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Abstract
Natural disasters lead to massive human and financial losses yearly; thus, disaster planning is of critical importance. One of

the most crucial measures for disaster planning is developing an efficient disaster relief supply chain (DRSC) network.

Thus, many researchers have focused on this field while overlooking some crucial actual conditions as a result of the

complexity of the problem. Consequently, this study develops a DRSC network considering the perishability of relief

commodities (RCs), the gradual injection of the limited pre-disaster budgets, pre-disaster lateral transportation, and the

time value of money. In this respect, a novel multi-period multi-commodity mixed-integer non-linear programming model

is presented, which optimizes pre-disaster warehouse location and inventory management and the post-disaster re-pro-

curement and distribution of RCs in each period. Utilizing a new service utility index, the proposed model strives to

minimize deprivation cost while maximizing demand coverage and fair service. To provide the required RCs in the pre-

disaster phase, a bidirectional quantity flexibility contract (BQFC) is proposed, which is integrated with multi-sourcing and

allows for two-part buybacks, installment and delayed payments, and quantity-based discounts on its terms. The appli-

cability and performance of the model are validated via a real case study in Mashhad, Iran. Various sensitivity analyses are

provided to highlight the desirable performance of the model and achieve helpful managerial insights.

Keywords Humanitarian relief supply chain � Location-inventory-distribution problem � Gradual budget injection �
Bidirectional quantity flexibility contract � Perishability � Time value of money

1 Introduction

On the one hand, the increase in the number of natural

disasters and the expansion of their destructive range, and

on the other hand, population growth in different areas of

the world have increased economic losses and human

casualties caused by such incidents. According to the

Natural Disaster Database, 387 natural disasters occurred

worldwide in 2022, resulting in 30,704 deaths, affecting

185 million people, and leading to 223.8 billion dollars in

financial losses (EM-DAT, www.emdat.be). One example

of the most recent and tragic disasters is the 7.8-magnitude

earthquake in Nepal in April 2015, which was followed by

severe aftershocks for more than 1 month and led to about

8,000 deaths and more than 2.8 million people needing

help (Maharjan and Hanaoka 2017). Also, about 200,000

and 225,000 people were killed in the 2010 Haiti earth-

quake and the 2004 Indian Ocean tsunami, respectively

(Altay and Green 2006; Ergun et al. 2014).

The losses caused by disasters cannot be compensated in

various aspects, especially the human aspect; however,

with preventive measures and proper planning to prepare

for coping with such incidents, these losses can be reduced

as much as possible. Therefore, a research branch called

the humanitarian relief supply chain (HRSC) has been
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created. HRSCs usually require procurement, storage,

human resources, machinery and equipment, and trans-

portation of food, water, and medicine. HRSCs also

involve various operations, which have been categorized

into four phases, including mitigation, preparedness,

response, and recovery (McLoughlin 1985). The pre-

paredness and mitigation phases are concerned with pre-

disaster activities, such as stockpiling of necessary RCs. In

contrast, the response and recovery phases pertain to post-

disaster activities, such as distributing RCs and evacuating

affected individuals (McLoughlin 1985). Noteworthy, the

preparedness phase relates to those operations provided for

a plausible calamity, whereas the mitigation phase aims to

prevent the occurrence of a calamity (Kovács and Spens

2007). In addition, administering finite resources for

emergency responses and returning the affected areas to

ordinary situations are carried out in the response and

recovery phases, respectively (Çelik et al. 2012). Figure 1

shows the HRSC structure (Li et al. 2018).

Facilities location, inventory management, network

flow, routing, scheduling, evacuation of people, and

emergency settlement are among the significant activities

in HRSC; as a result, HRSC is the most costly part of

disaster relief operation (about 80%) (Tomasini and Van

Wassenhove 2009). According to Falasca and Zobel

(2011), approximately 65% of HRSC expenses are related

to procurement operations, 15% to transportation, 10% to

human resources, and 10% to administration.

As a result, HRSC represents a vital and critical lever for

improving cost, quality, and time in the discussion of crisis

management.

The shortage of RCs in affected spots leads to increased

human losses. Therefore, designing and developing an

effective strategy for expediting the transfer of RCs to

affected spots is very important in coping with disasters.

The proper location for stocking RCs, effective planning

for preparing RCs in the pre-disaster phase, and designing

an efficient network for distributing RCs following a dis-

aster can be suggested as a solution. These strategies can

reduce response time and relevant costs, and any incorrect

measures in these areas lead to a dramatic increase in

human and financial losses. Besides, a lack of attention to

the interactions among HRSC phases can be a considerable

obstacle to useful reactions to a crisis. Optimizing the

activities of these phases separately cannot necessarily lead

to optimizing the entire relief and rescue operation; it may

sometimes lead to impractical decisions. As a result, inte-

grating the HRSC phases is crucial when designing a

DRSC network. Subsequently, due to the growing impor-

tance of crisis management in today’s world, this study

aims to design an effective and efficient DRSC network to

plan preparedness and response phases. In particular, the

proposed problem models decisions related to locations

and establishment times of warehouses, multi-sourcing1

based on a proposed supply contract, inventories planning

and management in the pre-disaster phase, and the distri-

bution and re-procurement of RCs in the post-disaster

Fig. 1 HRSC structure (Li et al. 2018)

1 It is a special case of the supplier selection problem, which

determines which suppliers should be selected and how much should

be purchased from each selected supplier.
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phase. In addition, we evaluate the model on a real case

study in Mashhad City, Iran.

The rest of the study is organized as follows: Some of

the most relevant research and the main motivations and

contributions behind the current research are provided in

Sect. 2. The problem under study and the proposed math-

ematical programming model are described in Sect. 3. A

case study, along with the performance evaluation of the

model, is presented in Sect. 4. Eventually, concluding

statements, critical managerial insights, and recommenda-

tions for future research are expressed in Sect. 5.

2 Literature review

As the growing trend of crises has attracted increasing

attention to HRSCs, numerous researches have recently

been undertaken in this realm. In the following, we review

some of the most relevant publications to the current study.

Moreno et al. (2016) proposed two programming models

to integrate and coordinate location, distribution, and fleet

sizing decisions in the post-disaster under an uncertain,

multi-commodity, multi-period, and multi-modal environ-

ment. To save overall resources and improve service levels,

one of the models considered the option of reusing vehicles

to cover extra routes within the same period. The findings

revealed that integrating the decisions in a multi-period

environment and the option of reusing vehicles diminish

the total cost.

In light of the importance and yet lack of behavioral

research in humanitarian relief operations (Sankara-

narayanan et al. 2018), Espejo-Dı́az and Guerrero (2021)

extended their previous research (2020) by considering

human behaviors such as victims’ word of mouth and

impatience. They studied a dynamic post-disaster relief

distribution problem considering donations, formulated as

an inventory routing problem. Due to the possibility of

happening aftershocks or new disaster events (i.e., sec-

ondary disasters), they attempted to minimize the risk of

losing inventory, in addition to inventory shortages. The

findings disclosed that neglecting the behavioral factors

results in the highest inventory shortages in the HRSC.

Ghasemi et al. (2022a, b, c) determined the optimal

locations and capacities of shelters and warehouses,

homeless people, injured people, corpses, relief staff,

vehicles, and RCs flows, and the best routes for the evac-

uation of victims in the post-disaster phase by developing a

simulation–optimization model. They minimized the total

probability of unsuccessful evacuation in routes and the

maximum number of unsatisfied demands for relief staff, in

addition to the total cost.

Ghasemi et al. (2022a, b, c) introduced a new mathe-

matical model based on simulation and a cooperative game

theory of coalition type to optimize location, inventory,

distribution, routing, vehicle fleet, the transfer of injured

people, and movement scheduling decisions at post-disas-

ter under earthquake conditions. They also paid attention to

the reliability of routes and the priority of RCs.

The following studies have determined locations for pre-

positioning RCs, scheduled the procurement and storage of

required RCs before the disaster, and adjusted the distri-

bution plan of RCs in the response phase.

Li et al. (2018) presented a cooperative maximal cov-

ering location model in which RCs were prioritized.

Sanci and Daskin (2019) proposed a bi-level stochastic

programming model under backlogged shortages to inte-

grate location, storage, damaged routes restoration, distri-

bution, and routing decisions. They showed that integrating

location and network restoration models results in a sig-

nificant improvement in satisfied demand and cost.

Wang and Nie (2019) proposed two mathematical

models considering traffic congestion and a criticality

weight for each RC.

To measure the earthquake resistance of each demand

point, Wang et al. (2020) introduced a seismic resilience

function calculated using fault tree analysis, analytic hier-

archy process, fuzzy set theory, and neural network

methods. In particular, they attempted to provide more

service to the demand point that has a higher undesirable

value for the seismic resilience function.

Wang et al. (2021a, b) examined the effect of the direct

transfer of pre-positioned RCs among warehouses (lateral

transportation2) in the post-disaster phase on their model.

They showed that post-disaster lateral transportation leads

to more flexibility and lower costs.

Unlike Abazari et al. (2021), who accounted for per-

ishability when planning post-disaster distributions,

Tavana et al. (2018), Akbarpour et al. (2020), and Sheik-

holeslami and Zarrinpoor (2023) looked into the inventory

management of perishable RCs prior to the disaster. They

made the supposition that if the supply’s remaining lifes-

pan is less than a certain threshold, it can be sold (sale

mechanism; Tavana et al., and Sheikholeslami and Zar-

rinpoor) or sold back to the suppliers (buyback mechanism;

Akbarpour et al.) at pre-disaster. Unlike Akbarpour et al.,

the others also made decisions about the lifespan of pur-

chased RCs. Tavana et al. modeled the distribution of RCs

within the network as a multi-echelon multi-depot vehicle

routing problem. Akbarpour et al. determined locations for

mobile pharmacies at each post-disaster period using a

cooperative coverage mechanism, in addition to deter-

mining locations for warehouses and their size at the pre-

disaster phase. To provide essential medical commodities,

2 Lateral transportation refers to horizontal transportation within the

same echelon.
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they presented a multi-sourcing mechanism based on

option (OC)3 and buyback (BC)4 contracts with the pre-

positioning policy only applied to critical RCs. Moreover,

they assumed that RCs have different priorities in each

affected area; lead time is considerable and time-depen-

dent, and there must always be a safety inventory for each

RC in each warehouse during each pre-disaster period.

Abazari et al. took account of various vehicles and deter-

mined the needed number of each vehicle and the type of

vehicle of each transportation. They presumed that a per-

ishable commodity would decay if its travel time (includ-

ing loading and unloading times) exceeded a certain

amount in the post-disaster phase. Managing the transfer of

injured people, victims’ accommodation, vehicle fleet, and

human resources were other primary concerns of Sheik-

holeslami and Zarrinpoor.

Condeixa et al. (2017), Torabi et al. (2018), Aslan and

Çelik (2019), Cotes and Cantillo (2019), Hu and Dong

(2019), Akbarpour et al. (2020), Boostani et al. (2020),

Nezhadroshan et al. (2021), Ghasemi et al. (2022a, b, c),

and Aghajani et al. (2023) focused on the procurement of

RCs in both the response and preparedness phases. Con-

deixa et al. considered RCs donated in the response phase.

Torabi et al. presented a two-stage scenario-based mixed

possibilistic-stochastic programming model considering

monetary donations in the post-disaster budget. To procure

RCs, they combined a multi-sourcing problem with a

quantity flexibility contract (QFC).5 Hu and Dong took into

account price discounts based on delivery time and order

quantity, as well as physical inventory as supplier selection

criteria. In addition, it was assumed that the commodities

purchased from suppliers after a disaster are either being

produced by suppliers or sent from the suppliers’ ware-

houses (their physical inventory). Since suppliers’ physical

inventory is initially planned to serve their regular cus-

tomers, the relief organization (RO) would pay a fine to

suppliers for using their physical inventory to compensate

for the risk of losing these customers. In the response

phase, Aslan and Çelik addressed decisions on transporta-

tion, repairing damaged roads, and the arrival time of RCs

at the demand point, in addition to how to re-procure and

distribute RCs. They attempted to minimize the total

response time by considering three approaches based on

efficacy, equity,6 and robustness. The results demonstrated

that equity-based objective outperforms its counterparts.

Cotes and Cantillo optimized human suffering by mini-

mizing the total social cost.7 The outcomes indicated that

deprivation costs represent more than 50% of the total

social cost. Boostani et al. took into account the ecological

effects of the packaging of RCs and CO2 emissions in the

proposed network shipments and tried to minimize these

effects. Nezhadroshan et al. considered secondary disasters

and also decided on the transportation mode of some net-

work shipments at post-disaster. Moreover, their model

maximized the resilience level of each relief facility esti-

mated using fuzzy analytic network process and fuzzy

decision-making trial and evaluation laboratory techniques.

Ghasemi et al. designed a humanitarian relief network to

manage the blood supply chain in disaster situations.

Aghajani et al. introduced a procurement-warehousing-

distribution model under supply disruption. The model sets

up a number of multi-period QFCs with primary suppliers,

a number of dynamic OCs with backup suppliers, and a

multi-period warehousing contract with a third party pro-

viding warehousing service. Post-disaster decisions inclu-

ded order quantities from the primary and backup

suppliers, the adjustment of storage needs, as well as the

distribution quantities of RCs in the designed network.

In view of the intricate and unpredictable nature of

catastrophes, Condeixa et al. (2017), Bai et al. (2018), Elçi

and Noyan (2018), Aslan and Çelik (2019), Akbarpour

et al. (2020), Chen (2020), Erbeyoğulu and Bilge (2020),

Li et al. (2020), Nezhadroshan et al. (2021), Wang et al.

(2021a, b), Ghasemi et al. (2022a, b, c), Noyan et al.

(2022), and Zhang et al. (2022) utilized robust optimization

methods to develop the problem under consideration.

Condeixa et al. proposed a mean-conditional value at risk

(CVaR) two-stage stochastic programming model. Bai

et al. developed a fuzzy programming model with a VaR

objective, credibility constraints, and fuzzy parameters

defined with variable possibility distributions to solve their

3 In an OC, a specific quantity of the suppliers’ inventory can be

reserved.
4 A BC allows the buyer to return commodities up to the quantity of

the initial purchase at an identical price for each unit.
5 A QFC supplies the commodity up to a certain pre-agreed amount

in excess of the initial order quantity.
6 The concept of equity and how to measure it have been widely

investigated in the literature. Braveman and Gruskin (2003) defined

equity as the lack of systematic disparities among groups of people.

Footnote 6 continued

The consideration of the equity concept in allocation/distribution

decisions represents supplying demand points in a fair manner, as

well as the best efforts to ensure that the required relief commodities

are equally distributed among all demand points. Fair relief distri-

bution among demand points is also an important point in HRSC

(Beamon and Balcik 2008). The three main approaches frequently

used to achieve equity as an objective in relief distribution include: 1.

Minimax approach, 2. Maximin approach, and 3. Maxisum approach

(Ransikarbum and Mason 2016).
7 Social cost includes both logistics costs and deprivation costs.

Deprivation costs include the costs imposed on casualties due to lack

of access to required items or services (Holguı́n-Veras et al. 2013);

consequently, these costs represent human suffering. Given the

importance of deprivation costs in HRSC, certain researchers

including Holguı́n-Veras have focused on how to estimate deprivation

cost for each person affected by a disaster and have presented

different deprivation cost functions.
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problem. To get variable possibility distributions for type-2

fuzzy variables, they applied the credibility critical value

reduction technique. Elçi and Noyan presented a chance-

constrained mean-CVaR stochastic model. In this study,

lost shortages are only possible in specific scenarios where

the sum of the probabilities of their occurrence is less than

or equal to a certain amount. A min–max robust model was

presented by Aslan and Çelik, and Akbarpour et al. To

compare stochastic models with W-expander models, Chen

first proposed a risk-neutral stochastic bi-level program-

ming model with known demand distributions. Then,

assuming that we merely know that demand varies within a

specific interval, he reformulated the model into another

model called the risk-averse W-expander model. The

obtained results indicated that W-expander models, in

comparison to stochastic models, can significantly reduce

the shortage cost. Erbeyoğlu and Bilge proposed a robust

two-stage stochastic programming model. They optimized

the locations and sizes of distribution centers in the

response phase, in addition to locating warehouses before

the disaster. They defined a service coverage window for

demand points and assumed that each must be allocated to

the nearest distribution center that can cover it. In addition,

they determined several service coverage windows for

distribution centers and assumed that the demand of each

distribution center for each item needs to be fulfilled more

than a certain amount within each service coverage win-

dow by warehouses that can cover it. Li et al. presented a

three-stage scenario-based mixed robust-stochastic pro-

gramming model considering secondary disasters. They

also planned victims’ accommodation and indicated that

considering secondary disasters could lead to a significant

improvement in the fulfilled demand. According to the

approach presented by Mulvey et al. (1995), Nezhadroshan

et al. and Ghasemi et al. proposed a robust two-stage

possibilistic-stochastic programming model and a robust

two-stage stochastic programming model, respectively.

Wang et al. prioritized RCs and modeled their problem as a

bi-level distributionally robust programming model based

on the worst-case mean-CVAR criterion. They demon-

strated that the suggested model outperforms its stochastic

equivalent in terms of objective value and solution stabil-

ity. Noyan et al. introduced a risk-averse two-stage

stochastic programming model by considering a constraint

according to CVAR. Zhang et al. employed a distribu-

tionally robust programming model that performs better

than its stochastic equivalent.

Table 1 summarizes the above-mentioned body of

research and highlights the gaps observed in the problem

under study and the key distinctions between these studies

and the present research.

2.1 Gap analysis and contributions

Besiou and Van Wassenhove (2020) highlighted the chal-

lenges in matching practitioner needs with academic pub-

lications and outlined the great opportunities for impactful

and relevant studies. Hence, according to Besiou and Van

Wassenhove’s researches, other studies undertaken, as well

as interviews conducted with administrative managers in

Mashhad’s ROs, we attempt to reduce the gaps observed in

the problem under study. As a result, the followings are the

significant contributions of our research that have not yet

been addressed in the HRSC literature:

• Despite the large number of researches conducted in

HRSCs, actual conditions have been overlooked in

many inquiries as a result of the complexity of the

problem (Kunz et al. 2017; Besiou and Van Wassen-

hove 2020). In particular, budget constraints in pre-

disaster planning have been only considered in a few

studies in this field. Moreover, in all these studies,

budget injection into the project is instantaneous, i.e.,

we will have access to the total budget at the beginning

of the pre-disaster planning time horizon (PTH). In

practice, the total budget can be gradually made

available over time (gradual budget injection). There-

fore, limited budgets gradually injected into the project

over the pre-disaster PTH are considered in the present

study. Accordingly, the pre-disaster PTH is divided into

several periods, and as a consequence, location, inven-

tory management, and distribution problems are mod-

eled dynamically. It is noteworthy that in the researches

conducted on HRSC, the relief facilities have been

established simultaneously prior to the disaster; as a

result, the location problem has been modeled as a

static one. However, in actual conditions, the simulta-

neous establishment of the necessary relief facilities

before the disaster cannot be possible due to various

reasons, such as shortage of financial resources, and

lack of human resources.

• Selecting the proper suppliers and optimally allocating

the order to them (multi-sourcing) will result in lower

purchasing costs and more efficient and effective

disaster response. Also, making agreements with sup-

pliers prior to a disaster not only ensures the accessi-

bility and affordable procurement of required RCs but

also leads to lower holding costs and enhances the

reliability of timely delivery and flexibility for coping

with the high uncertainty of demand following a

disaster. However, a few studies have planned the

procurement of RCs using a multi-sourcing problem

based on supply contracts. To plan the procurement and

inventory of perishable RCs, we devise a multi-

sourcing procedure based on a supply contract

A location-inventory-distribution model
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mechanism that varies from prior studies in several

aspects. In particular, already proposed mechanisms are

QFC, OC, and BC with instant payments without delay.

When it comes to managing risks, including demand

uncertainty, supply unreliability, and price instability

accompanied by decreasing pre-positioned inventory

levels and supply expenses, QFCs are highly efficient.

In addition to being flexible in orders, QFCs provide

reciprocal benefits for both the seller and the buyer. In

other words, under a QFC, the seller can sell additional

supplies to the buyer, and the buyer can reorder the

supplier without paying a reservation cost in advance

(Torabi et al. 2018). Accordingly, in this paper, we

design a QFC with a two-part buyback (TPB)8 [bidi-

rectional QFC (BQFC)], taking into account installment

and delayed payments. In contrast to prior studies,

which only addressed discounts on the purchase price,

we account for based-quantity discounts on the various

terms of our contract. Therefore, the proposed model

includes important aspects of business behavior that can

place this study in the category of behavioral research.

• The main objective of the HRSC is to reduce human

suffering and mortality to the greatest extent. Hence, in

addition to efficiency, efficacy, equity, and happiness/

distress are among the most significant criteria that

must be considered in HRSC models (Gutjahr and Nolz

2016). Efficiency generally comprises logistics costs,

including establishment of facilities, procurement of

RCs and equipment, transportation, and personnel’s

wages (Gutjahr and Nolz 2016). In addition, efficacy

can be measured by various criteria, including cover-

age, travel distance, response time, security, and

reliability, or a combination of them (Gutjahr and Nolz

2016). It is noteworthy that efficacy is much more

important than efficiency in HRSCs, as human issues

take precedence over monetary issues (Balcik and

Beamon 2008).

Fair service is a natural requirement, because victims

expect that there must be no privileges or priority for

certain groups of people. In particular, fair service is usu-

ally described by the equity concept, which includes bal-

ance and equitability (Karsu and Morton 2015; Gutjahr and

Nolz 2016). The equitability concept refers to serving

groups of individuals who are indistinguishable from one

another. In contrast, the balance concept refers to serving

groups of individuals who are distinct in terms of their

claims, needs, and preferences (Karsu and Morton 2015).

Essentially, different affected areas have different demand

quantities and priorities due to varied factors, such as
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8 The possibility of returning commodities such that the supplier

purchases a part of the total returned commodities at a specific unit

price and the rest at another unit price.
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population and catastrophe intensity (Gralla et al. 2014;

Nagurney et al. 2015). Therefore, to avoid a potential

societal calamity, fair service should be described by the

balance concept (Rezaei-Malek and Tavakkoli-Moghad-

dam 2014).

One of the primary and vital objectives of HRSCs is to

reduce hardship, pain, affliction, deprivation, social dis-

turbances, and negative emotions of victims, described by

the distress criterion. Indeed, distress alludes to social and

psychological expenses, addressed in a tiny minority of

studies (Karsu and Morton 2015). In this regard, Holguı́n-

Veras et al. (2013) introduced the notion of deprivation

cost to measure the suffering of victims deprived of vital

RCs. They estimated the deprivation cost as a non-de-

creasing convex function of deprivation time.9

Our developed model incorporates efficacy, equity, and

distress in the objective function. Specifically, the intro-

duced objective function indicates the desire to service the

affected areas with the highest possible quantity of RCs

and the lowest possible deprivation cost in the fairest

possible manner. To maximize the efficacy of the HRSC

network, Noham and Tzur (2018) utilized a ratio of ful-

filled demand to travel time. Accordingly, this study,

inspired by Holguı́n-Veras et al. (2016) and Noham and

Tzur (2018), develops a new measure called service utility,

which combines efficacy and distress and is estimated as

the ratio of the fraction of fulfilled demand to deprivation

cost. Since different affected areas had different demand

quantities, Tzeng et al. (2007) applied the minimal amount

of fraction of the total fulfilled demand among all affected

areas as a balance measure. Therefore, inspired by Tzeng

et al. (2007), a new balance measure is presented as the

minimum amount of the total service utility among affected

areas.

• This study pays attention to the time value of money by

investing budgets and the variability of costs affected

by inflation during the pre-disaster PTH.

• In different periods, established warehouses may not be

able to stockpile adequate amounts of RCs at pre-

disaster, as the procurement budget is limited. Thus, to

improve service, pre-disaster lateral transportation can

be an efficient and appropriate alternative under the

incapacity to procure more RCs from supply resources,

as transferring pre-positioned RCs among warehouses

can lead to more efficient storage of procured RCs in

warehouses. Indeed, pre-disaster lateral transportation

helps to increase the inventory levels of more suit-

able warehouses by receiving RCs stored in other

warehouses without incurring purchase costs, while

reducing the inventory levels of less

suitable warehouses.

• To demonstrate the efficiency and applicability of the

suggested model, we run the model on a real case study

for a plausible earthquake in Mashhad, Iran.

3 Problem description

In this section, we develop a model that focuses on ware-

house location, inventory management, and distribution

problems in line with managing an HRSC in both the

preparedness and response phases. Pre-disaster warehouse

location and inventory management influence the perfor-

mance of relief activities as the number and locations of

warehouses and the number of RCs stored in them

straightly affect demand coverage, response time, and the

expenses incurred all over the DRSC. The general outline

of the desired DRSC network is presented in Fig. 2.

Noteworthy, to bring the problem under consideration

closer to reality, the proposed hypotheses have been

developed based on interviews with professionals in this

field, including administrative managers in Mashhad’s

ROs, in addition to real case studies conducted in the

HRSC literature.

In this research, a specific disaster of high intensity is

taken into account that its occurrence time is unknown and

may occur at any time of the considered pre-disaster PTH.

Therefore, the RO seeks to stockpile several critical per-

ishable RCs (e.g., food, water, and medicine) in available

warehouses prior to the disaster. These RCs are those of

high priority in the immediate aftermath of a disaster that

any delay in getting them to affected people might result in

a great deal of discomfort for affected people or a high

mortality rate.

Multiple suppliers, warehouses, and affected areas make

up the DRSC network in question. Suppliers have different

limited supply capacities and are safe from disaster in

terms of capacity and capability. They are ordered

depending on factors, such as supply capacity, contract

terms, sales discounts, and travel time. Warehouses are an

essential part of our DRSC network as they distribute the

necessary RCs to the affected areas. Specific considerations

should be taken into account when selecting warehouse

sites from a list of recognized candidates, namely (I) the

storage capacity and launching cost of the warehouses, and

(II) the needed travel time that maintains deprivation cost

to a minimum. As a result, the warehouses in our network

are located near affected areas to ensure efficient and quick

distribution of RCs. In addition, (III) the security of the

warehouses in terms of the risk of pre-positioned RCs’

destruction is taken into account as the third consideration.
9 The duration an affected person is deprived of relief commodities.
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Pre-disaster storage of all the required RCs imposes a

high cost on the RO while enhancing responsiveness. As a

result, to strike a balance between responsiveness and cost-

effectiveness, the appropriate quantity of the RCs is pre-

positioned in the specified warehouses. The RCs are pur-

chased and transferred to warehouses from selected sup-

pliers. Following the disaster, each RC’s demand is

estimated and if there is any shortfall, it will be acted to

purchase additional RCs to minimize unsatisfied demands.

The amount of RCs stored prior to the disaster would have

a direct effect on the amount of additional purchases made

in the aftermath of the disaster. Accordingly, the RO

employs an integrative proactive–reactive supply policy in

which pre-disaster inventory levels and the quantities of

post-disaster procurement are both set at the same time.

This supply policy develops a novel supply contract

framework based on a BQFC. The framework of the pro-

posed BQFC is depicted in Fig. 3. It is noteworthy that

among the diverse designed supply contracts for business

usage, QFCs are among the most appropriate ones for use

in a relief situation. QFCs can decrease the buyer’s post-

disaster supply risk, in addition to pre-positioned inventory

levels. As a result, by including a QFC in the DRSC net-

work design, the cost-effectiveness, and responsiveness of

the DRSC can be improved (Torabi et al. 2018).

According to the designed contract, the RO purchases a

specific quantity of the RC before the disaster occurs

(initial order) to store it at its warehouses. The supplier also

undertakes to supply up to a specific pre-agreed quantity in

excess of the initial order quantity (secondary order; as

l%ð�l[ 0Þ of its initial order quantity) to be able to send it

to affected areas following a calamity demanded by the

RO.

The incidence time of the disaster is unknown, and it

may happen after a long time. Therefore, to minimize

losses caused by decaying RCs, another agreement is also

included in the contract under which the supplier commits

to retrieve the sold commodity when a maximum of a pre-

specified time of its life has elapsed. In this way, when a

given amount of time remains until the expiry date of the

commodity, a pre-specified quantity of it

(l% 0\l\100
� �

of its initial order quantity) will be

returned to the supplier at a specific price (s% of its initial

price) and its remainder at another price (s% of its initial

price; 0\ s\s\100).

In this contract, the suppliers and RO are allowed to pay

for the purchase cost in arrears and installments, and

quantity-based discounts (an all-unit discount scheme) on

the various parts of the contract are taken into account. In

particular, purchase price, percentage of secondary orders,

percentage of returned commodities with a higher selling

price, percentages of return price, and payment method are

different aspects influenced by the amount of order.

The RO, like any other organization, faces financial

restrictions; therefore, it can only devote a limited budget

to establishment and procurement operations in the pre-

Fig. 2 General outline of the proposed DRSC
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disaster phase. Of course, this budget is not fully available

at the beginning of the pre-disaster PTH; instead, it grad-

ually becomes available to the RO over time. Moreover,

this budget is deposited in a bank at a specific fixed interest

rate, so that it can be withdrawn at any time.

The followings are the other main hypotheses consid-

ered when formulating the model:

o Prior to the disaster, a multi-period PTH with the same

length for each period is taken into account to consider

the perishability of the RCs and gradual injection of the

budgets. In addition, due to the significance of quick

and efficient emergency response in the first 72 h after

a disaster to save victims, the post-disaster PTH is

defined as a single-period horizon lasting 72 h.

o All purchased RCs are newly manufactured, and their

lead time is negligible. Consequently, the initial age of

each RC is regarded as zero.

o During the pre-disaster PTH, each warehouse can be

established at most once. Once established, the ware-

houses are kept open until the end of the pre-disaster

PTH.

o Transfer of RCs between warehouses is only allowed

before the disaster (pre-disaster lateral transportation),

as warehouses may not be able to store RCs in the right

amount due to the RO’s limited budget, and directly

sending RCs from warehouses to affected areas in the

post-disaster can result in reducing response time and

transportation costs.

o Cost parameters change during the preparedness phase

as affected by the inflation phenomenon.

o Pre-disaster transportation cost is not considerable.

o The cost of establishing a warehouse can be paid with a

delay and in installments.

o The pre-agreed duration for issuing a secondary order

is equal to the length of pre-disaster periods.

o Travel times are estimated by considering possible

disruptions in the transportation network.

o Items donated by the public are usually distributed a

few days after the disaster, since they require some

logistical operations before they can be distributed

(such as collecting, sorting, amalgamating, and repack-

aging). Therefore, they are not considered for usage

within the first 72 h after the disaster.

o The deprivation cost function given by Holgun-Veritas

et al. (2016), a non-decreasing convex function of

deprivation time, is used to calculate deprivation cost,

while deprivation time is considered equal to the travel

time.

3.1 Model formulation

In this research, network design decisions in the pre-

paredness phase include (1) locating warehouses, (2)

selecting appropriate suppliers and arranging the contract

with them, (3) determining the inventory levels of ware-

houses, and (4) transshipment quantities between ware-

houses at each period of the pre-disaster PTH. In the

response phase, a distribution network is designed by

determining the number of RCs that must be dispatched to

affected areas from selected suppliers and warehouses. For

this purpose, a mixed-integer non-linear programming

model is developed whose notations, objective function,

and constraints are as follows:

Purchase of Q items 
at the unit price of 
pc (initial order)

Expiration 
date

Time of returning to 
the supplier

Purchase of Q items at the 
unit price of pc and (1− )Q

at the unit price of pc

Return of 
initial order 

Disaster 
occurrence

Purchase of at 
most Q items 

(secondary order)

Initial order 
delivery

Secondary order 
delivery

Time

The relief organization

The supplier

Post-disasterPre-disaster

Fig. 3 Structure of the proposed BQFC
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Sets and indices:

S Set of suppliers, indexed by s

W Set of candidate sites for establishing warehouses,

indexed by w; �w

D Set of affected areas, indexed by d

G Set of commodities, indexed by g

A Set of possible ages of commodities, indexed by a

T Set of pre-disaster periods, indexed by t,�t:

O Set of supplier-provided quantity intervals, indexed by

o

P Set of possible installments of establishment and

procurement costs, indexed by p

Parameters:

ir General inflation rate

pcsgot Unit purchase cost of commodity g from supplier s
under quantity interval o at period t; pcsgot ¼ pcsgo1ð
1 ? irÞt�1:

ecwt Cost of establishing warehouse w at period t ;

ecwt ¼ ecw1ð1þ irÞt�1

ndg Demand of commodity g at affected area d

qwg Fraction of stocked commodity g at warehouse w that

remains usable at post-disaster; 0� qwg � 1

i Effective bank interest rate

cwg Storage capacity of warehouse w for commodity g

B Total budget allocated to establishment and

procurement operations at pre-disaster; B ¼ Bþ B:

B Total establishment budget

bt Part of total establishment budget that is available at

the start of period t;
P

t2T bt ¼ B

B Total procurement budget

bt Part of total procurement budget that is available at the

start of period t;
P

t2T bt ¼ B

b1,b2 Weight factors in the objective function

twd Travel time between warehouse w and affected area d

tsdg Travel time between the sth supplier of commodity g
and affected area d

�ag Age of commodity g for returning it

lsgo, lsgo Lower and upper bound of quantity interval o

suggested by the sth supplier of commodity g

lsgo Percentage of initial order of commodity g from

supplier s under quantity interval o for determining

maximum amount of secondary order

l
sgo

�ag Fraction of initial order of commodity g from supplier s
under quantity interval o for determining amount of

returned commodities with a higher selling price :

ssgo, ssgo Fractions of unit purchase cost of commodity g from

supplier s under quantity interval o for determining

unit selling prices of returned commodities

awp Fraction of cost of establishing warehouse w, which

must be paid in the pth installment;
P

p awp ¼ 1

�asgop Fraction of initial purchase cost of commodity g from

supplier s under quantity interval o, which must be

paid in the pth installment;
P

p �asgop ¼ 1

lp Duration of each period

tpwp Time to pay the pth installment of cost of establishing

warehouse w; 0� tpwp � lp:

�tpsgop Time to pay the pth installment of initial purchase cost

of commodity g from supplier s under quantity
interval o; 0� �tpsgop � lp:

FðtwdÞ;
FðtsdgÞ

Deprivation cost functions; F twdð Þ ¼ 0:9814e0:0188twd ;

F(tsdgÞ ¼ 0:9814e0:0188tsdg

M A large enough positive constant

Decision variables:

ywt 1, if warehouse w is established at period t; 0, otherwise

xsgot 1, if commodity g is purchased from supplier s under
quantity interval o at period t; 0, otherwise

kw �wt 0, if no commodities are transferred from warehouse w
to warehouse �w at period t; 1, otherwise

qsgot Amount of commodity g purchased from supplier s
under quantity interval o at period t (initial order)

�qwgt Amount of commodity g sent to warehouse w from

suppliers at period t

inwgat Inventory quantity of commodity g with age a in

warehouse w at the start of period t

rwgt Amount of returned commodity g from warehouse w to

suppliers at period t

zwdgt Amount of commodity g sent from warehouse w to

affected area d when disaster struck at period t

usdgt Amount of commodity g sent from supplier s to
affected area d when disaster struck at period t
(secondary order)

hw �wgat Amount of commodity g with age a sent from

warehouse w to warehouse �w at period t

vt Net balance of establishment budget

at the end of period t

vt Net balance of procurement budget at the end of period

t

Model 1:

Max ¼ b1
X
w;d;g;t

zwdgt
ndg

F twdð Þ þ
X
s;d;g;t

usdgt
ndg

F tsdg

� �
0
@

1
A

þ b2
X
t

min
d

X
w;g

zwdgt
ndg

F twdð Þ þ
X
s;g

usdgt
ndg

F tsdg

� �
8<
:

9=
;

0
@

1
A:

ð1Þ

To optimize the efficacy, distress, and balance of the

considered DRSC network, a new efficacy-distress measure

called service utility and a new balance measure are

introduced, which are, respectively, estimated as the ratio

of the fraction of fulfilled demand to deprivation cost and

the minimum amount of the total service utility among

affected areas. Following the lead of Lin et al. (2012), who

presented an objective function formulated as the sum of
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the efficiency and imbalance of the designed DRSC net-

work, the objective function (1) has also been formulated

as the weighted sum of the efficacy-distress and balance of

the DRSC network. This objective function represents the

desire to service the affected areas with the highest possible

number of RCs and the least possible deprivation cost in

the fairest possible manner (in terms of the amount of

distributed RCs and deprivation cost). The first and second

expressions of the objective function (1) maximize the

utilities of service to affected areas by warehouses and

suppliers, respectively. The third expression focuses on

maximizing the equity in service by maximizing the min-

imum amount of total service utility among affected areas

S. T.:X
o

xsgot � 18s 2 S; g 2 G; t 2 T : ð2Þ

Constraint (2) ensures that at most one quantity interval

can be selected in initial ordering

qsgot � lsgoxsgot 8s 2 S; g 2 G; o 2 O; t 2 T ð3Þ

qsgot � lsgoxsgot 8s 2 S; g 2 G; o 2 O; t 2 T : ð4Þ

Constraints (3) and (4) guarantee that each initial order

belongs to a quantity intervalX
t

ywt � 18w 2 W : ð5Þ

Constraint (5) assures that each warehouse can be

established at most once

2kw �wt �
X
�t;�t� t

yw�t þ
X
�t;�t� t

y �w�t8w; �w 2 W ; t 2 T : ð6Þ

Constraint (6) implies that RCs can be transferred

between two warehouses at pre-disaster if both respective

warehouses are available

kw �wt þ k �wwt � 18w; �w 2 W ; t 2 T: ð7Þ

Constraint (7) indicates one-way relationships among

warehouses since if an RC is transferred from warehouse w

to warehouse �w at a period, returning it from warehouse �w
to warehouse w in the same period would be pointlessX
�w

hw �wgat � inwg a�1ð Þ t�1ð Þ8w 2 W ; g 2 G; a

2 A; 0\a\min �ag; t
� �

; t
2 T:

ð8Þ

Constraint (8) denotes the maximum capacity for

transferring the RC from one warehouse to other

warehousesX
g;a

hw �wgat �Mkw �wt8w; �w 2 W ; t 2 T: ð9Þ

Constraint (9) ensures that no RCs will be moved

between two warehouses if there is no link between them

inwgat ¼ �qwgt8w 2 W ; g 2 G; t 2 T; a ¼ 0 ð10Þ

inwgat ¼ inwg a�1ð Þ t�1ð Þ þ
X
�w

h �wwgat �
X
�w

hw �wgat8w 2 W ; g

2 G; t 2 T; t[ 1; a 2 A; 0\a\min �ag; t
� �

ð11Þ

inwgat ¼ inwg a�1ð Þ t�1ð Þ8w 2 W ; g 2 G; t 2 T ; t[ 1; a

2 A; a\t; a ¼ �ag: ð12Þ

Constraints (10)–(12) express the inventory balance of

RCs at each warehouse for ages 0, 0\ a\ �ag , and �ag,

respectivelyX
a;a\ �ag

inwgat � cwg
X
�t;�t� t

ywt8w 2 W ; g 2 G; t 2 T : ð13Þ

Constraint (13) considers the storage capacity of each

warehouse for each RCX
a;a� �ag

inwgat ¼ rwgt8w 2 W ; g 2 G; t 2 T: ð14Þ

Since disaster occurrence time is unknown and the dis-

aster may occur at any time of the considered PTH, con-

straint (14) determines the number of RCs that should be

sent back to the suppliers from the warehouses before

expirationX
w;�t;�t� t

�qwg�t ¼
X

w;a\ �ag

inwgat þ
X

w;�t;�t� t

rwgt8g 2 G; t 2 T : ð15Þ

Constraint (15) maintains a balance among the total

quantity of RCs dispatched from the suppliers to ware-

houses, the total quantity of RCs returned from warehouses

to suppliers, and the total quantity of RCs at warehouses at

the start of each periodX
a;a\ �ag

inwgat ¼ �qwgt þ
X
�w;a

h �wwgat þ
X

a;a\ �ag

inwg a�1ð Þ t�1ð Þ

�
X
�w;a

hw �wgat8w

2 W ; g 2 G; t 2 T; t[ 1

ð16Þ
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X
a;a\ �ag

inwgat ¼ �qwgt þ
X
�w;a

h �wwgat �
X
�w;a

hw �wgat8w 2 W ; g

2 G; t 2 T ; t ¼ 1:

ð17Þ

Constraints (16) and (17) represent the total inventory at

the beginning of the periodX
w

�qwgt ¼
X
s;o

qsgot8g 2 G; t 2 T: ð18Þ

Constraint (18) shows the pre-disaster distribution of

RCs purchased from suppliers among warehousesX
d

usdgt �
X
o

lsgoqsgot8s 2 S; g 2 G; t 2 T: ð19Þ

Constraint (19) guarantees that the total quantity of the

RCs dispatched from the supplier to affected areas in the

post-disaster (secondary order) does not exceed the quan-

tity agreed in the contractX
w

zwdgt þ
X
s

usdgt � ndg8d 2 D; g 2 G; t 2 T : ð20Þ

Constraint (20) states that the total delivered amount of

the RC to the affected area cannot exceed its demandX
d

zwdgt �
X

a;a\ �ag

qwginwgat8w 2 W ; g 2 G; t 2 T: ð21Þ

Constraint (21) confirms that the total amount of the RC

dispatched from the warehouse after the disaster cannot

exceed its usable inventoryX
w;p

awpecwtywt 1þ ið Þlp�tpwpþvt ¼ bt þ vt�1

� �
1þ ið Þlp8t

2 T :

ð22Þ

Constraint (22) is the budget limitation for establishing

warehouses by taking into account the time value of

money. This constraint states that the sum of the future

value of establishment costs must not be more than the

future value of the existing budget
X
s;g;o;p

�asgoppcsgotqsgot 1þ ið Þlp�t �psgopþvt ¼ bt þ vt�1

� �
1þ ið Þlp

þ
X

s;g;o;p;�t¼t� �ag tj i �ag

�asgop ssgopcsgotlsgoqsgo�t þ ssgopcsgot 1� l
sgo

� �
qsgo�t

� �

ð1þ qsgo�tÞ 1þ ið Þlp�t �psgop8t 2 T :

ð23Þ

Constraint (23) shows the budget limitation for procur-

ing required RCs at pre-disaster by taking the time value of

money into consideration. This constraint expresses that

the sum of the future value of purchasing costs must not

exceed the sum of the future value of the existing budget

and the future value of sale incomes of returned RCs

v0; v0; kw �w1; kwwt ¼ 0 8w; �w 2 W ; t 2 T ð24Þ

ywt; xsgot; kw �wt 2 0; 1f g
8w; �w 2 W ; s 2 S; g 2 G; o 2 O; t 2 T

ð25Þ

qsgot; �qwgt; inwgat; rwgt; h �wwgat; zwdgt; usdgt; vt; �vt � 0 8d
2 D;w; �w 2 W ; s 2 S; g 2 G; o 2 O; t 2 T : ð26Þ

Constraints (24)–(26) indicate the type of decision

variables.

The objective function (1) is non-linear, and we lin-

earize it by utilizing the following relations. In particular,

we assume that dt ¼ min
d
f
P

w;g

zwdgt
ndg

F twdð Þ þ
P

s;g

usdgt
ndg

F tsdg

� �}.
Therefore, the objective function (1) is changed to

Eq. (27), and constraint (28) is added to the model. Con-

straint (28) ensures that the auxiliary variable dt is the

minimum value among the total service utility values at

period t

Max Z ¼ b1
X
w;d;g;t

zwdgt
ndg

F twdð Þ þ
X
s;d;g;t

usdgt
ndg

F tsdg

� �Þ þ b2
X
t

dt

 !0
@

1
A

ð27Þ

X
w;g

zwdgt
ndg

F twdð Þ þ
X
s;g

usdgt
ndg

F tsdg

� � � dt8d 2 D; t 2 T: ð28Þ

4 Model implementation and results’
analyses

In this section, we report the results of the computational

tests to demonstrate the model’s applicability and validity.

The models are solved via IBM ILOG CPLEX 12.10

running on a laptop with Intel Core i3 2.53 GHz CPU and 2

GB of RAM. In the following, we introduce a set of test

problems, and a real-world real case study followed by

various sensitivity analyses.

4.1 Test problems

To investigate the computational complexity of the pro-

posed model, five test problems are randomly generated

based on real-world situations and CPLEX is run with a

time limit of 36,000s. The results are provided in Table 2.

Based on the results, it can be concluded that (1) CPLEX is

able to achieve the optimal solution for the small- and

medium-sized problem, (2) in large dimensions, the
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software is not capable of solving the problem in 36,000s

but can achieve a near-optimal solution, and (3) the com-

putational complexity of the problem increases with the

increase in its variables and constraints, especially binary

variables and equality constraints; as a result, the compu-

tation time, gap, and number of iterations and applied cuts

increase.

4.2 Case study

Iran is recognized for being one of the world’s most seis-

mically active countries, as it is traversed by numerous

major faults and has been hit by plenty of devastating

earthquakes in recent decades, resulting in numerous

fatalities and huge financial losses. Figure 7 depicts the

earthquakes with a magnitude greater than four that

occurred in Iran from 1900 to 2020 (IIEES, www.iiees.ac.

ir). Iran’s second most populous city is Mashhad, with a

population of over 3 million people. This city is Iran’s most

important religious tourism hub, with over 20 million

tourists visiting each year, resulting in increased population

density. The city is also one of the most important and

fundamental cities of Iran due to the existence of some

critical factories and industries, as well as its vital and

critical role in the development and expansion of the

country’s eastern provinces. The existence of unfavorable

urban conditions, such as the lack of strength in buildings,

and old and worn textures in different areas of the city,

which have little stability against earthquakes, has inten-

sified the vulnerability of its different areas [see Figure 8

(Hafezi-Moghaddas 2007)]. Therefore, it can be stated that

an earthquake in this metropolis may result in tremendous

and irreversible human and financial losses. Hence, earth-

quake disaster management in Mashhad is of particular

importance.

The possibility of a high-intensity earthquake in Mash-

had is considered in this case study. The data and infor-

mation are gathered from reliable and trustworthy sources

provided based on Mashhad’s actual conditions, via inter-

views with some disaster management experts,10 and from

case studies conducted in Iran. The considered hypotheses

and data are as follows:

• Mashhad is divided into 13 districts, which are referred

to as affected areas. To locate the warehouses, one

location is nominated in each district based on criteria,

such as seismic hazard, distance from active faults, and

vulnerability of the network of passages. The affected

areas and candidate locations for warehouses are shown

in Fig. 9.

• Three types of RCs, namely, canned tuna, canned

beans, and drinking water, are needed to be stored in

available warehouses. Three liters of drinking water,

one can of tuna, and one can of beans are a person’s

daily requirement for drinking water and food (Sphere

2018). Therefore, each affected person will require 9 L

of drinking water, three cans of tuna, and three cans of

beans for the first 72 h of immediate aftermath.

• For each RC type, five reliable suppliers, whose

locations are provided in Fig. 9, are recognized. It is

worth noting that canned tuna and canned beans are

both supplied by the same suppliers.

• The RCs are kept in warehouses in favorable circum-

stances, and the return time of each RC to its

corresponding supplier is agreed upon at 1.5 years.

• The pre-disaster PTH is 3 years, divided into 6 periods

of 6 months.

• For each period, Table 5 shows the establishment and

procurement budgets.

Table 2 Computational complexity evaluation of the model

Problem Size

|S| 9|W| 9|D| 9|G|9 |A| 9|T| 9|O| 9|P|

Number of

constraints

(equality

constraints)

Number of

variables

(binary

variables)

Za Time

(s)

Gap% Number of

iterations

Number

of cuts

P1 |3| 9|6| 9|3| 9|2| 9|2| 9|3| 9|2| 9|2| 677 (164) 1197 (162) 2.274 0.2 0 623 44

P2 |4| 9|9| 9|6| 9|2| 9|2| 9|4| 9|2| 9|2| 1667 (332) 3428 (424) 8.694 0.66 0 1381 63

P3 |5| 9|12| 9|12| 9|3| 9|3| 9|6| 9|3| 9|3| 5294 (1124) 16,830 (1206) 41.481 248.34 0 543,589 645

P4 |6| 9|18| 9|15| 9|3| 9|4| 9|8| 9|3| 9|3| 13,362 (2550) 54,168 (3168) 70.948 36,000 0.85 13,889,276 4616

P5 |10| 9|25| 9|20| 9|6| 9|6| 9|11| 9|4| 9|4| 39,591 (11,856) 294,283 (8338) 322.391 36,000 1.45 5,304,820 9016

The best feasible value of the objective function achieved within 36,000 s

10 We conducted oral interviews with three experts from Mashhad’s

Red Crescent Society, one expert from the Department of Passive

Defense of Mashhad’s Governorate, and one expert from the

Department of Passive Defense of Astan Quds Razavi, who specialize

in crisis management and have complete information on the

performance and situation of Iran’s relief systems. We also conducted

oral interviews with three professors of Ferdowsi University of

Mashhad, who specialize in earthquakes.
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• The 6-month general inflation rate is set at 21%

(average 6-month general inflation rates of 2018–2021).

• Throughout the pre-disaster PTH, the budgets are

deposited in a bank that calculates profit daily under a

nominal annual interest rate of 10%. As a result, the

effective daily interest rate is 0.0274%.

• The number of affected people in each area is estimated

by multiplying the population size by the predicted

damage percentage. The predicted damage percentage

is calculated using the common set of weights and data

envelopment analysis techniques (DEA-CSW method)

for which 16 criteria are considered. In particular, the

considered criteria are as follows: (1) health per capita,

(2) green space per capita, (3) network of passages per

capita, (4) number of fire stations, (5) development

stage, (6) percentage of low-durability buildings, (7)

age of buildings, (8) population density, (9) horizontal

acceleration of faults, (10) soil erosion, (11) slope, (12)

proximity to faults, (13) soil liquefaction, (14) area of

hazardous applications, (15) traffic service level, and

(16) percentage of buildings with more than three

floors. According to the experts’ opinions, 40% of the

inefficiency score obtained from the DEA-CSW method

is considered as the predicted damage percentage.

Accordingly, the quantity of demand for each RC type

is reported in Table 6.

• Table 7 displays the storage capacity of three RC types

which are, respectively, 21, 21, and 42% of the

population size of the corresponding district and

adjacent districts.

• To estimate the construction cost per square meter, the

seismic resistance of each district is first evaluated

using step-wise weight assessment ratio analysis

(SWARA) and simple additive weighting (SAW)

methods. In particular, horizontal acceleration of faults,

soil erosion, slope, proximity to faults, and soil

liquefaction are effective criteria of the proposed

method. It is worth noting that the lower the land’s

seismic resistance, the stronger the building is required,

which leads to higher construction costs. Finally, the

establishment cost of each warehouse is estimated by

considering its seismic resistance and capacity and

construction cost per square meter in Mashhad, as

shown in Table 3.

• The percentage of possible earthquake damage to each

warehouse is estimated using the DEA-CSW method

for which eight criteria are considered as follows: (1)

network of passages per capita, (2) number of fire

stations, (3) horizontal acceleration of faults, (4) soil

erosion, (5) slope, (6) proximity to faults, (7) soil

liquefaction, and (8) traffic service level. It is worth

mentioning that the possible damage percentage

accounts for 15% of the inefficiency score obtained

from the DEA-CSW technique. Finally, the estimated

damage percentage is considered as the percentage of

stockpiled conserves that are unusable following the

disaster. In addition, this percentage for drinking water

is taken into account 3% more than the conserves (see

Table 7).

• The unit selling price offered by each supplier and its

production capacity are extracted from its website, and

the rest of the contract parameters are generated

randomly while considering their practical and real-

world situations. The results are reported in Table 8.

• Following an earthquake, there may be disruptions in

the transportation network due to damage to routes and

traffic congestion; as a result, travel times may rise

compared to normal conditions. Hence, the post-disas-

ter travel time is calculated by multiplying the normal

travel time by the coefficient of disruption in the

transport route. The measurement tool on Google Maps

is used to determine normal travel times from the

suppliers and warehouses to the centers of the affected

areas. Also, to estimate the coefficient of disruption in

the transport route, according to the real case studies

conducted in Iran and experts’ opinions, the following

approach is utilized:

The districts are first ranked using Fig. 10, created by

specialists, and the normalized rank is considered as the

percentage of road damage. Then, the coefficient of dis-

ruption in the transportation network of each district is

estimated as ten times the sum of the percentage of road

damage and the percentage of

district damage (the second column of Table 2). Finally,

the amount of the coefficient of disruption in the transport

route is measured as the average coefficients of disruption

in the transportation network of the districts that the route

passes through. The results are provided in Tables 9, 10, 11

and 12.

The establishment cost of each warehouse is paid in

three installments, namely, 1) 45% of the cost at the

beginning of the period, 2) 35% of the cost at 30 days after

the beginning of the period, and 3) 20% of the cost at 60

days after the beginning of the period.

b1 and b2 are set to 0.5 by performing a sensitivity

analysis (see Table 12).
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4.3 Results and analyses

In this section, we provide the results of running the pro-

posed model according to the considered case study, which

contains 5892 constraints (including 1220 equality con-

straints) and 19,434 variables (including 1362 binary

variables). IBM ILOG CPLEX 12.10 software finds the

optimal solution of the model by applying 876 cuts in

146,830 iterations and 59.45 s. Figure 4 depicts the loca-

tion and inventory levels of established warehouses,

selected suppliers, and the quantity of initial orders placed

with them. In addition, in this figure, we provide the

relationships between the warehouses (lateral

transportation) in each period. For example, in period 3,

two warehouses, namely 4 and 6, are established. The

inventory of warehouse 1 includes 204,986 cans of tuna,

272,000 cans of beans, and 544,000 bottles of drinking

water. In addition, 210,100 cans of tuna, 316,226 cans of

beans, and 700,100 bottles of drinking water are purchased

from suppliers 1, 5, and 3, respectively. Finally, from each

of warehouses 1 and 13, the RCs are sent to both ware-

houses 4 and 6.

The findings propose that warehouses 2, 3, 8, 11, and 12

cannot be established. In particular, warehouse 12 is further

away from the affected areas and has the highest risk of

pre-positioned commodities’ destruction compared to the

Table 3 Amount of RCs transferred from suppliers to affected areas

Period Commodity Supplier Affected area

1 2 3 4 5 6 7 8 9 10 11 12 13

1 Canned tuna 5 105,510 2530

Canned

beans

5 105,510 7624

Drinking

water

4 80,360

2 Canned tuna 1 75,698

Canned

beans

5 11,755 105,510

Drinking

water

3 115,826 164,214

3 Canned tuna 1 73,535

Canned

beans

5 54,409 72,081

Drinking

water

3 115,826 164,214

4 Canned tuna 1 3791 82,107

5 54,409 65,591

Canned

beans

1 13,956

5 54,409 85,591

Drinking

water

3 18,587 2460 116,618 164,214

5 Canned tuna 3 6283

5 54,409 65,591

Canned

beans

1 18,020 76,317

5 68,778 71,222

Drinking

water

2 155,709 2460 69,366

3 115,826 164,214

6 Canned tuna 1 76,317

5 54,409 65,591

Canned

beans

4 37,979

5 54,409 85,591

Drinking

water

3 153,326 2460 164,214

4 54,620
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other warehouses. In addition, warehouses 2, 8, and 11

have the highest establishment costs among available

warehouses. Finally, warehouse 3 has good storage

capacity, but it is far from the affected areas and has

deficient safety and high establishment cost. It is worth

noting that the constructed warehouses are closer to the

railway station and, or airport than the other warehouses,

which can enhance responsiveness.

Analyzing the results shows that those warehouses that

provide the capacity to store the procured RCs and are

Canned tuna                Canned beans                Drinking water  

Period 1 Period 2

Period 3 Period 4

Period 1 Period 2

Fig. 4 Established warehouses and their inventory levels (unit), selected suppliers and the number of RCs procured from them (unit), and

relationships between warehouses
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closer to the affected areas are established sooner. Ware-

houses 1 and 13 are, respectively, located at a shorter

distance from the affected areas compared to the other

selected warehouses. However, warehouse 1 does not have

sufficient capacity to store the RCs purchased in period 1.

Therefore, the RO decides to establish warehouses 13 and 1

in periods 1 and 2, respectively. In the third period,

warehouses 4 and 6 are founded, because they provide the

necessary capacity to store the procured RCs and are closer

to the affected areas than warehouses 5, 7, 9, and 10.

Considering the establishment budget constraint, the RO

has two options in period 4, namely, 1) the establishment of

warehouse 10, and 2) the establishment of warehouses 5

and 7. Option 2 is not able to provide the required storage

capacity, so option 1 is selected. Finally, warehouses 5 and

7 are constructed in the fifth period and warehouse 9 in the

sixth period, as warehouse 9 cannot prepare the storage

capacity required in period 5 and is farther away from the

affected areas than the other selected warehouses.

In the procurement process, the first and fifth suppliers

of conserves and the third supplier of water have more

cooperation with the RO. In particular, supplier 5 provides

a larger amount of canned beans in all periods, as well as

canned tuna in all periods except periods 2 and 3. The first

supplier provides canned tuna in all periods except periods

1 and 5 and canned beans in periods 4 and 5. In addition, in

all periods except period 1, supplied drinking water from

the third supplier is more than the other chosen suppliers.

Hence, negotiating with these three suppliers and ensuring

long-term cooperation can make the contract terms more

beneficial to the RO and lead to an increase in supply

capacity.

As seen in Fig. 4, to improve the efficacy, distress, and

balance of the relief network, no RCs from warehouses 5

and 10 are sent to the other warehouses. At the same time,

they receive the RCs from the other warehouses. Further-

more, no RCs are exchanged between warehouse 9 and the

other warehouses.

With the aim of maximizing fair service and satisfied

demands, as well as minimizing deprivation cost, the pro-

curement and distribution of RCs following the disaster are

planned as presented in Tables 3 and 4.

4.4 Model sensitivity analyses

To assess the efficiency and effectiveness of the model,

several sensitivity analyses are carried out on some of the

critical assumptions, approaches, and parameters, which

are explained in the following subsections.

4.4.1 Sensitivity analysis on the multi-period optimization
approach

Holguı́n-Veras et al. (2013) asserted that the inter-temporal

effects of HRSC activities could not be considered in sin-

gle-period optimization models. Accordingly, Moreno

et al. (2016) revealed that using a multi-period optimiza-

tion approach to optimize post-disaster location, inventory,

and distribution decisions improves relief performance.

Therefore, in this paper, we also claimed that integrating

the major decisions, such as location, inventory manage-

ment, and distribution in a multi-period horizon may

improve coordination in the HRSC. To substantiate this

claim, a single-period problem is solved iteratively, taking

into account the decisions made in previous periods. This

approach is conducted for each period t beginning from the

first period onward, and details are provided in Fig. 5.

Upon solving the single-period model (Model 2) over six

periods, the results show that in both optimization

approaches, constructed warehouses and their establish-

ment time are identical. In multi-period optimization, the

procurement strategy has been set up in such a way that the

total RCs stored in warehouses (TCSW)11 have reduced. At

the same time, total post-disaster procurement (TPDP)12

has increased to such an extent that it has not only offset

the decrease in stored RCs but also resulted in an increase

in total satisfied demand (TSD).13 It is worth noting that

storing fewer RCs reduces the risk of lost capital due to the

devaluation of RCs. Furthermore, the multi-period opti-

mization model improves the total deprivation cost

(TDC)14 and the total equity in service (TES)15 by better

storing and distributing of RCs. Therefore, multi-period

optimization has resulted in the further realization of the

objective function and, consequently, a higher optimal

value for the objective function.

4.4.2 Sensitivity analysis on lateral transportation

Given a limited pre-disaster budget and its gradual injec-

tion into the project, pre-disaster lateral transportation can

be an efficient and appropriate alternative to improve ser-

vice, as it helps to make inventory levels more favorable in

warehouses that are more suitable. Hence, to investigate

the effect of pre-disaster lateral transportation on the pro-

posed problem, it is assumed that RCs cannot be moved

11 P
w;g;a\ �ag ;t

inwgat
12 P

s;d;g;t usdgt
13 P

w;d;g;t zwdgt þ
P

s;d;g;t usdgt

14 P
w;d;g;t F twdð Þzwdgt þ

P
s;d;g;t F tsdg

� �
usdgt(Cotes and Cantillo

2019)
15 P

t dt
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between warehouses prior to the disaster (Model 3). Fig-

ure 5 illustrates some of the results. In particular, elimi-

nating pre-disaster lateral transportation from the problem

does not make any changes to the established warehouses

and their establishment time. However, the procurement

plan has been adjusted, so that TPDP has significantly

decreased. This reduction is so much that the rise in TCSW

has not been able to compensate; as a result, TSD has

decreased. In addition, the storage and distribution of RCs

have not improved, and we have higher values for TDC and

TES. Accordingly, the objective function has been realized

less, and its optimal value has been reduced. Noteworthy, it

is observed that considering post-disaster lateral trans-

portation in the model has only affected how to distribute

the RCs in the post-disaster, so that TDC has considerably

increased due to some indirect deliveries of the RCs to the

affected areas, which have resulted in a dramatic increase

in response time. In conclusion, we can state that pre-dis-

aster lateral transportation leads to a better performance of

our DRSC network.

4.4.3 Sensitivity analysis on the buyback policy

In this section, we investigate the effect of the buyback

policy on the performance of the proposed model. In

particular, we assume that RCs would not be returned to

suppliers at the agreed time but would instead be kept in

warehouses for a while (more extended than the time

agreed with suppliers and on the verge of expiration) and

then removed from warehouses with a specific salvage

value (sale mechanism; Model 4). The findings indicate

that the policy used to remove near-expiration RCs from

warehouses does not affect the opened warehouses and

their establishment time. However, since the sale mecha-

nism holds RCs in warehouses for a longer time and con-

siders a salvage value for each RC that is lower than the

prices offered by suppliers, fewer RCs have been pur-

chased prior to the disaster, while TCSW has grown (see

Fig. 5). In this mechanism, it has been contracted with

suppliers, so that a considerable drop in TPDP has occur-

red, resulting in a fall in TSD despite growing TCSW.

Also, the storage and distribution of RCs have been man-

aged so that TDC has raised, but TES has decreased.

Therefore, the objective function has been realized at a

lower amount.

4.4.4 Sensitivity analysis on the proposed balance measure

Tzeng et al. (2007) demonstrated that the fair distribution

of RCs among affected people is ensured by maximizing a

TPDP

3533451
3432894
3442800
2784798
3445977
3422466
3080943

TCSW

21943321
21965100
22025613
22355463
22012340
22001536
22203897

TSD

23250403
23154100
23230003
22864290
23220407
23124762
22931301

TDC

50553652
51674100
52742099
52918982
55164643
58192213
52309653

TES

0.096
0.094
0.113
0.073

0.003
2.176

0.23

Fig. 5 Effects of some proposed

approaches on the problem
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balance measure, formulated as the minimum amount of

fraction of the total fulfilled demand among all affected

areas. Hence, the current study has also optimized equity in

service by maximizing a new balance measure, formulated

as the minimum amount of the total service utility among

all affected areas. Now, to evaluate the influence of the

proposed balance measure on the performance of the

designed DRSC network, this measure (i.e., the third

expression of the objective function) is eliminated (Model

5). It is observed that eliminating this measure from the

problem has no effect on the location and establishment

scheduling decisions, but it influences the other decisions

(see, Fig. 5). The RO contracts with suppliers in such a

manner that pre-disaster purchased RCs have grown; as a

result, TCSW has increased, while post-disaster purchased

RCs (TPDP) have reduced. The fall in TPDP is to such an

extent that the increase in TCSW cannot be offset; as a

result, TSD has dropped. Furthermore, storage and distri-

bution strategies have not improved, resulting in a higher

value for TDC and a lower value for TES. Therefore, like

Tzeng et al. (2007), we can also conclude that optimizing

the balance measure ensures fair service and more efficient

relief.

4.4.5 Sensitivity analysis on the objective function

The objective function of the model has been formulated as

the weighted sum of the efficacy distress and balance of the

DRSC network. Now, to investigate the efficiency of the

weighted sum method, the proposed model is solved using

another popular and widely used multi-objective opti-

mization method called the weighted max–min model

presented by Lin (2004) (Model 6). The findings are dis-

played in Fig. 5. It is observed that in periods 5 and 6,

warehouses 9 and 3 have been established, respectively,

whereas in the other periods, selected warehouses have not

changed. Notably, warehouse 3 has been established

instead of warehouses 5 and 7. Compared to warehouses 5

and 7, warehouse 3 is further from the affected areas, the

railway station, and the airport, and has lower safety and

higher establishment cost. Unlike after the disaster, more

RCs have been procured in the pre-disaster; as a result,

TCSW has increased, and TPDP has decreased. The rise in

TCSW has not been able to offset the reduction in TPDP;

hence, TSD has reduced. The storage and distribution of

RCs have not improved, and we have higher values for

TDC and TES. Furthermore, these results have been found

within 695.31 s. Thus, the weighted sum method is more

efficient than the weighted max–min model in solving the

proposed model.

The purpose of the proposed model is to serve victims

with the greatest possible amount of RCs and the least

possible deprivation cost in the fairest possible way (in

terms of the amount of distributed RCs and deprivation

cost). As a result, to further fulfill the objective and, at the

same time, reduce computational complexities, a new

service utility index has been introduced, based on which

the purpose has been formulated as a single objective

function. In the literature, to achieve the mentioned pur-

pose, the following objective functions have been

employed. Functions (29) and (30), respectively, maximize

satisfied demands and the minimum fraction of fulfilled

demand among all of the affected areas. Functions (31) and

(32), respectively, minimize deprivation cost and the

maximum fraction of deprivation cost. Functions (30) and

(32), respectively, represent fair service in terms of the

amount of distributed RCs and deprivation cost considering

the balance concept. To investigate the efficiency and

efficacy of the proposed service utility index, it is assumed

that the purpose of the problem is formulated by the fol-

lowing functions. Hence, the model is transferred into the

following multi-objective programming model that can be

solved by weighted max–min and weighted sum methods.

Model 7:

Max Z1 ¼
X
w;d;g;t

zwdgt þ
X
s;d;g;t

usdgt ð29Þ

Max Z2 ¼
X
t

min
d

X
w;g

zwdgt
ndg

þ
X
s;g

usdgt
ndg

( )
ð30Þ

Min Z3 ¼
X
w;d;g;t

F twdð Þzwdgt þ
X
s;d;g;t

F tsdg

� �
usdgt ð31Þ

Min Z4 ¼
X
t

max
d

X
w;g

F twdð Þ zwdgt
ndg

þ
X
s;g

F tsdg

� � usdgt
ndg

( )
:

ð32Þ

S.T.: Constrains (2)–(26)
The results indicate that the weighted max–min model is

more efficient than the weighted sum method in solving the

above model, as TSCW, TPDP, TSD, TDC, and TES have

achieved much better values.

Figure 5 displays some of the outcomes obtained from

the weighted max–min model. The findings reveal con-

siderable changes in the problem decisions. Warehouse 3

has been established instead of warehouses 5 and 7. Among

the selected warehouses, the nearest warehouse to the

affected areas is warehouse 1, followed by warehouses 13,

6, 4, 10, 3, and 9, respectively. Therefore, warehouse 1 has

been constructed first, followed by warehouses 4 and 6, and

then warehouses 13, 10, 3, and 9, respectively. Warehouses

4 and 6 have been established ahead of warehouse 13,

because warehouse 13 lacks the capacity to store items

purchased in period 2. Moreover, the purchase strategy has

been designed, so that more RCs have been purchased prior

to the disaster as opposed to after the disaster. As a result,
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TPDP has dropped, and TCSW has risen. This rise in

TCSW is insufficient to compensate for the drop in TPDP;

as a result, TSD has dropped. Ample storage at the pre-

disaster reduces the supply risk and enhances service effi-

cacy in the aftermath, but raises the risk of capital loss.

Finally, the storage and distribution of RCs have been

managed, so that TDC and TES have been raised. It is also

worth mentioning that these findings have been found

within 3240 s. Therefore, it can be concluded that the

proposed service utility index results in less computational

complexities and the improvement of relief performance.

4.4.6 Sensitivity analyses on bt; bt , i, ir,ssgo, ssgo; lsgo,

and lsgo parameters

In this section, we perform several tests on some of the

main parameters of the model, i.e., bt; bt, i, ir,ssgo, ssgo;
l
sgo

, and lsgo to demonstrate how changing model

parameters would influence the objective function and

findings of the model. These parameters were chosen,

because (1) any change in their values can have a consid-

erable effect on the value of the objective function, and (2)

their values may vary abruptly throughout the pre-disaster

PTH. To do the tests, the variability range for each of these

parameters was defined as a 40% fall to a 40% rise in their

values. The results of these sensitivity analyses are shown

in Fig. 6.

Every change in the purchase budgets (bt) has not

affected the warehouses that can be established. However,

there has been little variation in establishment scheduling

and a slight decrease in the total establishment cost with

the drop in the purchase budgets.

Moreover, the larger the purchase budgets, the more

RCs have been procured, which has resulted in more

demands being satisfied and, and as a consequence, more

efficient service.

Any variation in the effective bank interest rate (i) has

had no impact on the selected warehouses and the time of

their establishment. Also, by raising the interest rate, the

profits allocated to the purchase budgets have increased; as

a result, the purchase budgets have grown. Hence, the RO

has been able to provide more RCs before the disaster,

which has resulted in more satisfied demands and, as a

result, more fulfillment of the objective function and a

higher optimal value for the objective function.

Revenue from the sale of returned RCs has grown as a

consequence of raising the percentages of the return price

(ssgo, ssgo) or the percentage of returned RCs with a higher

selling price (l
sgo

). Therefore, the RO has succeeded in

procuring more RCs and, as a result, satisfying more

demands and providing faster service.

Fig. 6 Effect of varying bt; bt
(a), i, ir (b), l

sgo
, lsgo (c), ssgo,

and ssgo (d) parameters on the

objective function
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By raising the percentage of secondary orders (lsgo), the
RO has been able to purchase more RCs from the suppliers

after the disaster, so it has opted to store fewer RCs, which

has resulted in a rise in satisfied demands and eventually

more efficient responsiveness. It is worth noting that these

four contract parameters have not affected warehouse

location and establishment scheduling.

5 Conclusion

Natural disasters kill thousands and displace millions of

people every year. Therefore, to decrease the damages

caused by disasters, proper planning is essential in dealing

with these events before their occurrence. One of the most

critical actions for disaster planning is the development of

DRSC networks. Consequently, this study designed a

DRSC network under the perishability of RCs, the gradual

injection of the limited pre-disaster budgets, the time value

of money, the risk of warehouse disruption, and pre-disaster

lateral transportation using a multi-period multi-product

mixed-integer non-linear programming model. In each

period, the strategic decisions of the problem involved

determining the optimal location of warehouses, ordering

policy and renewing it, and the flow of RCs throughout the

designed network prior to the disaster. The tactical deci-

sions of the problem determined the number of RCs for

transferring from pre-selected suppliers and warehouses to

affected areas in the post-disaster. The model optimized the

efficacy, distress, and balance of the designed network

using a new measure called service utility, calculated as the

ratio of the fraction of satisfied demand to deprivation cost.

A BQFC taking into account the potential of delayed and

installment payments, two-part buybacks, as well as quan-

tity-based discounts on its terms integrated with multi-

sourcing, was presented to procure the necessary RCs prior

to the disaster. A real case study of the plausible earthquake

in Mashhad City, along with several sensitivity analyses,

was implemented to demonstrate the applicability and

performance of the model. The findings revealed that pre-

disaster lateral transportation policy, buyback mechanism,

multi-period optimization, and the proposed balance and

service utility measures improve demand coverage, depri-

vation cost, and the risk of lost capital and stock. Also, the

findings propose some management insights as follows:

• ROs have occasionally struggled or failed in imple-

menting their disaster management policies in reality.

One of the major causes contributing to this is a lack of

preemptive readiness; hence, the current study aims to

reduce this gap. The proposed model simplifies both

strategic and tactical decisions for relief managers by

merging inventory-related decisions and warehouse

location prior to the calamity with relief distribution

after the calamity. The structure of the relief network

will be more stable as a result of this design approach

and affected people will be able to get RCs sooner.

• Applying a contractual strategy between ROs and

suppliers (e.g., through a QFC) can help improve

HRSC in terms of responsiveness and cost-efficiency.

Instead of stockpiling vast amounts of RCs in ware-

houses, ROs can use the QFC to reserve them. As a

result, ROs will not incur huge costs. In addition, ROs

can make additional orders and get them promptly

following a catastrophe to retain HRSC responsiveness.

• It can be ensured that prior to a calamity, the number of

expired RCs at warehouses will be considerably

decreased by implementing a return policy for the

RCs that are close to their expiration dates. That is, by

taking into account the procurement time and shelf life

of RCs, as well as the use of a buyback mechanism,

relief managers can guarantee a high accessibility level

of commodities.

• Due to pre-disaster financial limitations, the RO is only

able to allocate a limited budget that will gradually

become available over time. This, together with the

perishability of RCs, necessitates multi-period decision-

making. In this regard, applying the multi-period

optimization approach can enhance the responsiveness

and cost-efficiency of HRSC.

• According to the results of the sensitivity analysis, pre-

disaster budgets, and their investment have a consider-

able impact on disaster response performance. As a

result, financial planning and management can promote

service efficiency.

• Under the inability to provide more RCs from supply

resources in the pre-disaster phase, pre-disaster lateral

transportation is an effective and proper option to more

efficiently store procured RCs in warehouses and

subsequently improve service.

• In addition to the fact that victims expect that there must

be no privileges or priority for certain groups of people,

fair service can improve the performance of a DRSC

network. Therefore, it is essential to pay attention to

equity in service when designing a relief network.

• When striving to simultaneously optimize demand

coverage, deprivation cost, and fair service, formulating

these objectives as the proposed objective function

significantly reduces solution time and can result in

more fulfillment of them.

The development of the problem in question can be

suggested to other researchers for future inquiries. To this

end, the following can be taken into account:

• The random and unpredictable nature of the crisis

necessitates crisis management within an uncertain
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environment. As a result, many of the examined papers

used a scenario-based stochastic optimization approach,

while other uncertain optimization approaches were

overlooked. Besides, given the researchers’ identifica-

tion of disadvantages in the scenario-based stochastic

programming approach, presenting an uncertain opti-

mization approach, such as robust optimization, fuzzy

optimization, and probabilistic optimization for the

problem under examination, can be helpful.

• To provide excellent service levels, processes in an

HRSC should be analyzed in general rather than in

detail. As a result, decentralized and hierarchical

decisions can better achieve the goals of an HRSC.

For this purpose, the use of multi-level programming

can be beneficial. Nevertheless, very few studies have

focused on multi-level optimization problems to date.

Therefore, modeling the problem under study in the

form of a multi-level optimization model can provide a

more realistic relief network; it also allows for observ-

ing how decisions made in each part of the network can

influence or be influenced by decisions made in other

areas.

• In this study, it was assumed that suppliers are reliable

and that the disaster would not have a negative impact

on suppliers. While there is a possibility of disruption in

suppliers. Therefore, using proper resilience tactics is

beneficial to deal with this supply risk.

• Considering secondary disasters and the collaboration

and coordination of several ROs in a collaborative

setting, prioritizing RCs and affected areas, employing

an efficient covering location model, and presenting an

exact or heuristic or meta-heuristic solution method for

larger scale problems are other intriguing possible

directions for further studies.

This study, like other studies, was not without limita-

tions. The lack of sufficient cooperation of some ROs and

researchers in accessing some information and the non-

existence of an official database for some of the required

data, which resulted in the experts’ estimations were asked

to help, were among the most important limitations of the

current research.

Appendix 1: Data of the case study

Tables 5, 6, 7, 8, 9, 10, 11, 12 and Figs. 7, 8, 9, 10 present

the data and information of the case study conducted in the

present research.

As can be seen in Table 12, by increasing b1 or

decreasing b2, the optimal values of TSU and TES follow

Table 5 Budgets for the

establishment and procurement

of relief supplies) million

tomans(

Period 1 2 3 4 5 6

Establishment budget 4000 4000 5000 5000 6500 6500

Procurement budget 7500 9500 11,500 14,500 18,500 21,500

Table 6 Predicted damage percentage (%), population size, number of affected people, and demand (unit)

Affected

area

Damage

percentage

Population

size

Number of affected

people

Demand of canned

tuna

Demand of canned

beans

Demand of drinking

water

1 24 167,013 40,084 120,252 120,252 240,504

2 15 513,365 77,005 231,015 231,015 462,030

3 29 417,950 121,206 363,618 363,618 727,236

4 28 261,938 73,343 220,029 220,029 440,058

5 20 175,849 35,170 105,510 105,510 211,020

6 19 232,616 44,198 132,594 132,594 265,188

7 10 256,575 25,658 76,974 76,974 153,948

8 24 89,216 21,412 64,236 64,236 128,472

9 19 327,061 62,142 186,426 186,426 372,852

10 23 296,823 68,270 204,810 204,810 409,620

11 28 200,161 56,046 168,138 168,138 336,276

12 26 105,263 27,369 82,107 82,107 164,214

13 26 13,849 3601 10,803 10,803 21,606
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Table 7 Storage capacity (unit), establishment cost (million tomans), and percentage of unusable inventory (%)

Warehouse Storage capacity Establishment cost Percentage of unusable inventory

Canned tuna Canned beans Drinking water Canned tuna Canned beans Drinking water

1 272,000 272,000 544,000 3391.2 10 10 13

2 335,000 335,000 670,000 3942.3 6 6 9

3 272,000 272,000 544,000 3202.8 9 9 12

4 182,000 182,000 365,000 1768.2 9 9 12

5 143,000 143,000 287,000 1390.2 4 4 7

6 142,000 142,000 285,000 1480.5 7 7 10

7 124,000 124,000 248,000 1808.1 2 2 5

8 267,000 267,000 534,000 4072.2 4 4 7

9 186,000 186,000 373,000 2456.7 5 5 8

10 234,000 234,000 468,000 3240 10 10 13

11 338,000 338,000 676,000 4680 8 8 11

12 195,000 195,000 390,000 2700 11 11 14

13 304,000 304,000 608,000 3159 9 9 12

Table 8 Contract parameters for every supplier-provided quantity interval

Canned tuna Canned beans Drinking water

Interval 1 Interval 2 Interval 3 Interval 1 Interval 2 Interval 3 Interval 1 Interval 2 Interval 3

Supplier 1

l(unit) 0 180,000 210,000 0 180,000 250,000 0 350,000 550,000

l(unit) 180,000 210,000 250,000 180,000 250,000 300,000 350,000 550,000 680,000

pc1 (tomans) 14,200 13,700 13,200 11,000 10,700 10,200 2000 2000 2000

l(%) 20 35 35 20 35 35 10 25 25

l(%) 30 30 30 20 30 40 25 30 35

s(%) 65 69 75 64 67 73 65 70 75

s(%) 60 63 68 60 60 65 60 65 70

�a(%) 100 [80,20] [65,35] [85, 15] [70,30] [60,40] 100 [75,15,10] [60,15,25]

�tp(day) 0 [35,45] [45,60] [0,35] [0,35] [30,45] 0 [0,35,45] [35,45,60]

Supplier 2

l(unit) 0 200,000 240,000 0 200,000 260,000 0 450,000 650,000

l(unit) 200,000 240,000 270,000 200,000 260,000 320,000 450,000 650,000 800,000

pc1 (tomans) 14,500 14,500 13,500 11,300 11,300 10,800 2200 2000 1700

l(%) 15 20 28 14 20 27 12 25 35

l(%) 25 35 35 20 25 35 30 40 40

s(%) 65 69 74 68 71 75 68 68 71

s(%) 60 65 65 65 68 70 65 65 65

�a(%) 100 100 [70,30] [80,20] [70,30] [60,40] [70,15,15] [70, 15, 15] [60,20,20]

�tp(day) 0 35 [35,55] [0,30] [30,50] [35,60] [0,20,35] [20,30,45] [25,40,60]

Supplier 3

l(unit) 0 170,000 250,000 0 200,000 280,000 0 600,000 700,000

l(unit) 170,000 250,000 290,000 200,000 280,000 340,000 600,000 700,000 800,000

pc1 (tomans) 14,900 14,200 14,200 12,000 11,500 11,000 2500 2300 1900

l(%) 35 35 35 12 15 38 30 40 40

l(%) 30 30 40 25 35 50 30 40 50

s(%) 70 70 77 65 70 75 72 77 77
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Table 8 (continued)

Canned tuna Canned beans Drinking water

Interval 1 Interval 2 Interval 3 Interval 1 Interval 2 Interval 3 Interval 1 Interval 2 Interval 3

s(%) 65 65 70 60 65 70 66 71 71

�a(%) 100 100 [75,25] [80,10,10] [70,30] [60,20,20] 100 100 [60,25,15]

�tp(day) 30 40 [45,60] [0,20,35] [25,40] [35,45,55] 0 0 [25,35,45]

Supplier 4

l(unit) 0 210,000 260,000 0 250,000 300,000 0 400,000 500,000

l(unit) 210,000 260,000 300,000 250,000 300,000 350,000 400,000 500,000 600,000

pc1 (tomans) 15,300 14,800 13,800 11,700 11,700 11,700 1900 1600 1600

l(%) 23 32 40 40 40 40 20 20 20

l(%) 25 35 50 30 40 50 20 25 30

s(%) 68 76 76 66 72 78 65 70 70

s(%) 60 70 70 62 67 72 60 65 65

�a(%) 100 [70,20,10] [60,40] [85,15] [80,20] [65,35] 100 100 [75,25]

�tp(day) 20 [20,30,40] [35,50] [0,25] [20,35] [35,45] 0 25 [25,45]

Supplier 5

l(unit) 0 220,000 270,000 0 200,000 280,000 0 550,000 650,000

l(unit) 220,000 270,000 300,000 200,000 280,000 350,000 550,000 650,000 730,000

pc1 (tomans) 15,300 15,300 15,300 11,000 10,500 10,000 2000 2000 1700

l(%) 25 30 40 27 32 40 10 24 35

l(%) 30 40 50 30 40 40 20 20 40

s(%) 69 73 78 66 69 72 66 70 74

s(%) 64 68 73 63 66 69 62 66 70

�a(%) 100 [70,15,15] [75,25] [60,15,25] [60,15,25] [50,50] 100 100 [65,35]

�tp(day) 20 [20,35,50] [50,60] [15,25,35] [25,35,45] [45,60] 30 40 [35,60]

Table 9 Coefficient of disruption in transport route, and normal and post-earthquake travel time (in minutes) between the warehouses and the

centers of the affected areas

Affected area

1 2 3 4 5 6 7 8 9 10 11 12 13

Warehouse 1

Disruption coefficient 3.5 3 3.3 3.4 3.5 3.5 2.9 3.6 3.4 3.9 4 3.7 3.9

Normal time 1 17 20 23 23 13 20 11 18 17 17 25 13

Post-earthquake time 4 51 66 79 81 46 58 40 62 67 68 93 51

Warehouse 2

Disruption coefficient 3.3 2.5 3.2 3.3 3.1 3.1 2.8 3.2 3.5 3.2 3.6 3.1 3.4

Normal time 24 34 26 34 34 30 35 31 27 17 23 17 30

Post-earthquake time 80 85 84 113 106 93 98 100 95 55 83 53 102

Warehouse 3

Disruption coefficient 3.3 3.2 3.8 3.7 3.3 3.2 2.9 3.9 3.3 3.4 3.6 3.3 4.1

Normal time 31 28 17 29 34 24 38 34 41 28 41 57 30

Post-earthquake time 103 90 65 108 113 77 111 133 136 96 148 189 123

Warehouse 4

Disruption coefficient 3.4 3.3 3.7 3.5 3.1 3 2.6 3.8 3.3 3.4 3.4 3.4 3.9

Normal time 34 26 16 5 10 23 22 31 36 23 41 34 23
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Table 9 (continued)

Affected area

1 2 3 4 5 6 7 8 9 10 11 12 13

Post-earthquake time 116 86 60 18 31 69 58 118 119 79 140 116 90

Warehouse 5

Disruption coefficient 3.5 3.1 3.3 3.1 2.6 2.7 2.3 2.6 3.5 3.3 3.7 3.4 3.2

Normal time 36 30 28 39 40 38 55 39 29 18 22 25 36

Post-earthquake time 126 93 93 121 104 103 127 102 102 60 82 85 116

Warehouse 6

Disruption coefficient 3.5 3.2 3.2 3 2.7 2.7 2.1 2.6 2.9 3.2 3.6 3.4 3.2

Normal time 32 17 28 10 10 22 10 19 48 41 29 50 22

Post-earthquake time 112 55 90 30 27 60 21 50 140 132 105 170 71

Warehouse 7

Disruption coefficient 2.9 3.2 2.9 2.6 2.3 2.1 1.5 2.6 2.8 3.4 3.3 3.3 2.9

Normal time 38 30 39 18 22 35 12 29 36 51 36 43 33

Post-earthquake time 111 96 114 47 51 74 18 76 101 174 119 142 96

Warehouse 8

Disruption coefficient 3.6 3.2 3.9 3.8 3.5 3.6 3.2 3.6 3.5 3.9 3.9 3.7 4

Normal time 24 15 28 26 26 13 27 18 40 41 36 49 8

Post-earthquake time 87 48 110 99 91 47 87 65 140 160 141 182 32

Warehouse 9

Disruption coefficient 3.4 3.4 3.3 3.3 3.4 2.9 2.8 3.4 3.2 3.8 3.8 3.6 3.7

Normal time 39 52 54 41 41 46 44 34 20 22 18 21 45

Post-earthquake time 133 177 179 136 140 134 124 116 64 84 69 76 167

Warehouse 10

Disruption coefficient 3.3 3.2 3.4 3.4 3.3 3.4 3 3.6 3.8 3.8 4.1 3.4 3.6

Normal time 28 36 24 37 37 36 38 31 25 6 18 15 32

Post-earthquake time 93 116 82 126 123 123 114 112 95 23 74 51 116

Warehouse 11

Disruption coefficient 3.5 3.5 3.6 3.6 3.4 3.8 3.1 3.5 3.8 4.1 4.4 3.8 3.7

Normal time 18 32 29 33 34 27 27 22 17 13 12 24 25

Post-earthquake time 63 112 105 119 116 103 84 77 65 54 53 92 93

Warehouse 12

Disruption coefficient 3 2.8 3.1 3.2 3.1 3.1 2.9 3.2 3.4 3.4 3.8 3 3.3

Normal time 45 53 53 54 55 48 60 52 51 31 46 39 50

Post-earthquake time 135 149 165 173 171 149 174 167 174 106 175 117 165

Warehouse 13

Disruption coefficient 3.9 3.6 4.1 3.9 3.5 3.5 2.9 4 3.7 3.6 3.7 3.7 4.3

Normal time 17 8 16 17 18 3 22 16 35 31 33 39 5

Post-earthquake time 67 29 66 67 63 11 64 64 130 112 123 145 22

L. Fazli et al.

123



Table 10 Coefficient of

disruption in transport route,

and normal and post-earthquake

travel time (in minutes) between

the suppliers of drinking water

and the centers of the affected

areas

Affected area 1 2 3 4 5 6 7 8 9 10 11 12 13

Supplier 1

Disruption coefficient 3 2.5 3.2 3.3 3.1 3 2.9 3.2 3.5 3.2 3.6 3.1 3.5

Normal time 67 74 68 65 67 59 76 66 79 79 76 79 77

Post-earthquake time 201 185 218 215 208 177 221 212 277 253 274 245 270

Supplier 2

Disruption coefficient 3.7 3.1 3.3 3.3 3.2 3.1 3.3 3.7 3.6 3.4 3.7 3 3.6

Normal time 35 44 34 43 43 40 44 41 38 22 28 30 39

Post-earthquake time 130 137 113 142 138 124 146 152 137 75 104 90 141

Supplier 3

Disruption coefficient 3.7 3.1 3.3 3.3 3.2 3.1 3.3 3.7 3.6 3.4 3.7 3 3.6

Normal time 30 42 32 41 41 37 43 38 35 21 30 18 36

Post-earthquake time 111 131 106 136 132 115 142 141 126 72 111 54 130

Supplier 4

Disruption coefficient 3.7 3.1 3.3 3.3 3.2 3.1 3.3 3.7 3.6 3.4 3.7 3 3.6

Normal time 64 65 57 68 65 59 66 63 61 54 61 50 63

Post-earthquake time 237 202 189 225 208 183 218 234 220 184 226 150 227

Supplier 5

Disruption coefficient 3 2.5 3.2 3.3 3.1 3 2.9 3.2 3.5 3.2 3.6 3.1 3.5

Normal time 66 59 53 62 62 53 61 59 51 44 51 35 58

Post-earthquake time 198 148 170 205 193 159 177 189 179 141 184 109 203

Table 11 Coefficient of

disruption in transport route,

and normal and post-earthquake

travel time (in minutes) between

suppliers of conserves and

centers of affected areas

Affected area 1 2 3 4 5 6 7 8 9 10 11 12 13

Supplier 1

Disruption coefficient 3.7 3.1 3.3 3.3 3.2 3.1 3.3 3.7 3.6 3.4 3.7 3 3.6

Normal time 43 51 44 61 53 54 56 48 50 31 39 27 54

Post-earthquake time 160 159 146 202 170 168 185 178 180 106 145 81 195

Supplier 2

Disruption coefficient 3.7 3.1 3.3 3.3 3.2 3.1 3.3 3.7 3.6 3.4 3.7 3 3.6

Normal time 36 46 32 42 42 41 42 41 36 20 28 27 41

Post-earthquake time 134 143 106 139 135 128 139 152 130 68 104 81 148

Supplier 3

Disruption coefficient 3.7 3.1 3.3 3.3 3.2 3.1 3.3 3.7 3.6 3.4 3.7 3 3.6

Normal time 38 47 34 44 44 43 45 43 38 22 29 29 45

Post-earthquake time 141 146 113 146 141 134 149 160 137 75 108 87 162

Supplier 4

Disruption coefficient 3.5 3 3.3 3.3 3.5 3.5 2.9 3.6 3.4 3.9 4 3.7 3.9

Normal time 11 30 40 34 32 26 32 25 36 26 27 43 26

Post-earthquake time 39 90 132 113 112 91 93 90 123 102 108 160 102

Supplier 5

Disruption coefficient 3.2 3.1 3.3 3.1 2.6 2.7 2.3 3.5 3.4 3.2 3.4 3.2 3.5

Normal time 36 19 16 4 7 22 24 28 49 33 52 46 24

Post-earthquake time 116 59 53 13 19 60 56 98 167 106 177 148 84
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an incremental trend and a decremental trend, respectively.

Notably, TSU has slightly increased, and TES has been

realized very little by raising b1 [ 0.5 or decreasing b2\

0.5. Moreover, by decreasing b1\ 0.5 or increasing b2 [
0.5, TSU has considerably reduced, while TES has sig-

nificantly increased. Therefore, considering the higher

Table 12 Sensitivity analysis on b1 and b2

ðb1;b2Þ (0,1) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) (1,0)

TSUa 46.223 85.783 90.946 92.413 92.849 93.354 93.38 93.399 93.406 93.407 93.408

TESb 3.556 2.171 1.221 0.755 0.503 0.096 0.066 0.038 0.017 0.010 0.003

aTotal service utility:
P

w;d;g;t

zwdgt
ndg

F twdð Þ þ
P

s;d;g;t

usdgt
ndg

F tsdg

� �

bTotal equity in service:
P

t min
d
f
P

w;g

zwdgt
ndg

F twdð Þ þ
P

s;g

usdgt
ndg

F tsdg

� �}.

Fig. 7 Seismicity map of Iran

from 1900 to 2020 (IIEES,

www.iiees.ac.ir)
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priority of the efficacy-distress measure than the balance

measure and the obtained results, b1 and b2 are set to 0.5 in

this case study.

Fig. 8 Seismic hazard level map of different areas of Mashhad

(Hafezi-Moghaddas 2007)

Fig. 9 Locations of affected

areas, candidate warehouses,

and suppliers

Fig. 10 Vulnerability rating of Mashhad’s network of passages
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Duarte-González M, Jaramillo-Isaza S, Orjuela-Cañon A, Dı́az-
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