝐶 𝜖 𝑅 ×  was used to map the latent variable 𝑥 ∈ 𝑅  into the activity of N neurons 𝑦 . 247 

However, the offset parameter 𝑑 𝜖 𝑅  in the observation model is shared across the neurons. 248 

  249 

2-7-1 Single accumulator 250 

A single accumulator model, which is commonly referred to as the drift-diffusion model (DDM), is 251 

described with a single decision variable that accumulates the differences in the input streams (Bogacz et 252 

al., 2006). This accumulation mechanism has two decision boundaries, one for each choice alternative. 253 

When the decision variable reaches one of the boundaries, the decision is made.  254 

To reformulate the rSLDS framework to a single accumulator, we considered three discrete states for the 255 

accumulation (𝑧 = 𝑎𝑐𝑐) phase, right wheel movement (𝑧 = 𝑟𝑤𝑚), and left wheel movement (𝑧 =256 𝑙𝑤𝑚) (Figure 3c). During the evidence accumulation state, the one-dimensional continuous variable 257 𝑥 ∈ 𝑅  accumulates the differences between right and left input streams 𝑢 ∈ 𝑅 . The state transition 258 

was also parameterized such that when the continuous variable 𝑥  reaches one of the decision boundaries 259 

(±B), the discrete state switches from the accumulation state (𝑧 = 𝑎𝑐𝑐) to the right wheel movement 260 

(𝑧 = 𝑟𝑤𝑚) or left wheel movement (𝑧 = 𝑙𝑤𝑚) states. Therefore, the transition parameters were set as 261 

follows: 262 

𝑅 = 01−1   , 𝑟 = 0−𝐵−𝐵 ,      𝛾 = 1 , 𝐵 = 1 (7) 

According to the settings, increasing the value of 𝑥  toward B leads to an increase in the probability of 263 

transition from the 𝑧 = 𝑎𝑐𝑐 to 𝑧 = 𝑟𝑤𝑚. On the other hand, decreasing the value of 𝑥  toward -B, 264 

increases the probability of transition to 𝑧 = 𝑙𝑤𝑚. 265 

In equation (4), the term 𝐴 ∈ 𝑅, denotes the recurrent connection strength, and the term 𝑉 ∈ 𝑅 determines 266 

the weight of the received input stream (Figure 3b). We excluded the term 𝑏 ∈ 𝑅 from our analysis. In the 267 
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accumulation state (𝑧 = 𝑎𝑐𝑐), we only trained the term 𝐴  and the noise 𝑄 , and set the term 𝑉  268 

constant. In other states (𝑧 = 𝑟𝑤𝑚, 𝑙𝑤𝑚), we just trained the noise variance Q and considered 𝐴 =269 𝐴 = 1 and  𝑉 = 𝑉 = 0. We tried different initial values for the parameters 𝐴 ∈ 0.95, 1 ,270 𝑉 ∈ 0.01, 0.02, 0.03, 0.04, 0.05 , 𝑄 ∈ 0.005, 0.01  to select the best combination of parameters that 271 

produced maximum log-likelihood. 272 

 273 

2-7-2 Independent race accumulator 274 

An independent race accumulator model contains two integrators that accumulate the relative or absolute 275 

input streams supporting each choice alternative (Bogacz et al., 2006). In this accumulation mechanism, a 276 

decision is made favoring the integrator that reaches the decision boundary sooner. To reformulate the 277 

rSLDS into an independent race accumulator mechanism, we considered a two-dimensional continuous 278 

variable 𝑥 ∈ 𝑅  for two accumulators. These variables accumulated the absolute right/left input streams 279 𝑢 ∈ 𝑅  independently. We set the parameters of the dynamic model (𝐴 , 𝑉 , 𝑄 ) to be diagonal 280 

such that the decision variables integrate the input streams independently. Similar to the single 281 

accumulator, we considered three discrete states for the accumulation (𝑧 = 𝑎𝑐𝑐) phase, right wheel 282 

movement (𝑧 = 𝑟𝑤𝑚), and left wheel movement (𝑧 = 𝑙𝑤𝑚) (Figure 3c). 283 

We also set the transition parameters such that the probability of switching from the accumulation state to 284 

one of the wheel movement states increases by approaching 𝑥  to decision boundary B. Accordingly, the 285 

transition parameters were set as follows: 286 

𝑅 = 0 01 00 1   , 𝑟 = 0−𝐵−𝐵 ,  𝛾 = 1 , 𝐵 = 1 (8) 

In equation (4), on-diagonal values in matrix 𝐴 ∈ 𝑅  determines the excitatory connection strength for 287 

two accumulators. The on-diagonal values in matrix 𝑉 ∈ 𝑅  also denotes the weight of the received input 288 

stream for each accumulator variable (Figure 3b). Similar to the single accumulator mechanism, we 289 

excluded term b from our analysis. In the accumulation state (𝑧 = 𝑎𝑐𝑐), we only trained matrices 𝐴  290 

and noise 𝑄 , and set the matrix 𝑉  constant. In other states (𝑧 = 𝑟𝑤𝑚, 𝑙𝑤𝑚), we just trained the 291 

noise covariance matrix Q and considered 𝐴 = 𝐴 = 𝐼 and  𝑉 = 𝑉 =  0 , . We tried 292 

different initial values for the on-diagonal values of matrices 293 𝐴 ∈ 0.95, 1 , 𝑉 ∈ 0.01, 0.02, 0.03 , 𝑄 ∈ 0.005, 0.01  to select the best combinations of 294 

parameters that produced maximum log-likelihood. 295 

 296 
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2-7-3 Dependent race accumulator 297 

Dependent race models are a more general form of dual accumulators containing mutual (Machens et al., 298 

2005; Usher & McClelland, 2001; Wong & Wang, 2006) and feedforward connections (Palmeri et al., 299 

2015; Purcell et al., 2010). In these models, each decision variable accumulates input streams supporting 300 

each choice alternative and the decision is made favoring the integrator that reaches the respective 301 

decision boundary sooner.  302 

Similar to the independent race model, we consider a two-dimensional continuous variable 𝑥 ∈ 𝑅  to 303 

reformulate rSLDS into the dependent race accumulator. To model the mutual and feedforward 304 

connections, we considered parameters in the dynamic model (𝐴 , 𝑉 , 𝑄 ) to be fully connected 305 

rather than diagonal. Due to the negative and positive decision boundaries in this model, we considered 306 

five discrete states for the accumulation (𝑧 = 𝑎𝑐𝑐) phase, positive/negative right wheel movement 307 

(𝑧 = p𝑟𝑤𝑚, 𝑧 = n𝑟𝑤𝑚), and positive/negative left wheel movement (𝑧 = p𝑙𝑤𝑚, 𝑧 = n𝑙𝑤𝑚). 308 

The transition parameters are set such that the probability of switching from the accumulation state to the 309 

right or left wheel movement states increases by approaching 𝑥  to each of the decision boundaries ±B. 310 

Accordingly, the transition parameters were set as follows: 311 

𝑅 = ⎣⎢⎢⎢
⎡ 0 01 0−100 01−1⎦⎥⎥⎥

⎤   , 𝑟 = ⎣⎢⎢⎢
⎡ 0−𝐵−𝐵−𝐵−𝐵⎦⎥⎥⎥

⎤ ,       𝛾 = 1 , 𝐵 = 1 (9) 

In the accumulation state (𝑧 = 𝑎𝑐𝑐), we only trained matrices 𝐴  and noise 𝑄 , and set the matrix 312 𝑉  constant. In the other four states, we just trained the noise covariance matrices Q and considered 313 

matrices A and V to be the identity and null matrices, respectively. We tried different initial values for the 314 

on-diagonal parameters 𝐴 ∈ 0.95, 1 , 𝑉 ∈ 0.01, 0.02, 0.03 , 𝑄 ∈ 0.01  and off-diagonal 315 

parameters 𝐴 ∈ −0.05 , 𝑉 ∈ −0.01, − 0.02, − 0.03  to select the best combinations of 316 

parameters that produced maximum log-likelihood. 317 

 318 

2-7-4 Collapsing boundary 319 

In the accumulators with the collapsing boundary, less evidence is required to reach the boundary as time 320 

passes so that the boundaries collapse toward the center (Figure 3d). This mechanism is much like the 321 

urgency signal, magnifying the evidence as time passes (Ratcliff et al., 2016). Besides the constant 322 

decision boundaries, we also evaluated the collapsing boundary in single and dual accumulators.  323 
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In the rSLDS framework, we can reformulate equation (5) to implement the linear collapsing boundary 324 

for a single accumulator as follows (Zoltowski et al., 2020): 325 

𝑝(𝑧 , 𝑥 ) ∝ 𝑒𝑥𝑝 𝛾 𝑅 𝑥 + 𝑟 + 𝑊 𝑢 , 𝑊 = 0 00 𝛽0 𝛽 , 𝑢 = 𝑢𝑡  (10) 

Where 𝑊𝑢  is the linear function of time points t and vector 𝑢  contains the input streams and the current 326 

time. This equation describes a linear collapsing boundary with the rate of 𝛽. We need to add another 327 

column to the matrix V in equation (4) and set it to zero with this new formulation. We further modified 328 

equation (9) to formulate a nonlinear collapsing boundary for a single accumulator as follows: 329 𝑝(𝑧 , 𝑥 ) ∝ 𝑒𝑥𝑝 𝛾 𝑅𝑥 + 𝑟 + 𝑊𝑓(𝑢 )  

(11)
𝑓(𝑡) = 𝛽 + (1 − 𝛽) × exp (−𝑡𝜏 ) 

𝑊 =  0 00 −𝐵0 −𝐵 , 𝑅 = 01−1 , 𝑟 = 000 , 𝑢 = 𝑢𝑡  

 330 

Where 𝛽 denotes the boundary offset and 𝜏 describes the decay rate of the exponential function. We can 331 

control the collapsing rate with these two parameters (Figure 3d). To implement the collapsing boundary 332 

for the independent and dependent race accumulators, we set the parameters of the transition model as 333 

equations (12) and (13) respectively: 334 

 335 𝑊 =  0 0 00 0 −𝐵0 0 −𝐵 , 𝑅 = 0 01 00 1 , 𝑟 = 000 , 𝑢 = 𝑢𝑡 (12) 

  

𝑊 =  ⎣⎢⎢⎢
⎡0 0 00 0 −𝐵000 000 −𝐵−𝐵−𝐵⎦⎥⎥⎥

⎤ , 𝑅 = ⎣⎢⎢⎢
⎡ 0 01 0−100 01−1⎦⎥⎥⎥

⎤ , 𝑟 = ⎣⎢⎢⎢
⎡00000⎦⎥⎥⎥

⎤ , 𝑢 = 𝑢𝑡 (13) 

 336 

We tried different initial values for 𝛽 ∈ 0.3, 0.4 ,0.5  and 𝜏 ∈ 50, 100  to select the best parameter 337 

which leads to the maximum log-likelihood. 338 

 339 

 2-7-5 Model fitting 340 
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We fit the accumulator models to the subpopulations of neurons within the brain regions at each session. 341 

Accordingly, subpopulations were generated by sampling four DDM-like neurons without replacement 342 

within each brain area. To improve the performance of modeling, we excluded trials according to the 343 

stimulus and reaction time criteria. Accordingly, trials with equal contrast levels (Right = Left) were 344 

excluded due to the random behavioral output of mice during these trials. We further focused our analysis 345 

on the trials with reaction times longer than 150ms and shorter than 500ms.  346 

To model the evidence accumulation process, we did not consider fixed-length trials. Given that the 347 

perceptual decision-making process comprises different cognitive stages (visual encoding, evidence 348 

accumulation, and action execution) (Mazurek et al., 2003), we excluded the neural activity 349 

corresponding to the visual encoding phase (Roitman & Shadlen, 2002). The remaining samples before 350 

wheel movement are considered as the evidence accumulation phase. We also included the neural activity 351 

from the 50ms post-wheel movement period. This is because of considering multiple discrete states (i.e., 352 

accumulation and Right/Left wheel movement phases) to reformulate the recurrent switching linear 353 

dynamical system (rSLDS) into different accumulators. According to these settings, the continuous 354 

variables evolve in the accumulation state and switch to the Right/Left wheel movement state by reaching 355 

the corresponding decision boundary. 356 

Zoltowski et al., 2020 introduced a variational Laplace-EM algorithm to estimate the model parameters. 357 

Briefly, the posterior over the discrete and continuous states were calculated using variational and 358 

Laplace approximations. The model parameters were also updated by sampling from the discrete and 359 

continuous posteriors followed by an Expectation-Maximization (EM) approach (Zoltowski et al., 2020). 360 

 361 

2-7-6 Model goodness of fit 362 

2-7-6-1 Akaike Information Criterion (AIC) 363 

We compared the model fitting to the data using the Akaike Information Criterion (AIC) goodness of fit, 364 

which is defined as follows (Anderson & Burnham, 2004): 365 𝐴𝐼𝐶 = 2𝑘 − 2𝐸 | 𝑙𝑜𝑔 𝑝(𝑥 , 𝑧 , 𝜃)  (14) 

Where k is the number of free parameters in the model and the expectation term 𝐸 |  can be estimated by 366 

sampling the fitted model 100 times as follows: 367 

𝐸 | log(𝑦 |𝑥 , 𝑧 , 𝜃) =  1𝑠  𝐸 ( ) ( ) log 𝑝(𝑦 |𝑥 , 𝑧 , 𝜃 ) (15) 
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where 𝜃  denotes sampling of the model using trained parameters. To compute the log-likelihood, we 368 

need to marginalize the hidden variables x and z. Accordingly, we sampled from the estimated posterior 369 

probabilities (𝑞(𝑥) and 𝑞(𝑧)) to compute the sample-based expectation over these two variables 370 

(Zoltowski et al., 2020). AIC measurement contains a penalty term for the number of parameters which is 371 

a correction for how much the model with k parameters will increase the log-likelihood. 372 

 373 

2-7-6-2 R-Squared 374 

We also measured how well a model can explain the data using the R-Squared explained variance. 375 

Accordingly, we simulated the spike counts from each model 100 times for each trial. The firing rate of 376 

the real and simulated spike counts of subpopulations was computed using a causal boxcar filter of size 377 

50ms, and the average firing rate of trials within each evidence level (Right contrast level-Left contrast 378 

level) was computed. We then used the R-Squared explained variance metric on the subpopulations as 379 

follows (Latimer et al., 2015): 380 

𝑅 =  1 −  ∑ ∑ 𝑓 (𝑡) − 𝑓 (𝑡)∈∈∑ ∑ 𝑓 (𝑡) − 𝑓∈∈  

𝑓 =  19 1𝑇 𝑓 (𝑡)∈∈  (16) 

where e is the evidence level from the set of evidence 𝑆 , terms 𝑓  and 𝑓  represent the average firing 381 

rate of the data and simulated spike counts across the trials with evidence level e, respectively. Set 𝑆  382 

denotes the time points within the window from the latency until the median reaction time of the session. 383 

The Term 𝑓  is the average firing rate of the data over all time points and coherence levels. 𝑅  = 1 384 

demonstrates that the model firing rate perfectly matches the data, and lower values correspond to the 385 

worst fit. 386 

 387 

2-7-7 Model comparison  388 

The preferred accumulator type among the single and race accumulators is selected using the AIC 389 

difference approach. According to this approach, the AIC values are rescaled as follows: 390 

Δ =  𝐴𝐼𝐶 −  𝐴𝐼𝐶  (17) 

Where 𝐴𝐼𝐶  is the minimum of AIC values among the single and race accumulators for a specific 391 

subpopulation. According to this transformation, the best model has Δ = 0 and other models have 392 
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positive Δ  values. To select the best model we set the supporting threshold of 10 (Anderson & Burnham, 393 

2004; Latimer et al., 2015). Accordingly, we excluded subpopulations having more than one model with 394 

an AIC difference Δ < 10 from our further analysis. To visualize the preferred models, we computed the 395 

paired AIC differences (Δ𝑠𝑖 = 𝐴𝐼𝐶𝑠𝑖𝑛𝑔𝑙𝑒 − 𝐴𝐼𝐶𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑟𝑎𝑐𝑒, Δ𝑠𝑑 = 𝐴𝐼𝐶𝑠𝑖𝑛𝑔𝑙𝑒 − 𝐴𝐼𝐶𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑟𝑎𝑐𝑒, 396 Δ𝑖𝑑 = 𝐴𝐼𝐶𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑟𝑎𝑐𝑒 − 𝐴𝐼𝐶𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑟𝑎𝑐𝑒). The preferred model is the one with a lower AIC value 397 

than other models resulting in negative AIC differences Δ  and Δ  for single models and positive AIC 398 

differences Δ  and Δ  for dependent race models. Similarly, subpopulations with independent race 399 

preference shave negative Δ  and positive Δ  values (Figure 4d). 400 

 401 

2-8 Data processing 402 

All analyses were carried out using customized MATLAB and Python code. Statistical analyses and fuzzy 403 

C-means clustering were performed using MATLAB toolboxes. Decomposing neural activity into 404 

different task-related variables was carried out using the open-source dPCA toolbox (Kobak et al., 2016). 405 

The accumulator analysis was performed using the recurrent switching linear dynamical system (rSLDS) 406 

toolbox (Zoltowski et al., 2020), which was customized by the authors. 407 

 408 

3- Results 409 

Distributed evidence accumulation across the mice's brain 410 

To investigate whether or not the evidence accumulation process is distributed across the brain, we used 411 

the brain-wide neural recording in mice during a visual discrimination task (Steinmetz et al., 2019). In 412 

each trial, a visual stimulus of varying contrast (Gabor patch with sigma 9 and 45° direction) appeared on 413 

the right, left, both, or neither side screens. To get a reward, the mice had to turn the wheel to move the 414 

stimulus with the higher contrast into the center screen (Figure 1a). During the visual discrimination task, 415 

the neural activity of approximately 30,000 neurons in 42 brain areas was recorded using Neuropixel 416 

probes. We focused our analysis on the seven groups of brain areas demonstrated in Table 1, Table 1-1, 417 

and Figure 1b, according to the Allen Common Coordinate Framework (CCF) (Wang et al., 2020). 418 

To detect the neurons with DDM-like firing rate activity, we first determined the choice-selective neurons 419 

within each group of regions. Preliminary analyses showed that most neurons simultaneously encode 420 

different task variables, especially in higher cortical areas. Therefore, we first used demixed principal 421 

component analysis (dPCA) (Kobak et al., 2016) to decompose the population neural activity into a few 422 
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principal components representing specific task variables (Figure 1c). We then determined whether a 423 

neuron responded more strongly to the stimulus or decision by measuring the reconstructed neural 424 

activity's explained variance (R-squared) using each set of stimulus and decision-related components 425 

(Figure 1-1a). The results revealed that neurons across the brain regions belong to one of three clusters: 426 

those best represented by the stimulus-related components, the decision-related components, or their 427 

interaction components (Figure 1d, Figure 1-1b). We excluded the hippocampus region from further 428 

analyses because of poor performance in the clustering analysis. 429 

We evaluated dPCA results using the standard auROC metric to measure how well a neuron encodes the 430 

stimulus or decision variables. This metric is commonly used to calculate the differences between spike 431 

count distributions across different conditions (Britten et al., 1996). There is a strong correlation between 432 

the stimulus and animal choice by design. So, we used the combined condition auROC metric to reduce 433 

the effect of other task variables on the decoding performance (see Methods). For the stimulus decoding, 434 

we measured the differences between the spike count distribution of trials with contralateral stimulus 435 

higher than zero and trials with zero contra stimulus contrast level for all 12 conditions. 436 

Similarly, decision decoding was evaluated by measuring the differences between Hit and Missed trials 437 

within 12 conditions referred to as 'Detect Probability' (DP) (Hashemi et al., 2018). Our results showed 438 

that the stimulus-selective neurons detected by dPCA, indeed encoded the stimulus more strongly than the 439 

decision. Similarly, the decision-selective neurons encoded the decision better than the stimulus (Figure 440 

1-1c). 441 

Finally, we found the DDM-like neurons within the decision-related clusters across the brain. Previous 442 

studies on the neural basis of evidence accumulation have discovered that DDM-like neurons in the 443 

posterior parietal cortex (LIP area) had a ramping-like firing rate activity associated with the strength of a 444 

motion stimulus (Roitman & Shadlen, 2002; Shadlen & Newsome, 2001). Similar properties were also 445 

found in the mouse's PPC (Hanks et al., 2015) and anterior dorsal striatum (ADS) in rats (Yartsev et al., 446 

2018). According to the properties of DDM-like neurons, we found the choice-selective neurons that 447 

additionally encoded the strength of the input evidence (difference between Right and Left stimulus 448 

contrasts). We used the combined condition auROC metric to measure each neuron's choice probability 449 

(CP) and evidence selectivity. Accordingly, we calculated the differences between trials with right and 450 

left choices within 12 groups to measure the CP. For measuring evidence selectivity, we evaluated 451 

whether or not the trials within a group with the higher evidence level had greater neural activity than 452 

those within all the groups having lower evidence (Figure 2b) (See Methods).  453 

Moreover, to determine whether or not a neuron significantly encoded choice and evidence, we measured 454 

decoding performance at the chance level by randomizing the trial labels (Figure 2b). The selective 455 
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neurons (Figure 2c and 2d) were further visually inspected to exclude those without a ramping-like firing 456 

rate activity. The results revealed that the surviving selective neurons have DDM-like firing rate activity 457 

(Figure 2a, Figure 2-1a) and are distributed across the brain regions (Figure 2e, Figure 2-1b and 2c). Most 458 

DDM-like neurons were found in the frontal (MOs, PL, ACA, ILA, and ORB) and midbrain (MRN, SNr, 459 

SCm, and SCs) regions. A lower percentage of these neurons were located in the striatum (CP and ACB) 460 

and visual pathway (VISam, VISI, and VISp), thalamus (VPL, VPM, LP, PO, LD), and MOpSSp (Figure 461 

2-1b and 2c). Some of the discovered DDM-like sub-areas within the frontal, striatum, and visual regions 462 

were consistent with the previous studies on the neural basis of evidence accumulation in rodents (Hanks 463 

et al., 2015; Scott et al., 2017; Yartsev et al., 2018). A single hemisphere contained neurons with both 464 

ipsilateral and contralateral choice preferences in most grouped regions (Figure 2e), consistent with the 465 

previous studies (Scott et al., 2017). The frontal region was mostly bilateral since the number of the 466 

ipsilateral and contralateral DDM-like neurons was similar. In contrast, other brain regions were mostly 467 

unilateral.  468 

 469 

Multiple accumulation mechanisms across the brain 470 

Previous studies on the evidence accumulation process proposed different network architectures for 471 

evidence integration including single and dual accumulators (Bogacz et al., 2006). Single accumulators 472 

such as the drift-diffusion model (DDM) (Ratcliff, 1978) and the ramping model (Latimer et al., 2015; 473 

Zoltowski et al., 2019) contain one decision variable accumulating the relative evidence (difference 474 

between the two input streams) toward one of the decision boundaries. Dual accumulators are other 475 

accumulation mechanisms with separate accumulators for each choice option that integrate the input 476 

streams independently (Ditterich et al., 2003; Mazurek et al., 2003) or with mutual inhibitory connections 477 

(Machens et al., 2005; Usher & McClelland, 2001; Wang, 2002; Wong et al., 2007; Wong & Wang, 478 

2006). In these accumulation mechanisms, an option is chosen when the integrator associated with that 479 

option reaches the decision boundary sooner than the others (Bogacz et al., 2006).  480 

To investigate whether the DDM-like neurons across the mouse brain integrate evidence through a single 481 

or dual accumulation mechanism, we used a general framework for the evidence accumulation modeling 482 

based on the recurrent switching linear dynamical system (rSLDS) (Zoltowski et al., 2020) (Figure 3). 483 

Using rSLDS, the high-dimensional population neural activity can be described as the dynamics of a few 484 

continuous latent variables in a low-dimensional state space, evolving through time according to state-485 

dependent dynamic models (Figure 3a). The rSLDS was reformulated to implement the single, 486 

independent race, and dependent race accumulation mechanisms (Figure 3b) by considering the 487 

accumulators as the continuous latent variables of the model (Figure 3c) (Zoltowski et al., 2020). 488 
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We first generated subpopulations of neural activity by resampling the neurons within each region (See 489 

Methods). Several bilateral (including neurons with contralateral and ipsilateral choice preference) and 490 

unilateral (including neurons with contralateral choice preference) subpopulations were generated during 491 

the resampling process (Figure 4c) (See Method). We fit the single and race accumulators to the bilateral 492 

subpopulations since these subpopulations contain neurons with both contralateral and ipsilateral choice 493 

preferences. On the other hand, the unilateral subpopulations contain neurons with only contralateral 494 

choice preference, so we only fit the single accumulator to them. The best initial parameters of the 495 

dynamic models were selected through a greedy search approach (See Methods).  496 

Since we modeled the evidence accumulation phase of the decision-making process, we excluded the 497 

neural activity during the visual encoding phase from the accumulator modeling by estimating the 498 

accumulation latency using the auROC metric (See Methods). The evolution of the single and 499 

independent race variables in sample trials is illustrated in Figure 4a. As shown in this figure, the discrete 500 

state switches to the wheel movement state when the continuous variables reach the decision boundary.  501 

We computed the explained variance (R-squared) of the models in both bilateral and unilateral 502 

subpopulations (Figure 4f, Figure 4-1). Moreover, the best model for bilateral subpopulations was 503 

determined using the AIC difference approach (Figure 4d) (See Methods). The number of preferred 504 

models in the regions for both unilateral and bilateral subpopulations is depicted in Figure 4e. We didn’t 505 

observe a significant difference between the number of single and race accumulators for bilateral 506 

subpopulations (Figure 4-1b). This may be due to the scarcity of bilateral subpopulations within most of 507 

the regions. Therefore, we also compared the number of single and race accumulators among total 508 

subpopulations assuming that unilateral subpopulations could just prefer single accumulators (Figure 4-509 

1c). As you can see in this figure, the thalamus, visual, and midbrain areas, which are more unilateral, 510 

prefer the single accumulator significantly more than race accumulators (sign test, p-value < 0.001). We 511 

also observed a significant difference between the number of single and race accumulators within the 512 

frontal region (sign test, p-value < 0.001), suggesting that this area prefers the single accumulator more 513 

than the race ones.  514 

 515 

Distributed evidence accumulation over multiple timescales 516 

The distributed coding of evidence accumulation across the brain suggests that the accumulation process 517 

is happening over multiple timescales, which can be organized hierarchically across the brain (Murray et 518 

al., 2014; Pinto et al., 2022). The ability of the brain to function in different timescales stems from the 519 

heterogeneity of local microcircuits and their long-range connectivity (Chaudhuri et al., 2015). Here, we 520 
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examined whether the single and race accumulator models across the brain have distinct properties in 521 

terms of the integration timescale. Accordingly, we simulated neurons’ activity within each subpopulation 522 

using the preferred accumulator model. The integration timescale was estimated using the combined 523 

autocorrelation structure of the simulated neurons’ activity at both the local subpopulation and global 524 

population levels within the brain regions (See Methods) (Figure 5a and 5b). The estimated population-525 

level timescale displayed a hierarchical organization across the brain, starting from the visual to the 526 

frontal in the cortical regions and the thalamus to the midbrain in the subcortical ones (Figure 5b), which 527 

is consistent with previous studies (Chaudhuri et al., 2015; Pinto et al., 2022). The resulting hierarchy 528 

demonstrates that thalamic and visual areas integrate the information in a shorter timescale than the 529 

midbrain and frontal regions. 530 

In addition to the hierarchical organization of integration timescale, we also observed a heterogeneity of 531 

timescales within each brain area (Figure 5c). We hypothesized the observed diversity of integration 532 

timescales could reflect the differences in the accumulator microcircuits. To address this hypothesis, we 533 

explored the association between the integration timescale and the recurrent connection strength of the 534 

accumulators within each brain area using Pearson’s correlation. The results demonstrated that the 535 

recurrent connection strengths of single accumulators were significantly correlated with the integration 536 

timescales in most of the regions (Figure 5d). We also examined Pearson’s correlation on the bilateral 537 

subpopulations preferring race accumulators by excluding regions with insufficient samples (less than 10 538 

subpopulations) (Figure 5e). The results revealed that the average recurrent connection strengths of the 539 

left (𝑥 ) and right (𝑥 ) accumulators in the race microcircuits (Figure 3b) were significantly correlated 540 

with the integration timescales in all the remaining regions. Our findings support the hypothesis that 541 

microcircuits with longer integration timescales have larger recurrent connection strength, which is in line 542 

with the previous studies (Chaudhuri et al., 2015).    543 

 544 

4- Discussion 545 

Although previous studies on perceptual decision-making revealed the distribution of decision coding in 546 

the mouse brain (Steinmetz et al., 2019), the contribution of these neurons to the evidence accumulation 547 

process and the underlying accumulation mechanism remain unclear. Using brain-wide 548 

electrophysiological recording in mice (Steinmetz et al., 2019), we showed that evidence accumulation 549 

during perceptual decision-making is a distributed process across the brain. We found different cortical 550 

and subcortical areas, i.e., visual and frontal cortices, MOp, striatum, midbrain, and thalamus, contain 551 

neurons with Drift-Diffusion-Model-like (i.e., evidence-sensitive ramping firing rate) activity. We 552 
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showed that these regions consist of subpopulations that accumulate evidence through both single and 553 

race accumulation mechanisms. We further characterized the accumulation process in terms of the 554 

integration timescale. Our findings revealed a hierarchical organization of timescales across the brain, 555 

suggesting the existence of evidence accumulation over multiple timescales. In addition, we observed a 556 

heterogeneity of timescales within the brain regions, reflecting the diversity of the accumulator’s 557 

recurrent connection strength. 558 

The identified brain regions in this study are consistent with and complement the existing findings on the 559 

neural substrates of evidence accumulation. Prior work has demonstrated the contribution of a subset of 560 

these areas i.e., PPC (Roitman & Shadlen, 2002; Shadlen & Newsome, 2001), FEF (Ding & Gold, 2012; 561 

Kim & Shadlen, 1999), striatum (Ding & Gold, 2010), superior colliculus (Horwitz & Newsome, 1999) 562 

and FOF (Hanks et al., 2015) in the evidence accumulation process. 563 

The neurons with DDM-like firing rate activity across the brain could integrate the information through 564 

single or dual accumulation mechanisms (Bogacz et al., 2006). However, the dual accumulator needs the 565 

neural populations supporting each choice alternative. The brain regions we examined contain neurons 566 

with both contralateral and ipsilateral choice preferences in the left hemisphere, which were mostly 567 

observed in the frontal area. The bilateral behavior of the regions suggested the existence of a dual 568 

accumulation mechanism within a single hemisphere, consistent with the previous studies (Mante et al., 569 

2013; Ratcliff et al., 2007; Wong et al., 2007). We tried to investigate whether DDM-like neurons in the 570 

brain were best represented using single or dual accumulators.  571 

Our results revealed that bilateral subpopulations within the striatum and MOpSSp strongly prefer race 572 

accumulators more than single ones. However, exploring the accumulator preferences among the 573 

combined unilateral and bilateral subpopulations demonstrated that the visual, thalamus, and midbrain 574 

regions strongly prefer the single accumulator. This may be due to the unilateral nature of these brain 575 

regions. However, despite the bilateral nature of the frontal area, the number of subpopulations with 576 

single accumulation preferences is higher than the ones preferring dual accumulators. This may be due to 577 

the single-hemisphere neural recording.  578 

We sought to address whether the distributed nature of evidence accumulation processes was related to 579 

how neurons in different brain regions represent information at different timescales. The estimated 580 

accumulator’s integration timescale at the population level revealed hierarchical organization across the 581 

brain regions. According to this hierarchy, the integration timescale increases from visual to frontal in the 582 

cortical regions and from the thalamus to the midbrain in the subcortical ones, consistent with the 583 
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previous studies (Chaudhuri et al., 2015; Honey et al., 2012; Pinto et al., 2022). Our findings lend further 584 

support to previous claims that evidence accumulation is happening over multiple timescales, and 585 

different brain areas in humans, primates, and rodents display a hierarchical organization in terms of their 586 

timescale (Chaudhuri et al., 2015; Demirtaş et al., 2019; Gao et al., 2020; Honey et al., 2012; Imani et al., 587 

2023; Murray et al., 2014; Pinto et al., 2022; Rossi-Pool et al., 2021). We extend this literature (e.g., for 588 

most recent findings using calcium imaging data in cortical regions see Pinto et al. 2022) by providing 589 

evidence from the analysis of electrophysiological data across the whole mouse brain. This hierarchical 590 

organization could be an essential component of the distributed evidence accumulation process across the 591 

brain (Pinto et al., 2022), which may be due to the variability in the level of recurrent excitation 592 

connections within areas (Chen et al., 2015; Gao et al., 2020), and their long-range connectivity profile 593 

(Chaudhuri et al., 2015). The hierarchical organization of the brain areas in terms of the integration 594 

timescale also suggests that the inactivation of brain areas across the cortical hierarchy could affect the 595 

performance of the decision-making process at different timescales (Pinto et al., 2022; Zatka-Haas et al., 596 

2021). In addition to the variability of timescale across the brain, we observed heterogeneity of timescale 597 

within each brain area. Our findings suggest that this heterogeneity may arise from the variation in the 598 

local accumulation microcircuits. Such that, accumulators with longer integration timescales have higher 599 

recurrent connection strength, which is consistent with the previous studies (Chaudhuri et al., 2015). 600 

In summary, we have investigated the neural correlate of evidence accumulation across the brain. We 601 

identified that DDM-like neurons are distributed across the brain, which can integrate information 602 

through single or dual accumulation mechanisms. These accumulator circuits were characterized using 603 

distinct integration timescales which were organized hierarchically across the brain. Our findings support 604 

the hypothesis that evidence accumulation is a distributed process over multiple timescales. Moreover, we 605 

observed a heterogeneity of integration timescales within each brain area suggesting a diversity of 606 

accumulator microcircuit parameters.  607 

  608 
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Extended data 609 

Table 1-1 The full name and acronym of brain regions within each group of areas according to the Allen 610 

CCF 611 

 612 

Figure 1-1 Separating neurons into the decision-selective and the stimulus-selective neurons. (a) 613 

Projection of the population neural activity into task-related components. (b) Clustering the neurons based 614 

on their stimulus-related and decision-related R-squared values. (c) Performance of the stimulus and 615 

decision decoding using each group of neurons (stimulus, decision, and interaction). Shaded areas 616 

represent the 95% confidence interval.  617 

 618 

Figure 2-1 Distribution of DDM-like neurons across the brain. (a) Sample DDM-like neurons. The left 619 

panel represents the average firing rate activity of the neuron across trials with a specific evidence level. 620 

The strength of the color indicates the strength of the evidence level. Shaded areas represent the 621 

confidence interval. The right panels indicate the linear relationship between the average firing rate and 622 

the evidence levels using the general linear model. The error bars indicate the 95% confidence interval. 623 

(b) The number of DDM-like neurons across different brain areas.  (c) Distribution of DDM-like across 624 

the brain. 625 

 626 

Figure 4-1 Results of the accumulator fitting. Data and model firing rate of sample neurons and their 627 

corresponding explained variance (R-Squared) value. The distribution of R-squared values for each 628 

neuron was generated by sampling the accumulator model 100 times. The curves represent the average 629 

firing rate activity of the neuron across trials with a specific evidence level. The strength of the color 630 

indicates the strength of the evidence level. Shaded areas represent the confidence interval. (b) The 631 

proportion of bilateral subpopulations preferring single and race accumulators. (c) The percentage of the 632 

single and race accumulators among the combination of unilateral and bilateral subpopulations. Marker 633 

‘***’ represents the p-value < 0.001 in the sign test. P-values were corrected by the Bonferroni multiple 634 

comparison correction. 635 

 636 
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Table 1 Brain regions within each group of areas according to the Allen CCF 776 

 777 

Figure 1 Decomposing brain-wide electrophysiological data into the task-related components using 778 

dPCA. (a) Task protocol, (b) Grouping the brain-wide electrophysiological data into the seven regions 779 

according to the Allen CCF adapted from (Steinmetz et al., 2019). (c) Projecting the population firing rate 780 

into the stimulus, decision, and interaction components. (d) R-squared values of the reconstructed 781 

population neural activity using the task-related dPCA components.  782 

 783 

Figure 2 DDM-like neurons across the mouse brain. (a) Example neuron with DDM-like firing rate 784 

activity. The curves in the left panel represent neurons' average firing rate activity across correct trials 785 

with a specific evidence level. The color strength indicates the strength of the evidence level, ranging 786 

from strong leftward to strong rightward. Shaded areas represent the 95% confidence interval. The right 787 

panel shows the linear relationship between the average firing rate of the neuron and the evidence levels 788 

using a general linear model. The colors represent the strength of the evidence level and the error bars 789 

indicate the 95% confidence interval (b) Temporal evidence selectivity and choice probability for a 790 

sample neuron in the frontal region. Panels (c) and (d) are the maximum values of evidence selectivity 791 

and choice probability of the DDM-like neurons, respectively. (e) The total number of DDM-like neurons 792 

within each brain region (thalamus=19, visual=17, striatum=11, frontal=86, midbrain=40, MOpSSp=18). 793 

Filled and empty bars represent the number of neurons with contralateral and ipsilateral choice 794 

preferences, respectively. 795 

 796 

Figure 3 Reformulating the recurrent switching linear dynamical system (rSLDS) framework to the 797 

single and dual (independent/dependent race) accumulation mechanisms. (a) Schematic of the rSLDS 798 

containing the hidden discrete variable Z, hidden continuous variable X, and observed variables U related 799 

to the stimulus strength and neuron spike data Y. (b) Single, independent race, and dependent race 800 

accumulator models implemented in rSLDS. (c) Discrete and continuous states of the accumulation 801 

mechanisms within sample trials. (d) Constant (top row) and collapsing (bottom row) decision 802 

boundaries. The collapsing boundary contains two parameters 𝛽 and 𝜏, for the boundary offset and the 803 

rate of exponential decay. 804 

 805 
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Figure 4 Evaluation of the single and race accumulator models. (a) The discrete state switches to the right 806 

choice state when the continuous variable reaches the collapsing boundary. (b) The firing rate of the 807 

sample neuron and the fitted single accumulator model. The explained variance (R-squared) between the 808 

data and model firing rate is depicted above the figure. The colors indicate the strength of the evidence 809 

level. (c) The number of bilateral and unilateral subpopulations within the brain regions. (d) Model 810 

comparison using the AIC difference approach. Each axis demonstrates the paired AIC difference. The 811 

best model is the one with a lower AIC value than others. The colors indicate the best accumulator model. 812 

(e) The percentage of bilateral and unilateral subpopulations preferring single, independent race, and 813 

dependent race accumulators. (f) Explained variance (R-squared) values for each brain region's bilateral 814 

and unilateral subpopulations. R-squared values were computed between data and the best model selected 815 

using the AIC difference for the bilateral subpopulations. For the unilateral subpopulations, this metric 816 

was computed using the single accumulator. 817 

 818 

Figure 5 Distribution of the integration timescale across the brain. a) Autocorrelation structure of a 819 

simulated subpopulation of neurons is described using the exponential decay function b) Hierarchical 820 

organization of the brain areas in terms of the integration timescale. Timescales were estimated using the 821 

combined autocorrelations of the sampled subpopulations during a 100-times bootstrapping process. 822 

Marker ‘***’ indicates the p-value < 0.001 in the Wilcoxon rank sum test corrected for multiple 823 

comparisons. c) Heterogeneity of the subpopulations’ timescale within each brain area. d) Pearson’s 824 

correlation between the recurrent connection strength and the integration timescale of single accumulators 825 

within each brain area. P-values were corrected by the Bonferroni multiple comparison correction. e) 826 

Pearson’s correlation between the average recurrent connection strength of the left and right accumulator 827 

variables and the integration timescale of race accumulators within each brain area. P-values were 828 

corrected by the Bonferroni multiple comparison correction. 829 
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Table 1 Brain regions within each group of areas according to the Allen CCF 

Group name Regions within each group 

Hippocampus POST, SUB, DG, CA1, CA3 

Thalamus LP, LD, RT, MD, MG, LGd, VPM, VPL, PO, POL 

Visual VISp, VISrl, VISam, VISpm, VISl, VISa 

Striatum CP, GPe, ACB, LS 

Frontal MOs, ACA, PL, ILA, ORB 

MOpSSp MOp, SSp 

Midbrain MRN, SCm, SCs, APN, PAG, SNr 

 


