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A B S T R A C T

Listwise learning to rank models, which optimize the ranking of a document list, are among the
most widely adopted algorithms for finding and ranking relevant documents to user information
needs. In this paper, we propose ListMAP, a new listwise learning to rank model with prior
distribution that encodes the informativeness of training data and assigns different weights to
training instances. The main intuition behind ListMAP is that documents in the training dataset
do not have the same impact on training a ranking function. ListMAP formalizes the listwise loss
function as a maximum a posteriori estimation problem in which the scoring function must be
estimated such that the log probability of the predicted ranked list is maximized given a prior
distribution on the labeled data. We provide a model for approximating the prior distribution
parameters from a set of observation data. We implement the proposed learning to rank model
using neural networks. We theoretically discuss and analyze the characteristics of the introduced
model and empirically illustrate its performance on a number of benchmark datasets; namely
MQ2007 and MQ2008 of the Letor 4.0 benchmark, Set 1 and Set 2 of the Yahoo! learning to rank
challenge data set, and Microsoft 30k and Microsoft 10K datasets. We show that the proposed
models are effective across different datasets in terms of information retrieval evaluation metrics
NDCG and MRR at positions 1, 3, 5, 10, and 20.

. Introduction

Ranking algorithms, as the core of web search systems, are responsible for finding and ranking the most relevant documents to
he user information needs from the crawled and indexed corpus. Learning to Rank (L2R) models, which learn a ranking model from
he training data, are among the widely studied techniques in the field of ranking algorithms (Capannini et al., 2016; Liu, 2010;
ax, Bockting, & Hiemstra, 2015). Recently, L2R models have gained even more attention given the huge amount of labeled data
xtractable from explicit or implicit feedback generated by users on the relevance of documents to queries (Guo et al., 2020).

Based on the adopted approach for training ranking models, L2R algorithms are categorized into pointwise, pairwise, and listwise
odels. Listwise L2R algorithms (Cao, Qin, Liu, Tsai, & Li, 2007; Guo et al., 2020; Xia, Liu, Wang, Zhang, & Li, 2008) take ranked lists

f documents as input and use them for estimating a loss function such as log-likelihood (Cao et al., 2007; Mollica & Tardella, 2021)
r cross-entropy (Bruch, 2021; Li, Wang, Fleming, Thomas, & Cheung, 2019; Luo, Wang, Liu, & Pan, 2015; Xia et al., 2008) based on
ermutation probabilities. The dominant trend in existing listwise learning to rank models is to formalize loss without considering
prior distribution over training data, i.e., it is been assumed that all training data are coming from a uniform distribution and
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hence, all instances of the training data have the same weight and impact on the training process, and consequently, the special
characteristics of the training dataset are ignored in learning a ranking model.

Modeling characteristics of the training dataset has been a topic of interest in the learning to rank community in recent years for
odeling position bias (Joachims, Swaminathan, & Schnabel, 2017; Wang, Bendersky, Metzler, & Najork, 2016; Wang, Golbandi,
endersky, Metzler, & Najork, 2018; Yue, Patel, & Roehrig, 2010) and presentation bias (Li et al., 2020; Yue et al., 2010; Zhou et al.,
018; Zoghi et al., 2017) in click data. The work presented in Ai, Yang, Wang, and Mao (2021), Joachims et al. (2017), Oosterhuis
nd de Rijke (2018) and Wang et al. (2018) attempt at extracting unbiased document relevance from the biased implicit feedback
xtracted from user clicks by modeling user browsing behavior, formulating click models, and assigning different probabilities to
raining instances based on the presentation order. The work presented in Ai, Bi, Luo, Guo, and Croft (2018b) attempts at defining
nbiased ranking loss by estimating a propensity model, i.e., the probability of observing a document for a query based on the

relevance of the document and its position in the representation that has been offered to users.
Despite the existing rich body of work on unbiased learning to rank for click data, very few works explored the problem of

modeling training data in general (Ding, Geng, & Zhang, 2015). Labeled data extracted from explicit feedback in learning to rank
datasets can be noisy or in different levels of informativeness due to different labeling difficulties such as short and ambiguous
queries (Cronen-Townsend, Croft, et al., 2002), problems in resolving disagreement between human judges, and subjective and
non-clear boundaries between different labels (e.g., completely relevant and somehow relevant) (Ding et al., 2015). Similarly, machine-
enerated labeled data that is extracted from click logs can be out-of-date, noisy, and non-informative even after modeling position
nd selection bias, due to usual noises perceived from existing search engine data (Han, Hwang, Song, & Kim, 2020). Ignoring
ifferent levels of informativeness in training data will damage the performance of learning to rank algorithms.

In this paper, we attempt at approaching this issue by defining a new listwise loss function with prior distribution that encodes
he informativeness of training data. Here, the main intuition is that documents in the training dataset do not have the same impact
n training a ranking function. In our learning to rank model, the prior distributions of data labels and document scores are learnt
rom a set of observations derived from the training data. Likewise a number of prominent listwise models (Xia et al., 2008; Zhu

Klabjan, 2020a), we use the Plackett-Luce model (Plackett, 1975) for defining the permutation probability distribution. Based on
he Bayes theorem, we incorporate a Gama distribution, as the prior distribution, into the loss function and define ListMAP, a new
istwise learning to rank model on this basis. Based on how the prior distribution is learnt from the observations, three L2R models,
istMAP𝑆𝑃 , ListMAP𝐿𝑃 , and ListMAP𝑆𝑖𝐿𝑃 , are defined. We theoretically analyze the characteristics of the introduced loss functions
nd show that minimizing the ListMAP𝑆𝑖𝐿𝑃 loss is consistent with the correct ranking order where a dataset is coherent.

We evaluate the introduced L2R models performance on the following six benchmark datasets, MQ2007, MQ2008, Yahoo!Set1,
ahoo!Set2, MSLR10K, and MSLR30K. These datasets are widely used as benchmark document collections for evaluating L2R
odels (Ai, Bi, Guo, & Croft, 2018a; Ai et al., 2018b; Bruch, 2021; Dai et al., 2020; Pang, Xu, Ai, Lan, Cheng, & Wen, 2020;
huang, Wang, Bendersky, & Najork, 2020). We show that our method outperforms the state-of-the-art L2R models based on different
valuation metrics.

The major contributions of this paper can be summarized as follows:

• We introduce a new listwise leaning to rank model that includes a prior distribution over training data, i.e., it assigns different
weights to training instances. We also provide a model for approximating the prior distribution parameters from a set of
observation data.

• We theoretically discuss and analyze the characteristics of the introduced L2R models with respect to coherency, i.e. whether
minimizing a loss is consistent with the correct ranking order.

• We empirically illustrate the performance of the proposed learning to rank models on a number of benchmark datasets in
terms of information retrieval evaluation metrics and compare them with prominent and state-of-the-art baselines. We also
analyze the prior distributions learnt over different benchmark datasets, and report the number of queries whose performance
are hurt or improved by incorporating the prior distribution into the list wise loss function.

This paper is organized as follows: The following section reviews related works on listwise learning to rank, modeling training
lick data and modeling training dataset characteristics. Section 3 introduces the proposed model, ListMAP, for learning a ranking
odel with encoding informativeness of training data. Section 4 reports the comprehensive experiments we conducted to evaluate

he proposed learning model. Finally, Section 5 concludes the paper.

. Related work

Learning to rank models learn a scoring or a ranking function from training data, which is represented as query-document feature
ectors and their multi-level labels usually range from 0 to an integer number indicating how much related is a document to a given
uery (Tax et al., 2015). In traditional L2R methods, features are human-engineered (Liu, 2010), while in more recent neural IR
ethods these features are learnt from the training data along with the ranking model (Guo et al., 2020). Regardless of whether

eatures are human-crafted or are automatically learnt, learning to rank methods can be categorized into three main groups of
ointwise, pairwise, and listwise models based on their learning objective.

In pointwise models, the ranking problem is treated as a regression or a multi-class classification problem in which the relevance
abel of each document for a given query is predicted based on document-query features and without considering document ranks
nd preferences. The work presented in Cossock and Zhang (2006) and Friedman (2001) are samples of pointwise L2R with
uman-engineered features, and Severyn and Moschitti (2015) is a sample of neural pointwise L2R models. In pairwise models, the
2
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learning objective is to predict the preferences between pairs of documents for a given query instead of predicting a label for each
document. RankSVM (Chapelle & Keerthi, 2010), LamdaMart (Burges, 2010), RankBoost (Freund, Iyer, Schapire, & Singer, 2003),
and RankNET (Cao et al., 2007) are samples of pairwise models with human-crafted features and Ai et al. (2019) and Dehghani,
Zamani, Severyn, Kamps, and Croft (2017) are samples of neural pairwise methods. The learning objective in listwise models is to
optimize the ranking of the document list retrieved for a query. Listwise algorithms have generally reported a better performance
than pointwise and pairwise models (Guo et al., 2020; Qin, Liu, Xu, & Li, 2010). The work presented in Cao et al. (2007) and Xia
et al. (2008) are samples of listwise learning to rank models with human-engineered features and the work in Chen and Zhou (2020)
and Zhu and Klabjan (2020a) report neural L2R models with listwise loss functions.

The learning model introduced in this paper is a listwise one that is implemented using a neural network architecture. In the
ollowing, we thoroughly review two important related topics to our work: we first review listwise loss functions in L2R models.
econd, we review existing works that model training datasets characteristics.

.1. Listwise learning to rank

Listwise learning models range from works that define a listwise loss function (Burges, 2010; Liu, 2010) to those that directly
ptimize Information Retrieval (IR) performance measures such as MAP and NDCG (Ravikumar, Tewari, & Yang, 2011; Taylor,
uiver, Robertson, & Minka, 2008). Since our work is closely related to the former group of listwise methods, we provide a review
f the prominent works based on listwise loss function. For a complete review of other listwise models please see Burges (2010)
nd Liu (2010).

Existing listwise loss functions mostly employ a permutation probability distribution model such as Plackett-Luce (Plackett, 1975)
or defining 𝑃 (𝜋|𝑥; 𝑔), where 𝑥 denotes a set of documents to be ranked in the input space, 𝜋 denotes a permutation of documents
n the output space, and 𝑔 denotes the scoring function. ListNet (Cao et al., 2007), a prominent listwise algorithm, defines a top-
ne probability distribution over a set of documents based on permutation probabilities. Here, 𝑃𝑠(𝑗), a top one probability for the
ocument 𝑗 in a ranked list sorted by 𝑠, is defined as the sum of the probabilities of permutations in which 𝑗 is ranked on the top of
he list. ListNet minimizes the cross-entropy of top-one probabilities of predictions and labels. More specifically, assuming that 𝑦𝑖 is
list of labels assigned to documents for query #𝑖, 𝑧𝑖 is a list of scores obtained by 𝑔 for query #𝑖, and 𝑛 is the number of documents

anked for this query, the listwise loss function is defined as follows:

𝐿(𝑦𝑖, 𝑧𝑖) = −
𝑛
∑

𝑗=1
𝑃𝑦𝑖 (𝑗)𝑙𝑜𝑔𝑃𝑧𝑖 (𝑗) (1)

The main challenge of ListNet is that Minimizing the defined loss function is not always result in a correct ranking (Zhu &
Klabjan, 2020a). ListMLE (Xia et al., 2008) is a listwise model whose loss function is consistent with the correct ranking. It defines
the loss function based on the likelihood of the permutation of a correct ranking. Given 𝜋𝑦𝑖 is a list of documents sorted by the
relevance labels (𝑦𝑖) for query #𝑖, 𝑥 denotes the documents in the input space, and 𝑔(𝑥) is a scoring function defined over 𝑥, the
listMLE loss function is defined as follows:

𝐿(𝑔; 𝑥, 𝜋𝑦𝑖 ) = −𝑙𝑜𝑔 𝑃 (𝜋𝑦𝑖 |𝑥; 𝑔) (2)

where 𝑃 (𝜋𝑦𝑖 |𝑥; 𝑔) is defined based on the Plackett–Luce model as follows:

𝑃 (𝜋𝑦𝑖 |𝑥; 𝑔) =
|𝜋𝑦𝑖 |
∏

𝑗=1

𝑒𝑥𝑝(𝑔(𝑥𝑗 ))
∑|𝜋𝑦𝑖 |

𝑘=𝑗 𝑒𝑥𝑝(𝑔(𝑥𝑘))
(3)

where 𝑥𝑗 denotes the 𝑗th document in the 𝜋𝑦𝑖 .
During recent years, many alternative listwise loss functions have been proposed to improve the performance of ListMLE and

ListNet. The listwise models presented in Li et al. (2019) and Luo et al. (2015) aim at improving the computation cost of ListNet by
sampling a subset of training instances in model training. The listwise model presented in Jagerman, Kiseleva, and de Rijke (2017),
focuses on label ambiguities, i.e., when the ground truth labels are the same for documents. This model attempts at learning no
preference between documents that have the same label by employing a sampling method on permutations. The listwise loss function
proposed in Zhu and Klabjan (2020b) addressees the same issue of documents that have the same label with respect to a query. It
proposes a model that can be trained in order of the number of labels assigned to documents instead of the order of documents.
WassRank (Yu et al., 2019) is another listwise learning to rank model that minimize the Wasserstein distance between the predicted
list and the ground truth relevance scores. In this paper, we approach the problem of listwise learning to rank from a different
viewpoint, i.e., modeling training data characteristics in the learning process. We compare our model with some of the prominent
listwise rankings in Section 4 and show its effectiveness in ranking documents across different datasets.

Deep learning architectures for listwise learning have gained increasing attention in recent years (Rahimi, Montazeralghaem, &
Allan, 2019). BanditRank (Gampa & Fujita, 2021) trains neural networks by directly maximizing IR measures by reformulating the
retrieval problem as a reinforcement learning algorithm. DeepRank (Pang, Lan, Guo, Xu, Xu, & Cheng, 2017) is a deep architecture
consists of three components for (1) detecting the query-centric context, (2) measuring the relevance of a query and each context, and
(3) aggregating local signals and generate a final ranking score. SetRank (Pang et al., 2020) is another deep learning network that
attempts at modeling cross-document interaction in its scoring method by a multi-head self attention architecture. Here, the main
3

hypothesis is that the relevance of a document to a query is dependent to the relevance of documents seen before. The deep listwise
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Table 1
Comparative analysis of existing works.

Model Model type Modeling data characteristics

Lawrence and Schölkopf (2001) Not a learning to rank model Assigning a probability of the label being flipped to each training
data and incorporating that in a Log-likelihood Objective function.

Ding et al. (2015) Extends several pointwise and pair-wise
learning to rank models

Estimating the joint probability of the feature vector of a document
and the relevance Label for a given query

Carvalho, Elsas, Cohen, and
Carbonell (2008)

Pairwise Sigmoid loss function

Pasumarthi et al. (2019) Propose pointwise, pairwise, and listwise
learning to rank models

Sigmoid loss function

ListMAP Listwise Prior Distribution on training data

context model proposed in Ai et al. (2018a) encodes the information in pseudo relevance feedback for the purpose of re-ranking. The
AttentionRank loss function proposed in Ai et al. (2018a) aims at finding the relative importance of a document in a given ranked list
retrieved for a query. Pobrotyn, Bartczak, Synowiec, Białobrzeski, and Bojar (2020) proposed a self-attentive neural network model
that learns a document score based on the relevance of all other documents in the retrieved list of documents for a given query, and
results in a significant performance improvement when incorporated with different listwise loss functions. Pobrotyn and Białobrzeski
(2021) proposed a new ranking loss function, NeuralNDCG, which is based on minimizing a differentiable approximation to NDCG.
A comprehensive review of neural IR models and architectures can be found in Guo et al. (2020). The loss function proposed in
this paper can be employed in any neural framework that uses a listwise loss function (Ai et al., 2018a). In this paper, we use the
self-attentive neural architecture proposed in Pobrotyn et al. (2020) for implementing the proposed listwise loss function.

2.2. Modeling training dataset characteristics

The approach adopted by our work is to estimate a prior distribution on document labels or scores and use it for defining a listwise
oss function. Prior distributions on item labels have been used in contexts other than L2R before. In Lawrence and Schölkopf (2001),
he parameters of a prior distribution on item labels are optimized through an expectation-maximization (EM) algorithm, when the
rior is used for item classification. In Guiver and Snelson (2009) a Gamma prior distribution is defined on training data and is
xploited on defining permutation probabilities.

The work presented in Ding et al. (2015) is among few works in the literature that addresses modeling training dataset in
earning to rank. This work extends pairwise and pointwise learning to rank algorithms to encompass an estimated probability of
abeling noise in their loss functions. For estimating labeling noises, Ding et al. (2015) propose a model to learn a query-specific joint
robability of feature vectors and relevance labels. The parameters of this model are estimated by means of maximum likelihood
stimation on the set of all documents retrieved for the given query. Carvalho et al. (2008), address the problem of robustness of
anking model with the presence of outliers in training data by using a non-linear sigmoid function in the RankSVM learning to
ank algorithm instead of the hinge loss. They show that the new loss function does not give larger loss values to large negative
cores and in this sense is robust to outliers. The same idea has been adopted in Svore, Volkovs, and Burges (2011) for extending
he LambdaMART pairwise learning to rank algorithm. The application of the sigmoid function in different ranking models have
een further analyzed in Pasumarthi et al. (2019) and is a baseline in our experiments.

Table 1 provides a comparative analysis of the learning to rank models described in this section, and their important features.
his table also includes ListMAP, the learning to rank model which is introduced in this paper and is going to be illustrated in the
ext section.

. Proposed method

In this section, we first motive the main intuition behind our proposed learning to rank algorithm through an example. Second,
e introduce our proposed model, ListMAP, a listwise L2R model for learning a ranking model from training data. Third, we analyze

he main characteristics of the ranking model through different examples.

.1. Motivating example

The main intuition behind our learning to rank algorithm is to assign different weights to training instances. One of the expected
esults of this approach is to reduce the impact of documents with possible wrong labels on the training process. As a motivating
xample, assume that the training data includes the following queries, {𝑞1, 𝑞2, 𝑞3}, where the permutation of each query is as follows:
(𝑞1) = {4, 2, 1, 0}, 𝜋(𝑞2) = {4, 4, 4, 4}, 𝜋(𝑞3) = {0, 0, 0, 0}. Here, the list of {4, 2, 1, 0} for 𝑞1 means that the ground truth permutation for
1 consists of four documents whose labels are equal to 4, 2, 1 and 0, respectively. Without considering a prior distribution on training
nstances, all query-document pairs have the same impact in the learning process. For the sake of this example, assume that the
4

ominant pattern in data is to have documents with the grater labels in the higher ranks of the queries’ permutations. For example,



Information Processing and Management 59 (2022) 102962S. Keshvari et al.

t

3

𝑥

based on our assumption, the data inclines to have documents with the label of 4 in the first position of queries’ permutations,
and data with the label of 0 in the lower position of the permutations. Based on this pattern, our model assigns different prior
probabilities to 𝑞1, 𝑞2, and 𝑞3 and their associated documents, i.e., 𝑞1 whose first document in the ranked list has the label of 4 and
whose last document has the label of 0 has a greater weight in the learning process than 𝑞2 whose last document has a label of 4, or
𝑞3 whose first document has the label of 0. In other words, assuming that the relevance labels are reliable in general, our algorithm
first learns a pattern on labels of documents in different ranks of queries permutations from a parameter setting data set and then
apply that pattern to weight training data. In our example, we assumed that the learnt pattern tends to consider the forth document
in the 𝑞2 permutation and the first document in the 𝑞3 permutation as probable labeling errors and assigns them a lower weight in
raining.

The next section thoroughly explain our learning to rank model.

.2. ListMAP learning to rank model

Let 𝑞 ∈ 𝑄 = {𝑞1,… , 𝑞𝑚} denotes a query in the set of 𝑚 queries in the training set, 𝐷𝑞 = {𝑑1,… , 𝑑𝑛} is the set of 𝑛 documents
associated with 𝑞. Further assume that 𝑌𝑞 = {𝑦1,… , 𝑦𝑛} denotes the labels of the 𝑛 documents in 𝐷𝑞 , 𝐷 is the set of all documents,
and 𝑥𝑑 represents the set of feature vector for the document 𝑑 ∈ 𝐷𝑞 . Also, assume that 𝑓 is a ranker function that assigns a score to
𝑑 for all 𝑑 ∈ 𝐷𝑞 . The task of the ranking model is to find a ranked list of documents sorted based on the score generated by 𝑓 , such

that the learning objective is optimized. The learning objective in our listwise model is defined based on the ranked list generated
by 𝑓 , and a permutation 𝜋𝑞 of 𝐷𝑞 in which documents are sorted based on 𝑌𝑞 . We call 𝜋𝑞 a ground truth permutation, because it is
sorted based on the labels. We use 𝜋𝑞(𝑑) for denoting the rank of 𝑑 in the permutation 𝜋𝑞 .

We define the ListMap loss function for a given query 𝑞 as follows:

𝐿𝑞(𝑓 ; 𝑌𝑞 , 𝐷𝑞) = −𝑙𝑜𝑔 𝑃 (𝑓,𝐷𝑞 , 𝑌𝑞|𝜋𝑞) (4)

where 𝜋𝑞 is a permutation sorted based on the labels 𝑌𝑞 .
In this learning to rank model, we formalize the loss function as a maximum a posteriori estimation (MAP) problem in which

the scoring function 𝑓 must be estimated such that the log probability of the predicted ranked list generated by 𝑓 is maximized
given the ground truth permutation.

Based on Bayesian rules, we can reformulate the loss function as Eq. (5).

𝐿𝑞(𝑓 ; 𝑌𝑞 , 𝐷𝑞) = − 𝑙𝑜𝑔
(

𝑃 (𝑓,𝐷𝑞 , 𝑌𝑞)𝑃 (𝜋𝑞|𝑓,𝐷𝑞 , 𝑌𝑞)
)

(5)

Note that the loss function defined in Section 3.2 leads to the same log likelihood approach adopted by ListMLE with an important
difference that in ListMAP, 𝑃 (𝑓,𝐷𝑞 , 𝑌𝑞) does not come from a uniform distribution. Based on the ListMAP definition, 𝑃 (𝑓,𝐷𝑞 , 𝑌𝑞) is
the prior probability on training documents associated with 𝑞, and 𝑃 (𝜋𝑞|𝑓,𝐷𝑞 , 𝑌𝑞) is the likelihood.

Following the same approach adopted by a number of L2R models for using the Placket-Luce model for defining permutation
probabilities (Cao et al., 2007; Zhu & Klabjan, 2020a), we define the likelihood function, 𝑃 (𝜋𝑞|𝑓, 𝑑, 𝑌𝑞), as follows for 𝑑 ∈ 𝐷𝑞 :

𝑃 (𝜋𝑞|𝑓, 𝑑, 𝑌𝑞) =
𝜙(𝑓 (𝑥𝑑 ))

𝛴
𝑘=|𝜋𝑞 |
𝑘=𝜋𝑞 (𝑑)

𝜙(𝑓 (𝑥𝑑 ))
(6)

where 𝜙(.) is an increasing positive function and 𝑘 iterates over all documents in the ground truth permutation of 𝑞 from the rank
of 𝑑 in the permutation, denoted as 𝜋𝑞(𝑑), to the last document in the permutation, denoted as |𝜋𝑞|. We use an exponential function
for 𝜙(.) in our model and experiments.

For estimating the prior probability, we employ the Gamma distribution. Gamma distribution has been used as a basis for defining
prior probabilities on permutations before (Guiver & Snelson, 2009). In this paper, we adopted the same approach as (Guiver &
Snelson, 2009) and use Gamma distribution over the permutation probability defined in Eq. (6).

In our learning to rank model, we provide two different definitions for the prior functions based on the Gamma distribution. In
the first definition, Eq. (7), the prior probability is estimated over the scoring function. Here, the assumption is that the documents
in the ground truth permutation are such that the scoring function 𝑓 over their features follow a Gamma distribution. We name
this prior distribution as the score prior and denote it as 𝑃 𝑆 (𝑓,𝐷𝑞 , 𝑌𝑞). In the second definition, Eq. (8), the prior probability is
estimated over the labels of documents. Here, the assumption is that the labels of training data in different ranks of the ground
truth permutation comes from a Gamma distribution, i.e., some labels are more probable in specific ranks while the others are less
probable in the same ranks. We name this prior distribution as the label prior and denote it as 𝑃𝐿(𝑓,𝐷𝑞 , 𝑌𝑞).

Let 𝑑 ∈ 𝐷𝑞 be a document and 𝑥𝑑 be the feature vector of 𝑑, and 𝜙(.) is an increasing positive function adopted in Eq. (6), we
define 𝑃 𝑆 (𝑓,𝐷𝑞 , 𝑌𝑞) based on the Gamma distribution as follows:

𝑃 𝑆 (𝑓,𝐷𝑞 , 𝑌𝑞) ≈
∏

𝑑∈𝐷𝑞

𝐺𝑎𝑚𝑚𝑎(𝑑; 𝑓 |𝛼𝑑 , 𝛽𝑑 )

≈
∏ 𝛽𝛼𝑑𝑑

𝛤 (𝛼 )
𝜙(𝑓 (𝑥𝑑 ))𝛼𝑑−1𝑒−𝛽𝑑𝜙(𝑓 (𝑥𝑑 ))

(7)
5

𝑑∈𝐷𝑞 𝑑
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Furthermore, given 𝑌𝑑 is a positive number representing the label of 𝑑 in training dataset, we define 𝑃𝐿(𝑓,𝐷𝑞 , 𝑌𝑞) as follows:

𝑃𝐿(𝑓,𝐷𝑞 , 𝑌𝑞) ≈
∏

𝑑∈𝐷𝑞

𝐺𝑎𝑚𝑚𝑎(𝑑; 𝑌𝑑 |𝛼𝑑 , 𝛽𝑑 )

≈
∏

𝑑∈𝐷𝑞

𝛽𝛼𝑑𝑑
𝛤 (𝛼𝑑 )

𝑌 𝛼𝑑−1
𝑑 𝑒−𝛽𝑑𝑌𝑑

(8)

Based on two prior probabilities defined in these equations and given 𝜙(.) is defines as an exponential function, we reformulate
the ListMAP loss function defined in 3.2 as Eqs. (9) and (10).

𝐿𝑆
𝑞 (𝑓 ; 𝑌𝑞 , 𝐷𝑞) = − log

(

∏

𝑑∈𝐷𝑞

𝑒𝑥𝑝(𝑓 (𝑥𝑑 ))

𝛴
𝑘=|𝜋𝑞 |
𝑘=𝜋𝑞 (𝑑)

𝑒𝑥𝑝(𝑓 (𝑥𝑑 ))
𝑃 𝑆 (𝑓,𝐷𝑞 , 𝑌𝑞)

)

(9)

𝐿𝑆
𝑞 (𝑓 ; 𝑌𝑞 , 𝐷𝑞) = − log

(

∏

𝑑∈𝐷𝑞

𝑒𝑥𝑝(𝑓 (𝑥𝑑 ))

𝛴
𝑘=|𝜋𝑞 |
𝑘=𝜋𝑞 (𝑑)

𝑒𝑥𝑝(𝑓 (𝑥𝑑 ))
𝑃𝐿(𝑓,𝐷𝑞 , 𝑌𝑞)

)

(10)

In Eqs. (7) and (8), both the shape parameter 𝛼 and the rate parameter, 𝛽, are estimated based on 𝑑. Estimating Gamma
istribution parameters have been the subject of different research so far (Lawless, 1980; Song, 2008). In our learning to rank
lgorithm, we adopt the maximum likelihood estimation method proposed in Ye and Chen (2017) in the context of our problem.
ere, we assume that there are 𝑚 observations, 𝑂 = {𝑂1, ..𝑂𝑚}, derived from the parameter setting data (the data we use for
arameter setting in our experiments and is completely exclusive from the training data), from which we can estimate 𝛼 and 𝛽 for
ach document in the training data. We assume that 𝑂 is coming from the same distribution that our training data are supposed to
ome from. According to Ye and Chen (2017), 𝛼̂ and 𝛽 are estimations for the Gamma distributions as follows:

𝛼̂ =
𝑚𝛴𝑂𝑖

𝑚𝛴𝑂𝑖 log𝑂𝑖 − 𝛴 log𝑂𝑖𝛴𝑂𝑖
(11)

𝛽 = 1
𝑚2

(

𝑚𝛴𝑂𝑖 log𝑂𝑖 − 𝛴 log𝑂𝑖𝛴𝑂𝑖

)

(12)

In our learning to rank algorithm, we contextualize Eqs. (11) and (12) based on documents, queries, labels and the scoring
unction 𝑓 . Given 𝑞 be a query in the set of our observations, 𝜙(.) is an increasing positive function adopted in Eq. (6), 𝐷𝑞 be all
ocuments retrieved for 𝑞, and 𝜋𝑞 is a permutation on 𝐷𝑞 derived from labels assigned to them, 𝛼 and 𝛽 for the score prior are

estimated as follows:

𝛼̂𝑆𝑑 =

|𝑄|

∑

𝑞∈𝑄
𝜙(𝑓 (𝑥𝑠𝑑𝑞 ))

|𝑄|

∑

𝑞∈𝑄
𝜙(𝑓 (𝑥𝑠𝑑𝑞 )) log𝜙(𝑓 (𝑥𝑠𝑑𝑞 )) −

∑

𝑞∈𝑄
log𝜙(𝑓 (𝑥𝑠𝑑𝑞 ))

∑

𝑞∈𝑄
𝜙(𝑓 (𝑥𝑠𝑑𝑞 ))

(13)

where:
𝑠𝑑𝑞 {𝑑𝑞 ∈ 𝐷𝑞 such that 𝜋𝑞(𝑑𝑞) = 𝜋(𝑑)}
In Eq. (13), 𝑠𝑑𝑞 means the document in 𝐷𝑞 whose index in the permutation of query 𝑞 is equal to the index of the given document

𝑑 in its permutation in training data. Similarly, 𝛽 is estimated based on Eq. (12):

𝛽𝑆𝑑 = 1
|𝑄|

2

(

|𝑄|

∑

𝑞∈𝑄
𝜙(𝑓 (𝑥𝑠𝑑𝑞 )) log𝜙(𝑓 (𝑥𝑠𝑑𝑞 )) −

∑

𝑞∈𝑄
log𝜙(𝑓 (𝑥𝑠𝑑𝑞 ))

∑

𝑞∈𝑄
𝜙(𝑓 (𝑥𝑠𝑑𝑞 ))

)

(14)

where:
𝑠𝑑𝑞 {𝑑𝑞 ∈ 𝐷𝑞 such that 𝜋𝑞(𝑑𝑞) = 𝜋(𝑑)}
Furthermore, 𝛼 and 𝛽 for the label prior are estimated as follows

𝛼̂𝐿𝑑 =

|𝑄|

∑

𝑞∈𝑄
𝑌𝑠𝑑𝑞

|𝑄|

∑

𝑞∈𝑄
𝑌𝑠𝑑𝑞 log 𝑌𝑠𝑑𝑞 −

∑

𝑞∈𝑄
log 𝑌𝑠𝑑𝑞

∑

𝑞∈𝑄
𝑌𝑠𝑑𝑞

(15)

𝛽𝐿𝑑 = 1
|𝑄|

2

(

|𝑄|

∑

𝑞∈𝑄
𝑌𝑠𝑑𝑞 log 𝑌𝑠𝑑𝑞 −

∑

𝑞∈𝑄
log 𝑌𝑠𝑑𝑞

∑

𝑞∈𝑄
𝑌𝑠𝑑𝑞

)

(16)

Here, we adopted this assumption that the training data, if not affected by labeling errors, comes from a gamma distribution whose
parameters are learnt by Eqs. (13) and (14) or (15) and (16). For example, the most related documents to the queries in our
observations, i.e., the documents in the index 1th in the permutations of all observed queries, are used for estimating the Gamma
distribution parameters for the documents in the index 1th of permutations in the training dataset. In our experiment, we also test a
simplified method for estimating the parameters of the label prior probability by assuming that the difference between the scale of
6

the Gamma distribution over labels are ignorable, i.e., although the shape of the Gamma distribution (stated by 𝛼) differs for each
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index in the ground truth permutation, the scale (stated by 𝛽) can be assumed to be the same for all indexes. Eq. (17) formulates
this Simplified Label (SiL) prior probability.

̂𝑃 𝑆𝑖𝐿(𝑓,𝐷𝑞 , 𝑌𝑞) ≈
∏

𝑑∈𝐷𝑞

𝐺𝑎𝑚𝑚𝑎(𝑑; 𝑌𝑑 |𝛼𝑑 , 𝛽𝑑 )

≈
∏

𝑑∈𝐷𝑞

𝛽𝛼𝑑
𝛤 (𝛼𝑑 )

𝑌 𝛼𝑑−1
𝑑 𝑒−𝛽𝑌𝑑

(17)

Based on the parameter estimation introduced for the label prior, 𝛼 and 𝛽 are estimated based on the labels of each index in the
permutation derived from the observation dataset. Hence, instead of 𝛼𝑑 and 𝛽𝑑 , in Eqs. (13), (14), (15) and (16), and instead of
𝑑 in Eq. (17), we can use 𝛼𝑖 and 𝛽𝑖, where 𝑖 is the index of 𝑑 in the ground truth permutation. In other words, in the label prior
robability, the parameters are only dependent to the index of documents in the permutation. On the other hand, the introduced
ormalization for the score prior defines 𝛼 and 𝛽 based on the 𝑓 (𝑥) applied on documents in the ground truth permutation where 𝑓 (𝑥)
s jointly learnt with 𝛼 and 𝛽 on the parameter setting dataset. Contrary to the label prior probabilities, in both regular and simplified
ersions, where Gamma distribution parameters can be learnt from the observation data, for the score prior probability there are
s no scoring function 𝑓 that can be applied to the observation data and used for obtaining Gamma parameters (Because we have
ot trained the model on training data yet). Here, we jointly train the scoring function 𝑓 and the Gamma distribution parameters
n the observation data. This 𝑓 is going to be trained using the exact same loss function, but because it has been trained over the
bservation data not training data and because it has been trained for the final purpose of setting Gamma distribution parameters,
t will not be used in testing our model. Instead, when the Gamma distribution parameters have been set up, the scoring function
ill be trained again on the training data using the Gamma parameters.

In this paper, we name the introduced listwise learning to rank model as ListMAP and based on the exploited prior distribution
n the listwise model, it is called ListMAP𝑆𝑃 , ListMAP𝐿𝑃 , and ListMAP𝑆𝑖𝐿𝑃 , when the loss function uses the score prior distribution,
he label prior distribution, and the simplified label distribution; respectively.

.3. Analysis of ListMAP

The probability density function for the Gamma distribution, which is used for defining 𝑃 (𝑓,𝐷𝑞 , 𝑌𝑞) gets different shapes based
n the 𝛼 parameter. Fig. 1 shows an example of two possible density functions and their corresponding ̂𝑃𝐿(𝑓,𝐷𝑞 , 𝑌𝑞) for documents
𝑖 and 𝑑𝑗 , given the query of 𝑞. Here, 𝑖, and 𝑗 are the rank of 𝑑𝑖 and 𝑑𝑗 in the ground truth permutation, respectively. For estimating
𝐿
𝑑𝑖

, the label of all documents placed in the rank of 𝑖 of the ground truth permutation of all queries in the parameter setting dataset
re used according to Eq. (15). In case we are estimating 𝑃 𝑆 (𝑓,𝐷𝑞 , 𝑌𝑞), 𝑓 has to be applied on all documents placed in the rank of
of the ground truth permutation of all queries in the parameter setting dataset according to Eqs. (13) and (14). In the example of
ig. 1, the blue plot shows the prior distribution based on the 𝛼 estimated for the document placed in the 𝑖th position of the ground
ruth permutation for a sample dataset that has 10 queries, where the labels of documents for the 𝑖th rank in the observation data
re as follows: [8, 8, 8, 8, 8, 8, 8, 6, 6, 2]. Also, in this figure, the red plot shows the prior distribution based on the 𝛼 estimated for the
ocument placed in the 𝑗th position of the ground truth permutation for the same dataset whose labels of documents for the 𝑗th
ank are as follows: [8, 4, 2, 2, 2, 2, 2, 2, 1, 1]. As we can see from this figure, the labels of documents in the training dataset are in line
ith the labels of the observations from which the prior probability parameters have been set. In this example, the label of 𝑑𝑖 is 8,
hich is close to the dominant label pattern of observations in the 𝑖th position. Similarly, the label of 𝑑𝑗 is 2, which is close to the
ominant label pattern of observations in the 𝑗th position. Observably, these labels are considered as correct and got a high prior
robability based on our model.

Fig. 2 shows another example, where the red plot represents the exact same prior probability as Fig. 1, but the label of 𝑑𝑗 is 8.
ere, the label of the document in the training data for the 𝑗th index got a different value than the dominant pattern in the observed
ata and hence it gets a relatively low prior probability, which means it can be a less informative instance or an outlier. In addition,
n this figure, the green dashed line shows the prior probability based on the 𝛼 estimated for the document placed in the 𝑘th position
f the ground truth permutation for the same dataset of Example in Fig. 1, where the labels of documents in the 𝑘th position are:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Here, the observation data for the 𝑘th index is not coherent, i.e. there is no dominant pattern for the labels
n this position. That is in contrary with the label prior probabilities estimated for the 𝑖th and 𝑗th ranks in the permutation in the
xample of Fig. 1, which are coherent. Assuming 𝛽 is identical for all labels, since the average of 𝑌𝑑𝑖 is greater than the average of
𝑑𝑗 in observations, the prior probability for 𝑑𝑖 bends to the right to assign higher probability to the values closer to 𝑌𝑑𝑖 . Similarly,
he prior probability for 𝑑𝑗 bends to the left to assign higher probability to values closer to 𝑌𝑑𝑗 . In this case, 𝛼𝐿𝑗 ≤ 𝛼𝐿𝑖 (See Gamma
istribution properties (Thom, 1958)). Definition 3.1 formally defines coherent datasets. In Section 4 we analyze our experimental
atasets with respect to this attribute.

efinition 3.1 (Coherent Dataset). A dataset is 𝑛-coherent for the top 𝑛 positions if for any 𝑖 ≤ 𝑛 and 𝑗 ≤ 𝑛, if 𝑖 ≤ 𝑗, 𝛼𝐿𝑗 ≤ 𝛼𝐿𝑖 for 𝑑𝑖
nd 𝑑𝑗 retrieved for a given query.

Please note that Definition 3.1 provides a definition for coherency based on label prior probabilities. We use this definition when
nalyzing the label loss function.
7
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Fig. 1. An example of prior distribution function for different ranks in the ground truth permutation, when the training data is in line with the observed data.

Fig. 2. An example of prior distribution function for noisy data and also for non-coherent data.

3.4. Order preserving

In this section we analyze the attribute of order-preserving for ListMAP, i.e., we analyze whether minimizing the ListMAP loss is
consistent with the correct ranking order or not. It is been shown that some of the prominent listwise loss function such as ListNet
lacks this attribute (Zhu & Klabjan, 2020a). We start our argument with the following Theorem that is based on the definition of
order preserving provided in Xia et al. (2008) and has been proved in the same work.

Theorem 3.1. Given 𝑞 be a query, 𝐷𝑞 be the set of documents retrieved for 𝑞, 𝑑 ∈ 𝐷𝑞 and 𝑝 ∈ 𝐷𝑞 two documents, and 𝑓𝑖,𝑗 is a ranking
function according to which 𝑑 is placed in the 𝑖th position of the resulting ranking and 𝑝 is placed in the 𝑗th position of this ranking, where
𝑖 ≤ 𝑗. Further, 𝑓𝑗,𝑖 is a ranking function that results in the same ranking as 𝑓𝑖,𝑗 except that 𝑑 is placed in the 𝑗th position of the resulting
ranking and 𝑝 is placed in the 𝑖th position of this ranking. Further assume based on the ground truth labels, 𝑌𝑑 ≥ 𝑌𝑝. Then, 𝑃 (𝜋𝑞|𝑓𝑖,𝑗 , 𝐷𝑞 , 𝑌𝑞)
≥ 𝑃 (𝜋𝑞|𝑓𝑗,𝑖, 𝐷𝑞 , 𝑌𝑞).

Given that the ListMAP loss function is consist of the prior and the likelihood (Eq. (5)), Theorem 3.1 asserts that the likelihood
part is preserving the order of documents based on the labels that are provided in the training data. In other words, minimizing
8
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the likelihood part is consistent with the ranking order provided in the ground truth labels of training data. Now, let us analyze the
prior probability based on this fact that it comes from a Gamma distribution whose parameters are learnt over a parameter setting
dataset.

The following theory asserts that the simplified label prior probability, ̂𝑃 𝑆𝑖𝐿(𝑓,𝐷𝑞 , 𝑌𝑞), is order preserving in coherent datasets.

Theorem 3.2. Given 𝑞 be a query, 𝐷𝑞 be the set of documents retrieved for 𝑞, 𝑑 ∈ 𝐷𝑞 and 𝑝 ∈ 𝐷𝑞 two documents, and 𝑓𝑖,𝑗 is a ranking
function according to which 𝑑 is placed in the 𝑖th place of the resulting ranking and 𝑝 is placed in the 𝑗th place of this ranking, where 𝑖 ≤ 𝑗.
Further, 𝑓𝑗,𝑖 is a ranking function that results in the same ranking as 𝑓𝑖,𝑗 except that 𝑑 is placed in the 𝑗th place of the resulting ranking
and 𝑝 is placed in the 𝑖th place of this ranking. Further assume based on the ground truth labels, 𝑌𝑑 ≥ 𝑌𝑝, then in an 𝑛−coherent dataset, if
𝑖, 𝑗 ≤ 𝑛, ̂𝑃 𝑆𝑖𝐿(𝑓𝑖,𝑗 , 𝐷𝑞 , 𝑌𝑞) ≥ ̂𝑃 𝑆𝑖𝐿(𝑓𝑗,𝑖, 𝐷𝑞 , 𝑌𝑞).

Proof. Based on our assumption, for a given query 𝑞, 𝑓𝑗,𝑖 results in the same ranking as 𝑓𝑖,𝑗 for all documents except for documents
𝑑 and 𝑝. Therefore, the comparison between ̂𝑃 𝑆𝑖𝐿(𝑓𝑖,𝑗 , 𝐷𝑞 , 𝑌𝑞) and ̂𝑃 𝑆𝑖𝐿(𝑓𝑗,𝑖, 𝐷𝑞 , 𝑌𝑞) is reduced to comparing ̂𝑃 𝑆𝑖𝐿(𝑓𝑖,𝑗 , 𝑑, 𝑌𝑞)
× ̂𝑃 𝑆𝑖𝐿(𝑓𝑖,𝑗 , 𝑝, 𝑌𝑞) with ̂𝑃 𝑆𝑖𝐿(𝑓𝑗,𝑖, 𝑑, 𝑌𝑞) × ̂𝑃 𝑆𝑖𝐿(𝑓𝑗,𝑖, 𝑝, 𝑌𝑞).

̂𝑃 𝑆𝑖𝐿(𝑓𝑖,𝑗 , 𝑑, 𝑌𝑞) × ̂𝑃 𝑆𝑖𝐿(𝑓𝑖,𝑗 , 𝑝, 𝑌𝑞) =
𝛽𝛼𝑖
𝛤 (𝛼𝑖)

𝑌 𝛼𝑖−1
𝑑 𝑒−𝛽𝑌𝑑 ×

𝛽𝛼𝑗
𝛤 (𝛼𝑗 )

𝑌
𝛼𝑗−1
𝑝 𝑒−𝛽𝑌𝑝

(Definition (17))

≥ 𝛽𝛼𝑖
𝛤 (𝛼𝑖)

𝑌 𝛼𝑖−1
𝑝 𝑒−𝛽𝑌𝑝 ×

𝛽𝛼𝑗
𝛤 (𝛼𝑗 )

𝑌
𝛼𝑗−1
𝑑 𝑒−𝛽𝑌𝑑

(Since 𝑌𝑑 ≥ 𝑌𝑝, and 𝛼𝑖 ≥ 𝛼𝑗
≥ ̂𝑃 𝑆𝑖𝐿(𝑓𝑗,𝑖, 𝑑, 𝑌𝑞) × ̂𝑃 𝑆𝑖𝐿(𝑓𝑗,𝑖, 𝑝, 𝑌𝑞) □

Conclusively, the simplified label loss function is order preserving, based on the definition provided in Xia et al. (2008). The
ttribute of order-preserving cannot be generally proved for the other loss functions introduced in our learning to rank model. For
xample for 𝑃𝐿(𝑓, 𝑑, 𝑌𝑞), different 𝛽s in positions 𝑖 and 𝑗 my result in a lower 𝑃𝐿(𝑓𝑖,𝑗 , 𝑑, 𝑌𝑞) than 𝑃𝐿(𝑓𝑗,𝑖, 𝑑, 𝑌𝑞) for some datasets.

. Experiments

.1. Research objectives

In this section, we report the experiments we conducted for evaluating the performance of the ListMAP learning to rank model.
hrough our experiments, we attempt at analyzing the following three research objectives:

• Research Objective 1: Performance across different datasets We analyze whether the introduced listwise models are
effective in retrieving and ranking relevant documents to a given query comparing to existing state-of-the-art methods.
Furthermore, We study which of the proposed model would be the most effective across different datasets.

• Research Objective 2: Prior Function Parameter Setting We investigate the prior distribution parameters estimated for each
dataset. We study which of the datasets are coherent and leads to an order-preserving property for the introduced models as
we discussed in Section 3.4.

• Research Objective 3: Success/Failure Analysis Given that the main difference between the introduced ListMAP model
and the prominent ListMLE model falls in incorporating a prior distribution in the loss function, we study the number of
queries whose performance improved/hurt by ListMAP compared with ListMLE. We aim at analyzing the effectiveness of
incorporating priors, i.e., given all other formalization and implementations be the same, how effective is a prior distribution
in improving/hurting the performance of different queries.

In the following, we first report the datasets we used, our experimental setup, and the baselines. We then present our analysis
n these research objectives by reporting experimental results.

.2. Data sets

In this set of experiments, we use the following six benchmark datasets: MQ2007 and MQ2008 of the Letor 4.0 benchmark (Qin
Liu, 2013), Set 1 and Set 2 of the Yahoo! learning to rank challenge data set (Chapelle & Chang, 2011), denoted as Yahoo!Set1

nd Yahoo!Set2 in our reported results, and Microsoft 30k and Microsoft 10K datasets (Qin & Liu, 2013) denoted as MSLR30K
nd MSLR10K, respectively. Table 2 shows the number of queries, documents, and features for each data set. The documents in
Q2007 and MQ2008 are retrieved from 25 million pages in the Gov2 web page collection (Qin, Liu, Xu et al., 2010) for queries in

he Million Query track of TREC 2007 and TREC 2008, respectively. Documents are labeled with relevance judgment ranging from
(not related) to 2 (highly related). Yahoo! data sets consists of top documents retrieved for randomly sampled queries from the

uery logs of the Yahoo! search engine. Documents are labeled with relevance judgment ranging from 0 (not related) to 5 (highly
9
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Table 2
Data set statistics.

Data set #Documents #Queries #Features

MQ2007 65323 1 692 46
MQ2008 14384 784 46
Yahoo!Set1 ∼709 K 29 921 700
Yahoo!Set2 ∼172 K 6 330 700
MSLR10K ∼1200 K 10 000 136
MSLR30K ∼3771 K 31 531 136

related). MSLR30K is created from a retired labeling set of the Bing search engine, and contains 125 documents for each query by
average. MSLR10K is created by a random sub-sampling from MSLR30K with 10,000 queries. Similar to Yahoo!Sets, the relevance
judgments in MSLR datasets range from 0 (irrelevant) to 5 (perfectly relevant). We used 50 percent of the training data for setting
the 𝛼 and 𝛽 parameters of the prior distribution models and use the rest for the training ListMAP learning to rank models.

MSLR datasets and MQ2007, and MQ2008 comes with five folds, where each fold has a test, train and a validation set. We used
he train set of each fold for training the models, and report the average results across test sets of all folds. Yahoo!Sets comes with
ne set of test, train, and validation data and the reported results are those obtained from running model on the test set.

.3. Experimental setup

For implementing the proposed listwise model and the baselines, we used the self attention neural network architecture
ntroduced in Pobrotyn et al. (2020). We made use of the open-source Pytorch implementation of the network1 and extend it with

the implementation of ListMAP loss functions and other baseline losses. In these experiments, all documents are represented as sets
of features that are provided by the experimental datasets, so we have not applied any embedding on words or characters. All codes
are available in our GitHub repository.2

For tuning network parameters, we used the validation data set and maximize NDCG@5. For ListMAP losses, the number of
encoders in the self-attentive network is set to 4 for MSLR collections and is set to 2 for other collections. The number of self
attention heads is set to 2 for MSLR collections and set to 1 for other datasets. The only exception is ListMAP𝐿𝑃 that is set to have
4 encoders and 4 attention heads in MQ2008 dataset. The size of the input embedding layer for MSLR datasets is set to 144, and
for Yahoo!Sets it is set to 96. For MQ2008, the input embedding layer are 96, 144, and 144 and for MQ2007 they are 96, 256,
and 128 for ListMAP𝑆𝑃 , ListMAP𝐿𝑃 , and ListMAP𝑆𝑖𝑃 ; respectively. The training batch size is set to 32 queries. The learning rate
is set to 0.001 and the drop rate is 0.3. We repeated all experimental runs 20 times over the test dataset folds and reported the
averaged results. We applied the Adam batch normalization (Kingma & Ba, 2014) between consecutive layers. The details of the
neural network setting is reported in our Github repository.

4.4. Baselines

We compared our learning to rank models with a number of prominent and state-of-the-art baselines namely ListNet (Cao et al.,
2007), LitMLE (Xia et al., 2008), Approximate-NDCG learning models (Qin, Liu, & Li, 2010), Sigmoid-Loss (Carvalho et al., 2008).
We also compare our models with two learning to rank models, OrdinalRank (Pobrotyn et al., 2020) and NeuralNDCG (Pobrotyn &
Białobrzeski, 2021), that have been shown to outperform other baselines in the self-attentive neural architecture that we employed
for implementing ListMAP loss functions. The network setting for the neural architecture of each model across datasets are reported
in our Github repository.

4.5. Results

4.5.1. Research objective 1: Retrieval performance
In this section, we report the performance of the learning to rank models introduced in this paper, namely ListMAP𝑆𝑃 , ListMAP𝐿𝑃 ,

and ListMAP𝑆𝑖𝐿𝑃 , and compare them with the baseline models; performance over MQ2007, MQ2008, Yahoo!Set1, YahooSet2,
MSKR10K, and MSLR30K datasets. In line with recent related work in the literature (Pasumarthi, Zhuang, Wang, Bendersky, &
Najork, 2020; Zhu, Cao, Lu, & Gu, 2021), we report the models performance using NDCG and MRR evaluation metrics at positions
1, 3, 5, 10, and 20.

Tables 3 and 4 show the performance of ListMap models and the baselines in terms of NDCG and MRR. Bold numbers are
the highest in each column. In these tables, ⋆, †, and ‡ indicate a statistical significant improvement over ListNet, ListMLE, and
OrdinalRank methods based on a Paired t-test with a confidence level of 0.05, respectively. A complete report of t-test P-values for
the improvement over all baselines can be found in our github repository.

1 https://github.com/allegro/allRank
2 https://github.com/sanazkeshvari/allrank
10
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Table 3
NDCG and MRR performance on the MQ2007, MQ2008, Yahoo!Set1, and Yahoo!Set2 datasets. Statistically significant improvements over ListNet, ListMLE and
AllRank are shown by ⋆, †, and ‡, respectively.
(a) MQ2007

nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR

@1 @3 @5 @10 @20

ListNet 0.495 0.465 0.500 0.545 0.509 0.564 0.535 0.577 0.598 0.584
ListMLE 0.477 0.448 0.482 0.529 0.489 0.547 0.517 0.562 0.580 0.569
ApproxNDCG 0.514 0.482 0.517 0.564 0.526 0.582 0.556 0.597 0.618 0.602
Sigmoid-Loss 0.473 0.445 0.476 0.526 0.484 0.544 0.512 0.559 0.574 0.566
Allrank 0.526 0.492 0.529 0.573 0.538 0.590 0.569 0.604 0.629 0.610
NeuralNDCG 0.518 0.484 0.530 0.574 0.538 0.590 0.571 0.604 0.629 0.610
ListMAP𝑆𝑃 0.547⋆† 0.515⋆† 0.542⋆† 0.589⋆† 0.551⋆†‡ 0.608⋆† 0.580⋆†‡ 0.621⋆† 0.640⋆† 0.626⋆†
ListMAP𝐿𝑃 0.522⋆† 0.491⋆ 0.521⋆† 0.567⋆† 0.528⋆† 0.586⋆† 0.555⋆† 0.599⋆† 0.618⋆† 0.605⋆†

ListMAP𝑆𝑖𝐿𝑃 0.521 0.491 0.525⋆† 0.575⋆† 0.530⋆† 0.593⋆† 0.556⋆† 0.605⋆† 0.617⋆† 0.611⋆†

(b) MQ2008

nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR

@1 @3 @5 @10 @20

ListNet 0.597 0.546 0.628 0.634 0.666 0.653 0.708 0.665 0.733 0.667
ListMLE 0.507 0.482 0.553 0.569 0.603 0.595 0.674 0.612 0.708 0.616
ApproxNDCG 0.520 0.492 0.548 0.575 0.595 0.598 0.672 0.617 0.708 0.620
Sigmoid-Loss 0.591 0.563 0.638 0.651 0.677 0.672 0.733 0.683 0.760 0.686
AllRank 0.633 0.597 0.681 0.692 0.727 0.712 0.775 0.721 0.796 0.723
NeuralNDCG 0.618 0.587 0.662 0.674 0.710 0.696 0.760 0.706 0.784 0.708
ListMAP𝑆𝑃 0.652 0.617 0.682‡ 0.701 0.731 0.721 0.775 0.730 0.797 0.732
ListMAP𝐿𝑃 0.593 0.564 0.632 0.648 0.678 0.670 0.733⋆ 0.682 0.759 0.685
ListMAP𝑆𝑖𝐿𝑃 0.632⋆† 0.599⋆†‡ 0.668⋆† 0.683⋆† 0.713⋆† 0.703⋆† 0.764⋆† 0.715⋆† 0.788⋆† 0.716⋆†

(c) Yahoo!Set1

nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR

@1 @3 @5 @10 @20

ListNet 0.705 0.610 0.709 0.691 0.729 0.707 0.774 0.718 0.818 0.721
ListMLE 0.685 0.576 0.691 0.661 0.714 0.678 0.763 0.689 0.808 0.693
ApproxNDCG 0.667 0.563 0.670 0.656 0.691 0.674 0.742 0.684 0.790 0.688
Sigmoid-Loss 0.553 0.434 0.593 0.546 0.630 0.571 0.693 0.586 0.748 0.590
AllRank 0.707 0.611 0.714 0.693 0.737 0.711 0.782 0.719 0.822 0.722
NeuralNDCG 0.707 0.610 0.715 0.694 0.735 0.711 0.779 0.720 0.821 0.723
ListMAP𝑆𝑃 0.626 0.539 0.737⋆†‡ 0.670⋆† 0.789⋆†‡ 0.693† 0.832⋆† 0.701† 0.843⋆†‡ 0.702†

ListMAP𝐿𝑃 0.645 0.559 0.751⋆†‡ 0.688† 0.799⋆† 0.708† 0.841⋆† 0.716† 0.851⋆†‡ 0.717†

ListMAP𝑆𝑖𝐿𝑃 0.640 0.556 0.749⋆†‡ 0.684† 0.800⋆† 0.705 0.841⋆†‡ 0.713† 0.851⋆†‡ 0.713†

(d) Yahoo!Set2

nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR

@1 @3 @5 @10 @20

ListNet 0.705 0.611 0.699 0.698 0.714 0.712 0.752 0.721 0.813 0.724
ListMLE 0.703 0.599 0.694 0.682 0.706 0.696 0.746 0.705 0.808 0.709
ApproxNDCG 0.682 0.585 0.676 0.675 0.688 0.690 0.730 0.700 0.794 0.703
Sigmoid-Loss 0.691 0.595 0.689 0.687 0.703 0.701 0.742 0.710 0.804 0.713
AllRank 0.701 0.600 0.702 0.686 0.716 0.699 0.755 0.709 0.813 0.712
NeuralNDCG 0.696 0.599 0.696 0.683 0.708 0.698 0.747 0.707 0.808 0.711
ListMAP𝑆𝑃 0.665 0.574 0.762‡ 0.703⋆†‡ 0.817⋆†‡ 0.722⋆†‡ 0.859⋆†‡ 0.729⋆†‡ 0.865⋆†‡ 0.730⋆†‡
ListMAP𝐿𝑃 0.552 0.445 0.677 0.584 0.749⋆†‡ 0.615⋆†‡ 0.809⋆† 0.627 0.818⋆†‡ 0.629
ListMAP𝑆𝑖𝐿𝑃 0.579 0.476 0.699 0.614 0.766⋆†‡ 0.643 0.821⋆†‡ 0.653 0.830⋆†‡ 0.654

It can be seen in these tables that ListMap𝑆𝑃 is the best performing L2R model on both MQ2007 and MQ2008 datasets in terms
f both NDCG and MRR in all positions. The NDCG obtained by all listMap models outperform all baselines from the position of 3
o 20 on both Yahoo!Set1 and Yahoo!Set2 datasets. Furthermore, ListMap𝑆𝑃 is the best performing one in terms of both NDCG and

MRR metrics on Yahoo!Set2 dataset from the position of 3 to 20. All ListMap models perform better than the baselines in terms of
both NDCG and MRR from the positions of 5 to 20 across MSLR10K and MSLR30k datasets. On the MSLR10K dataset, ListMAP𝐿𝑃
performs better than the other ListMap models.

4.5.2. Research objective 2: Prior function parameter setting
In this section, we analyze setting parameters of the prior function introduced in Section 3. Figs. 3(a), (c), (e) and Figs. 4(a),
11
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Table 4
NDCG and MRR performance on the MSLR10k and MSLR30k datasets. Statistically significant improvements over ListNet, ListMLE and AllRank are shown by
⋆, †, and ‡, respectively.
(c) MSLR10K

nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR

@1 @3 @5 @10 @20

ListNet 0.390 0.274 0.383 0.351 0.393 0.372 0.416 0.388 0.454 0.397
ListMLE 0.383 0.249 0.381 0.320 0.389 0.338 0.410 0.353 0.446 0.361
ApproxNDCG 0.403 0.280 0.391 0.352 0.396 0.371 0.414 0.386 0.448 0.393
Sigmoid-Loss 0.173 0.096 0.188 0.137 0.202 0.153 0.231 0.171 0.277 0.182
AllRank 0.413 0.278 0.408 0.352 0.414 0.371 0.434 0.386 0.468 0.393
NeuralNDCG 0.395 0.265 0.401 0.348 0.409 0.368 0.429 0.384 0.462 0.391
ListMAP𝑆𝑃 0.357 0.293⋆†‡ 0.427⋆†‡ 0.401⋆†‡ 0.491⋆†‡ 0.436⋆†‡ 0.599‡ 0.463⋆†‡ 0.662⋆†‡ 0.470⋆†‡

ListMAP𝐿𝑃 0.363 0.301‡ 0.441 0.415† 0.505⋆†‡ 0.449⋆† 0.610⋆†‡ 0.474⋆†‡ 0.670⋆†‡ 0.480⋆†‡s
ListMAP𝑆𝑖𝐿𝑃 0.361 0.301† 0.437⋆† 0.412⋆† 0.502⋆†‡ 0.448⋆† 0.609⋆†‡ 0.473⋆† 0.669⋆†‡ 0.479⋆†‡

(c) MSLR30K

nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR

@1 @3 @5 @10 @20

ListNet 0.423 0.310 0.411 0.388 0.417 0.409 0.440 0.425 0.479 0.432
ListMLE 0.426 0.288 0.420 0.364 0.426 0.384 0.446 0.398 0.479 0.406
ApproxNDCG 0.421 0.296 0.407 0.370 0.413 0.390 0.431 0.404 0.464 0.412
Sigmoid-Loss 0.164 0.089 0.182 0.125 0.196 0.141 0.225 0.157 0.270 0.168
AllRank 0.454 0.321 0.446 0.401 0.451 0.420 0.472 0.435 0.505 0.442
NeuralNDCG 0.434 0.301 0.432 0.385 0.440 0.406 0.460 0.421 0.492 0.428
ListMAP𝑆𝑃 0.335 0.275 0.411 0.384† 0.478⋆†‡ 0.420⋆† 0.587⋆† 0.448⋆†‡ 0.652⋆†‡ 0.455⋆†‡

ListMAP𝐿𝑃 0.342 0.281 0.416 0.389† 0.482⋆‡ 0.426⋆‡ 0.591⋆†‡ 0.453⋆‡ 0.655⋆†‡ 0.460⋆‡

ListMAP𝑆𝑖𝐿𝑃 0.356 0.292 0.426⋆† 0.401⋆† 0.491⋆†‡ 0.437⋆‡ 0.597⋆†‡ 0.463⋆‡ 0.661⋆†‡ 0.470⋆‡

setting the parameters of the Gamma distribution for documents that are placed in ranks 1th, 5th, 10th and 15th of a permutation.
The probability density function is used for approximating the prior probability defined in ListMAP loss functions. Furthermore,
Figs. 3(b), (d), (f) and Figs. 4 (b), (d) and (f) show the probability density functions approximated for these datasets by using 80%
of the training data as observations for prior function parameter setting. As you can see in these figures, the Gamma distribution is
defined over labels of the documents, i.e., it assigns different prior probability to each label when a document is placed in different
ranks in a given permutation. For example, according to Fig. 3, a document that is placed in the first rank of a permutation for a
query in the MQ2007 dataset is more probable to have a label of 2 (close to 0.4) rather than a label equal to 0 (around 0). On the
other hand, a document that is placed in the 15th rank in a given permutation for a query in the MQ2007 dataset has an almost
0 probability to have a label equal to 2. In other words, a pair of query-document, where the document is the 15th in the ground
truth permutation and has a label of 2, is recognized a noise and has no impact in the learning process.

The Gamma distributions depicted in Figs. 3 and 4 are calculated based on the observations randomly selected from the training
data in the first fold of datasets MQ2007, MQ2008, MSLR10K and MSLR30K. For Yahoo!Set datasets that have no predefined
folds, parameter setting is performed based on the randomly selected observations from the whole training data. As we can see
in Fig. 3, MQ2007, MQ2008, MSLR30K and Yahoo!Set1 are coherent for the top 15 positions when 80% of the training data used
as observations for parameter setting. MQ2008, the smallest dataset in our evaluation, struggles with prior function approximation
when 50% of the training data used as observations. Here, the probability of observing other values than 0 is small for all ranking
positions. For MSLR10K in both cases, when 50% and 80% used as observations, and for Yahoo!Set2 with 80% of training data as
observations, the Gamma distributions for the ranking positions look closely similar, i.e., different ranks in the permutation have no
clearly distinguishable pattern in their labels. Fig. 3 (e and d) and Fig. 4(f) show that the most relevant documents in these datasets
(i.e., the documents that have been placed in the Ranks of #1 and #5 in the ground truth permutations of dataset queries) are more
probable to be assigned a label in the range of 0 to 2 than a label in other ranges such as 4. The intuition behind this observation
is that documents in this datasets do not usually get high relevant scores in the ground truth data. In other words, given a query
posed to this datasets, the label of the first document in the ground truth permutation is approximately close to the labels of the
documents in the rank of 5, 10, and 15, and all are close to a value in the range of 0 to 2, by average.

4.5.3. Research objective 3: Success/failure analysis
Fig. 5 illustrates queries whose effectiveness are improved/hurt by ListMAP. In these figures, the difference between NDCG@20

for ListMAP𝑆𝑃 over ListMLE is reported across different datasets. We used the test folder of the first fold of MQ2007 and MQ2008
and MSLR10K and MSLR30K datasets and the whole test folder of Yahoo!Set datasets for this analysis. Here a positive value indicates
an improvement achieved by ListMAP. In this figures, we chose ListMAP𝑆𝑃 due to its relatively better performance than ListMAP𝐿𝑃
and ListMAP𝑆𝑖𝐿𝑃 across MQ and Yahoo!Set datasets. Since the loss function defined in ListMAP differs from the one in ListMLE in
exploiting prior probabilities, in Fig. 5, we selected ListMLE from the existing baselines to highlight the role of the prior function
in the learning process.
12
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Fig. 3. Probability density functions for documents placed in ranks 1, 5, 10, and 15 of ground truth permutations for queries over MQ2007, MQ2008 and
MSLR10K data sets.

As it can be observed from Fig. 5, in MQ2007, ListMAP achieves a better or the same performance in terms of NDCG@20 for 256
queries out of 336 one compared with ListMLE. In MSLR10K, out of 1938 queries, ListMAP helps 1459 queries. From 6178 queries
in the MSLR30K dataset, 4350 queries have a better performance by ListMAP than the baseline, while 42 queries gets exactly the
same value for their NDCG metric. For Yahoo!Set1, ListMAP improves the NDCG@20 of 3497 queries out of 6303, while it has the
same performance as ListMLE for 277 queries. Out of the 3645 queries for Yahoo!Set2, 2418 queries have a better or the same value
for the NDCG@20 metric compared with the baseline. The only dataset that hurts from using prior functions is MQ2008, where
ListMAP helps 34 out of 156 queries, while it achieves exactly the same performance as ListML for 75 queries. The reason can be
13
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Fig. 4. Probability density functions for documents placed in ranks 1, 5, 10, and 15 of ground truth permutations for queries over MSLR30K, Yahoo!Set1, and
Yahoo!Set2 data sets.

due to the fact that MQ2008 is a relatively small dataset where the prior function is distributed around 0 for the top 15 ranks (See
Fig. 3(c)).

4.6. Discussion

In Section 4.1, we defined three research objectives to analyze whether the proposed learning to rank models are effective in
ranking, to analyze the prior parameters derived from the observation data of each dataset, and to study the impact of the prior
distribution on improving/hurting queries’ retrieval performance.
14
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Fig. 5. The difference between the NDCG@20 achieved by ListMap𝑆𝑃 and the one achieved by ListMLE (denoted as 𝛥 NDCG@20) for each query over different
datasets. In these plots, the X axis represents queries sorted by 𝛥 NDCG@20 and Y axis represents 𝛥 NDCG@20.

Regarding the first research objective, the following conclusions can be derived from the experiments:

• All three proposed learning to rank models; namely ListMAP𝑆𝑃 , ListMAP𝐿𝑃 , and ListMAP𝑆𝑖𝐿𝑃 ; are more effective than the
four prominent models; ListNet, LISTMLE, ApproxNDCG, and Sigmoid-Loss; in terms of the nDCG metric at positions 3, 5, 10,
and 20 in almost all datasets. Furthermore, the proposed models outperform these baselines in terms of MRR in most cases.
Exceptions include the reported MRR for ListMAP𝐿𝑃 , and ListMAP𝑆𝑖𝐿𝑃 over the Yahoo!Set2. This conclusion is significant in
light of this fact that all baselines and the proposed models are implemented using the same neural network architecture.

• ListMAP𝑆𝑃 is the model that outperform all baselines in terms of nDCG metric at positions 3 to 20. ListMAP𝑆𝑃 is also the
best performing model among the proposed models across MQ2007, MQ2008, and Yahoo!Set2 datasets and outperform all
baselines in terms of nDCG and MRR at positions 3 to 20 across MSLR10K and MSLR30K.

Regarding to the second research objective, our experiments show that the prior distribution gets different shapes across different
datasets and by observing different percentage of the training data. The findings for the second research objective can be summarized
as follows:

• MQ2007, MSLR30K, and Yahoo!Set1 are 15-coherent datasets when 50% of the training data is used for setting the prior
distribution parameters. Furthermore, MQ2008 is a 15-coherent dataset, when 80% of the training data is used for prior
parameter setting.
15
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• In some datasets, such as MSLR10K, the prior distributions for the ranking positions look closely similar. In other words,
different ranks in the ground truth permutation of these datasets have no clearly observable patterns in their labels, and each
document can get different labels with nearly the same probability in different positions.

• Our experiments show that ListMAP is effective in improving the retrieval performance across both types of datasets: those
with clearly observable pattern in their labels (e.g MSLR30K) and those with no clear pattern in their labels (e.g MSLR10K).

Finally, in terms of the third research objective, our experiments show that incorporating the introduced prior into the learning
o rank model improves the performance of a larger number of queries compared with those whose performance are hurt. The
ollowing are the main findings regards to the third research objective:

• Incorporating the prior distribution helps the retrieval performance of the majority of queries measured by nDCG@20 across
almost all datasets.

• Incorporating the prior distribution is not helpful in datasets whose prior function is distributed around 0 for the top ranks.
For example, MQ2008 is the only dataset in our experiments where more queries hurt by incorporating priors. MQ2008 is
a dataset whose prior function is distributed around 0 for the top 15 ranks when 50% of the training data is used as prior
parameter setting data.

. Conclusion

In this paper, we propose a new listwise learning to rank loss function for modeling training datasets. The loss function is defined
ased on a prior distribution over labels and scores of documents in the ground-truth permutation. The prior function controls the
mpact of each training instance in the learning process. We use a part of the training data for learning a pattern on reliable scores
nd labels of documents in different ranks of a permutation in each dataset and then apply this pattern to weight the remaining
raining instances in listwise learning to rank.

We empirically evaluated the proposed learning to rank models through a complete set of experiments on MQ2007, MQ2008,
SLR10K, MSLR30K, Yahoo!Set1 and Yahoo!Set2 datasets. We show that the proposed model outperform prominent and novel

earning to rank models in terms of NDCG and MRR evaluation metrics in different positions. We also illustrate that the proposed
oss function helps to improve the performance of the majority of queries in most datasets.
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