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Abstract—In recent years, in addition to the significant growth
in intelligent transportation systems with new concepts such
as SDN (Software Defined Networks), fog computing, and new
machine learning methods, the advancement of communication
technologies and automotive industries has been considerable. Ve-
hicular Adhoc NETworks (VANETs) can effectively detect traffic
congestion, which can be classified into Repetitive Congestion
(RC) and Non-Repetitive Congestion (NRC). In particular, NRC
in an urban area is mainly due to accidents, congested areas
with high loads, special events, and weather conditions. This
paper presents a new architecture using two concepts, SDN and
fog computing, called SDN and Fog computing-based VANET
(SFVN), to classify the causes of congestion in VANET. This
architecture is proposed for distributed and real-time congestion
classification, considering its components in an urban road
network in VANET. The proposed scheme has been evaluated
with CCSANN, FogJam, C4.5 classification tree, and the Naı̈ve
Bayes method, which indicates the effectiveness of the proposed
method. By knowing the leading causes of congestion, this scheme
can help transport companies develop effective policies to reduce
urban congestion.

Index Terms—classification, traffic congestion, fog computing,
SDN, VANET

I. INTRODUCTION

With recent developments in telecommunications and auto-
mated industries, we have seen a growing trend in intelligent
transportation systems, of which vehicular ad hoc networks
are a significant component. As a significant component of
intelligent transportation systems, VANETs suffer from many
problems, including architectural inflexibility, wireless com-
munication instability and communication range limitation,
frequent topological changes due to rapid vehicle movement,
congestion, etc. One of the primary challenges in intelligent
transportation systems is the occurrence of traffic congestion.
Congestion can be classified into recurrent (RC) and non-

recurrent (NRC) congestion. Recurrent congestion is regu-
larly occurring and is usually caused by intentionally cre-
ated factors, such as traffic lights. Accidents, special events,
and adverse weather conditions mainly cause non-recurrent
congestion in an urban network. Existing NRC detection
methods require extensive data sets and must be collected
and processed in realtime. In this case, valuable information
can be transferred to drivers and traffic management centers
according to the identified NRC effects so that appropriate
preventive strategies can be set to restore traffic conditions to
normal. Therefore, solving non-recurrent congestion problems
requires continuous and realtime monitoring [1], [2].

With the help of SDNs and fog computing, it is possible to
provide suitable solutions for existing challenges.

SDNs can provide advantages for VANETs via the flexibil-
ity and programmability of networks through a centralized log-
ical control unit with a general view of the network. However,
initially, SDN was proposed only for use in fixed networks;
its adaptation to function in VANETs requires modifications to
regard the specific characteristics of scenarios, such as the high
mobility of nodes. SDN provides solutions for these problems
by virtualizing network functions and centralized control. By
reducing the complexity of the network by separating the
data layer from the control layer, SDN has gained flexibility
and programmability. As a result, it can solve significant
challenges in transportation networks [3], [4].

On the other hand, fog computing is an emerging technology
that brings data processing, storage, and analysis closer to
end users. It includes some features of cloud computing, but
it can be distinguished from the cloud due to its proximity
to end users, geographical distribution, and mobility support.
Fog computing allows some data to be analyzed and managed
at the network’s edge, thereby supporting applications that



require very low and predictable latency [1], [4], [5].
This paper considers a set of unique features for different

types of NRC and extracts features from the data to infer
the occurrence of NRC. To this end, we elaborate on SDN
and fog computing technologies. Data can be collected to
detect congestion at the network’s edge with low latency in
real time using fog computing. With the global vision that the
SDN controller will provide us, we can detect the occurrence
of congestion and set appropriate strategies to manage and
control congestion. After that, machine learning models are
used to identify the specific type of NRC. In particular,
incidents and work areas are characterized by problem points.
We evaluate the route’s travel time, speed, and distance in
bad weather. Specific events are characterized by the area of
influence and increased demand.

The rest of paper organized as follows: In section II, the
relevant literature reviewed is presented. The system frame-
work is presented in section III. Section IV explains the
simulation and obtained results. Finally, the conclusion and
future directions are given in section V.

II. RELATED WORK

Many works on congestion detection through VANET use
machine learning to classify traffic congestion state or free
flow. In this section, some cases of congestion management in
vehicular ad hoc networks have been examined.

One of the critical needs of Intelligent Transportation Sys-
tems (ITS) is to understand and predict the future traffic
situation (e.g., travel time, travel flow, and traffic congestion).
However, accurate traffic situation prediction is challenging
due to the stochastic characteristics and nonlinear nature of
the traffic flow. SDN is one of the key concepts in network-
ing that has attracted much attention in recent years. The
tremendous advancement in SDN equipment has introduced a
new networking paradigm called Software Defined vehicular
networks (SDVN). In the paper [6], Bhatia et al. proposed
a data-driven approach to implement an artificial intelligence
model to predict vehicle traffic behavior. They combined the
flexibility, scalability, and adaptability employed by the SDVN
architecture with machine learning algorithms to model traffic
flows efficiently. The training and implementation of various
intelligent computing models were based on the distributed
VANET model, focusing on detecting and predicting traffic
congestion and then analyzing it using an SDN controller in
a centralized cloud architecture. An architecture consisting of
RSU and OBU is proposed, which is monitored by an SDN
controller connected to a suitable cloud infrastructure for real-
time data storage and high computing capacity. Finally, the
results showed that the proposed method can predict future
traffic jams with an accuracy of 97% on the general data set
that provided the necessary information to manage and control
traffic jams.

The rapid development of urbanization has contributed to
traffic events such as accidents and traffic delays. It is difficult
to detect and solve highway traffic congestion in time using
traditional methods. Therefore, it is necessary to introduce

advanced technologies to solve these challenges. Deep learn-
ing is one of the most critical technologies for detecting and
evaluating traffic congestion, which enables accurate diagnosis
of highway traffic congestion, traffic congestion assessment,
and possible traffic congestion prediction. In [7], Y Liu et
al. proposed a framework based on deep learning for traffic
management. The framework selects traffic density indicators
to build an index model and then builds a deep learning model
based on self-encoding. It predicts and classifies highway
traffic environment data. Once the traffic data is classified, a
prediction model based on SoftMax is developed to detect and
predict traffic congestion. The proposed framework is evalu-
ated using data collected from highway and street monitoring
scenes, and the results showed that 98.6% of the data can
be correctly recognized and classified. However, using the
SoftMax-based prediction model for highway vehicles during
peak hours, the obtained accuracy was 92%. This framework is
a promising solution for the next generation of highway traffic
management and provides accurate and timely detection and
assessment of traffic congestion.

In a vehicular network, information is collected periodically
to update and discover vehicular congestion. The use of
cloud computing to support the massive amount of traffic
data received from multiple vehicles significantly increases
the network traffic. Peixoto, M. et al., in the paper [8],
proposed FogJam, a Fog service to detect traffic congestion
directly at the edge of the vehicular network. FogJam uses
sampling and clustering-based methods to reduce the data flow
of traffic transmitted by vehicles to the cloud. The simula-
tion results show that FogJam is very accurate in detecting
traffic congestion at a low cost, even in the scenario of
high vehicle congestion. Furthermore, using clustering-based
methods, FogJam can reduce the network utilization impact by
about 70% compared to sampling methods while providing an
acceptable level of congestion detection accuracy [8].

As the urban renewal process becomes faster and faster,
there are more and more vehicles in the city, and urban
traffic congestion is becoming more severe daily. In the article
[9], a model of traffic congestion prediction is built using
machine learning classification algorithm-random forest to
build a traffic congestion prediction model. The random forest
algorithm has the characteristics of high robustness, high
performance, and high practicability. Weather conditions, time
periods, special road conditions, road quality, and holidays are
used as model input variables to create a road traffic predicting
model. Finally, the results show that the traffic prediction
model created using the random forest classification algorithm
has a prediction accuracy of 87.5%, and the generalization
error is low and can be effectively predicted. In addition, the
calculation speed is quick and has a more robust application
for predicting congestion conditions [9].

Managing the ever-increasing road traffic congestion due
to the enormous growth of vehicles is a substantial concern
worldwide.

Severe air pollution and loss of time and money are expected
intelligent consequences of traffic congestion in urban areas.



The intelligent transportation system based on the Internet
of Things (IoT) can help manage road traffic congestion
efficiently. Estimating and classifying the traffic congestion
situation of different road sections is essential to intelligent
traffic management. The paper [10] aims to estimate and
classify the state of traffic congestion in different sections of
a city’s road by analyzing traffic data taken by fixed sensors
inside the road. The Artificial Neural Network (ANN) system
is used to classify traffic congestion states. Based on Traffic
congestion, ITS automatically updates the traffic regulations,
such as changing the queue length at the traffic signal and
suggesting alternative routes. It also helps the government to
set policies regarding the construction of flyovers/alternative
routes for better traffic management.

III. SYSTEM MODEL

Vehicle ad hoc network (VANET) is a technology developed
to achieve inter-vehicle communication, road safety, emer-
gency warnings, entertainment, etc. Nowadays, research in
vehicle networks has received lots of attention due to issues
related to intelligent transportation. The main application of
VANET is intelligent transportation systems. Vehicular ad hoc
networks can effectively detect traffic congestion, which can
be classified into repetitive and non-repetitive congestion. In
this paper, the main focus is on non-repetitive congestion. In
particular, NRC in an urban network is mainly caused by
incidents, work zones, special events, and adverse weather.
In the rest of this section, the main problem is explained, and
then the proposed plan is offered.

A. Problem Definition

Although the understanding of total congestion caused by
NRC for highway and urban traffic has been thoroughly
studied in intelligent transportation systems, problems still
need to be solved. In this context, NRC’s duration, time, and
place are very different in an urban road network. Therefore,
it becomes difficult to monitor traffic in real-time or continu-
ously with cameras and mobile vehicle mechanisms that are
expensive to deploy and maintain over large coverage areas.
Cost-effective and flexible alternative solutions are needed to
ensure better road traffic monitoring at different levels. The
existing NRC detection methods require extensive data sets
and cannot be obtained in real-time. Valuable information re-
garding the identified NRC effects can help drivers, and traffic
management centers set appropriate preventive strategies to
restore traffic conditions in real-time. Finally, NRC detection
methods should be able to determine the cause of an NRC
event after detection and also classify the root cause of NRC.
We will use SDN and fog computing technologies to achieve
such a goal.

B. The proposed Architecture

In this study, we consider a set of unique features for
each type of NRC and extract such features from the data
to infer the NRC. For this purpose, a three-layer architecture
consisting of SDN and fog computing is proposed. As shown

in Figure 1, a three-layer architecture is designed for NRC
collection and detection in VANET. This architecture considers
parked vehicles as Fog Computing (FC) nodes. It will also use
the SDN controller for network management. The proposed
architectural layers from bottom to top are as follows:

• Vehicles layer: Any vehicular network in a city con-
sists of numerous parked vehicles and vehicles moving
at different speeds. These vehicles have storage and
wireless communication capability and use Vehicle-to-
infrastructure (V2I) connection mode to connect to the
Roadside Unit (RSU) and Base Station (BS) via WAVE
and LTE interfaces, respectively.

• Fog computing (FC) layer: consists of a set of fog nodes,
including parked vehicles, BSs, and RSUs located in a ge-
ographical area. In this layer, all fog nodes have process-
ing and storage capabilities and support the OpenFlow
communication protocol to connect to the SDN controller.
Fog nodes and the SDN controller can communicate with
each other to exchange data. We assumed that BSs and
RSUs use LTE and WAVE interfaces to communicate
with vehicles.

• SDN controller layer (SDN C): It is the highest layer of
the SDN controller and is responsible for network man-
agement, which is connected to the lower layers using the
OpenFlow protocol. The lower layers often send updates
about network conditions; Thus, SDN C has complete
and updated information about all network links and lo-
cations of BSs, RSUs, vehicles, and traffic conditions. In
addition, it performs functions such as minimum-latency
tree construction, NRC occurrence decision-making, and
NRC occurrence mitigation coordination.

Fig. 1. The Architecture of the proposed scheme

We utilize fog nodes for data collection. The proposed ar-
chitecture uses RSUs, BSs, and vehicles as fog nodes spread
throughout urban areas. With fog nodes, data can be collected



and processed in real time with low latency at the network’s
edge. We evaluate adverse weather conditions, travel time,
vehicle speed, and route distance to collect data. This informa-
tion will be sent to SDN C for aggregation and evaluation to
identify the occurrence of NRC. After that, machine learning
models will be implemented to identify the specific type of
NRC in SDN C, and specifically, the working areas will be
identified as problematic points. After receiving information
from fog nodes, SDN C can consider all the details and
determine the cause of NRC about the global view of the
network.

The overall process of our framework is divided into two
steps: feature extraction and classification model.

1) Feature Extraction: To specify the features, we need
to collect information locally, which is done by distributed
fog nodes at the network level. The communication features
of a VANET are based on a message called BEACON, sent
by each vehicle every 0.1 seconds, and data such as speed,
position, direction of movement, origin address, destination
address, etc., are gathered by fog nodes. After executing
primary features, the classification model is extracted and sent
to SDN C. In the following, we will offer the features that
define NRC.

The observed travel time of a vehicle (TTobserved) along a
road section may consist of recurrent delay (Recurrentdelay)
and non-recurrent delay (Non Recurrentdelay).

TTobserved = Recurrentdelay +Non Recurrentdelay (1)

Recurrentdelay is the recurrent historic travel time TThistoric

that depends on the specific location and time. Non-
recurrent delay is formed due to incident characteris-
tics (incident delay), work area (workloaddelay), weather
(weatherdelay) or delays caused by The specific event
(specific eventdelay).

Non Recurrentdelay = incident delay + workloaddelay

+weatherdelay + specific eventdelay
(2)

The observed travel time along a part can be easily obtained
by VANET vehicles. If TTObserved is higher than a threshold
[11], determined by multiplying the congestion factor c by
the expected recurrent delay, the travel time is considered
excessive.

TTObserved > (1 + c) ∗ TThistoric (3)

F fog computing allows real-time traffic flow data to be
collected along the vehicle path and other road parts. From
these data, understandable statistical spatial and temporal
characteristics can be extracted to help infer the component
causing excessive delay.

Incidents are characterized by problematic spots (PSpot)
[12]. We use geolocation data to extract these points in
VANET. If part of the road is blocked, no vehicle position
coordinate is recorded between the PSspot start and end
positions. This feature also takes into account the temporal

aspect of observed problematic spots. If the event lasts more
than an hour, it is a good indicator of NRC caused by an
incident.

NRC caused by lousy weather affects travel time
(PathTravelT ime), speed on the path (PathSpeed) and path
gap (PathGap). PathTravelT ime measures the maximum
travel time along the vehicle path and compares it to the
expected travel time of the corresponding trip. PathSpeed is
to measure the speed data of vehicles on the path. PathGap

collects and calculates the minimum distance between vehicles
in adverse weather conditions as drivers try to maintain a
minimum safety distance to handle longer stopping distances
caused by slippery roads.

Special events are identified by their impact region
(Impact RegionSpecificevent). Each part of the network path
is labeled as inside or outside an influential zone [13]. We
assume that if a vehicle experiences an NRC caused by a
particular event, then the vehicle is necessarily located in the
event’s impact area.

Using the speed-flow relationship and knowing the average
observed speed in each area and the flow density, we can
estimate and compare the flow with the maximum flow.

Finally, the feature TTCurrent classifies the observed travel
time during a part as usual or excessive according to (3). We
only focus on NRC and do not consider frequent densities.
An accident, work zone, special event, weather, or no specific
event may cause any event in the network. These features are
input to classification models to infer the cause of NRC.

2) Clssification Model: Classification is one of the essential
topics in the field of machine learning. There are various
classification methods, such as decision trees, neural networks,
etc. Among decision tree algorithms, ID3 and C4.5 are the
most effective algorithms. C4.5 is the next generation of the
ID3 algorithm that uses the inference method in the decision
tree. This paper uses VANET architecture based on SDN
and SFVN fog computing to extract features and build a
decision tree using the C4.5 method. This method is based
on the concept of entropy. At each stage of tree construction,
Gonavon features are inspected, and features that reduce the
amount of disorder are selected.

We also use the Naı̈ve Bayes method in SFVN to evaluate
the classification. Simple Bayes is a probabilistic algorithm
that uses Bayes theory for classification. In Bayesian classifi-
cation, the main goal is to find posterior probabilities, which
can be expressed as follows with the help of Bayes theorem.

P (c|x) = (x|c)P (c)

P (x)
(4)

In (4), c represents the class in question; x represents the
features that each one should be calculated separately. P (c|x)
is the posterior probability of class c having predictor x; P (c)
is the probability of class. P (x|c) is a measure of likelihood
that shows the probability of predictor x having class c. P (x)
is the prior probability of the predictor of x.



Posterior observable features X = x1, x2, ..., xi to the
density component of class c are calculated using Bayesian
rules:

P (c|X) =
P (x1|c)P (x2|c)P (x3|c)...P (xi|c)

P (x1.x2.x3....xi)
(5)

With the help of the simple Bayesian method, using probability
rules, the cause of congestion in different urban areas can be
classified.

IV. SIMULATION RESULTS

The network topology was created using the actual urban
environment with the help of OpenStreetMap (OSM) and
SUMO urban traffic simulation software, and the NS2.35 [14]
simulator was used for simulation and performance evaluation.
SUMO, a traffic simulator for simulating urban mobility [15],
is developed under extensive scenarios to model typical traffic
conditions, including weather, accidents, work zones, and
special events. The SUMO simulator requires two inputs: the
network of a part of Tehran city road, imported from the
OpenStreetMap database, and the traffic requests, which are
based on the car trips dataset. The output of SUMO is the
movement of vehicle nodes in an extensive urban network and
data such as acceleration, density, flow, gap between vehicles,
and other microscopic parameters at the vehicle level. We ex-
tract features that constitute a sample of the sequence data set
from the simulation data collected by each vehicle. To obtain
a realistic environment for simulating vehicle communication,
we will use the scenarios developed in SUMO to generate a
vehicle trace file in NS2. The simulation parameters are shown
in the Table I. We demonstrate the effectiveness of our scheme

TABLE I
SIMULATION PARAMETERS

Parameters Values
Simulation area 3000m ∗ 2000m

Number of nodes 50− 75− 100− 125− 150
Protocol AODV

Mac protocol 802.11p
Traffic type CBR
Packet size 512byte

Communication range (R) 250me
Transmission rate (r) 0.1Mbps
Propagation speed (c) 3 ∗ 108

Simulation Time 300s
Number of simulation runs 20

by investigating the performance of classification accuracy,
detection accuracy, detection rate, and detection speed of NRC
in an urban network. We use colab. Google to generate a
classification tree. The simulation results of SFVN proposed
in this paper are compared to the CCSANN [10], FogJam [8],
and standard VANET architecture.

A. Evaluation

A sensitivity analysis has been performed on the model’s
features to obtain the significance of a feature for some of our
classifications. We show in Figure.2 the sensitivity of each
feature on the accuracy of the C4.5 and BN methods in the

structure of the proposed SFVN architecture, standard VANET
architecture, FogJam, and CCSANN. As can be seen, SFVN
is more accurate than other methods. Based on the accuracy of

Fig. 2. Accuracy in SFVN and VANET models

features and probability models in each of the simple Bayesian
and tree construction methods, the cause of the congestion will
be determined. We have divided the classification classes into
six categories: Normal, Incident, WorkZone, SpecialEvent,
Weather, and Recurrent. Finally, we show that vehicles over
VANET can identify the cause of NRC. We have analyzed the
percentage of correct detection of the cause of congestion in
Figure.3. As illustrated in Figure.3, the SFVN method detects
the cause of congestion in different classes more accurately.
The reason for this is that in the SFVN method, data and
features are extracted using fog nodes in real-time and with
higher accuracy, and by using the global and intelligent vision
that the SDN controller adds to the network, the classification
can be done more comprehensively that help to determine the
cause of the congestion. The classification evaluation of the

Fig. 3. Comparison of the correct class detection



proposed method in terms of the number of vehicle nodes
is presented in Figure 4. As can be seen, with the increase
in the number of vehicles, the detection rate of the cause of
congestion has increased. Also, according to Figure 5, this
rate has increased proportionally with time. The reason for
the growth in the detection rate proportional to time is that
more vehicles were present in the simulation scenario with the
increase in the simulation time. As a result, the congestion was
heavier, and the detection rate was also higher. By reaching
the end of the simulation and reducing the number of vehicles,
the detection rate has also decreased. Figures 4 and 5 present

Fig. 4. Comparison of detection rate (considering vehicle nodes)

Fig. 5. Comparison of detection rate (considering time passing)

that the congestion detection rate in SFVN-based classification
methods was higher than others. The reason is that, with the
increase in vehicles, the SDN controller performs network
management and data collection better and more completely
using its global view. The management performance of RSU,
BS, vehicle, and fog nodes for collecting and extracting
features is better in the SFVN architecture with many nodes.

As a result, with the growth in vehicle nodes, the classification
methods have also performed better in the SFVN architecture.

V. CONCLUSION

The duration, time, and location of Non-Recurrent Conges-
tion (NRC) in an urban network vary greatly, and real-time
traffic monitoring is complicated with conventional methods.
We have used SDN and fog computing technologies for
distributed congestion classification, and we have proposed
using these two technologies as a cost-effective and flexible
solution to ensure better monitoring of road traffic in VANET
networks. The proposed framework aims to exchange traffic
flow data through vehicles and fog nodes located at the edge
of the network to infer the cause of NRC. The simulations
show that the prediction accuracy of the proposed scheme for
C4.5 and simple Bayesian methods is higher than the standard
VANET architecture.

REFERENCES

[1] J. Singh, P. Singh, M. Hedabou, and N. Kumar, “An efficient machine
learning-based resource allocation scheme for sdn-enabled fog comput-
ing environment,” IEEE Transactions on Vehicular Technology, 2023.

[2] Y. Laalaoui, “Combining combinatorial optimisation and planning to
solve the non-recurrent traffic jam problem,” International Journal of
Artificial Intelligence and Soft Computing, vol. 7, no. 4, pp. 267–298,
2022.

[3] N. Noorani and S. Seno, “Sdn-and fog computing-based switchable
routing using path stability estimation for vehicular ad hoc networks
peer-to-peer networking and applications.” Appl, 2020.

[4] D. P. Isravel, S. Silas, and E. B. Rajsingh, “Long-term traffic flow
prediction using multivariate ssa forecasting in sdn based networks,”
Pervasive and Mobile Computing, vol. 83, p. 101590, 2022.

[5] K. Behravan, N. Farzaneh, M. Jahanshahi, and S. A. H. Seno, “A
comprehensive survey on using fog computing in vehicular networks,”
Vehicular Communications, p. 100604, 2023.

[6] J. Bhatia, R. Dave, H. Bhayani, S. Tanwar, and A. Nayyar, “Sdn-
based real-time urban traffic analysis in vanet environment,” Computer
Communications, vol. 149, pp. 162–175, 2020.

[7] Y. Liu, Z. Cai, and H. Dou, “Highway traffic congestion detection and
evaluation based on deep learning techniques,” Soft Computing, vol. 27,
no. 17, pp. 12 249–12 265, 2023.

[8] M. Peixoto, E. Mota, A. Maia, W. Lobato, M. Salahuddin, R. Boutaba,
and L. Villas, “Fogjam: A fog service for detecting traffic congestion in
a continuous data stream vanet,” Ad Hoc Networks, vol. 140, p. 103046,
2023.

[9] Y. Liu and H. Wu, “Prediction of road traffic congestion based on
random forest,” in 2017 10th International Symposium on Computational
Intelligence and Design (ISCID), vol. 2. IEEE, 2017, pp. 361–364.

[10] M. Ashifuddin Mondal and Z. Rehena, “Intelligent traffic congestion
classification system using artificial neural network,” in Companion
Proceedings of The 2019 World Wide Web Conference, 2019, pp. 110–
116.
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