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1 Introduction

Let X be a positive absolutely continuous random variable with density function f (·).
Shannon’s information measure or the differential entropy of X is given by

H( f ) = −

∫
∞

0
f (x) log f (x)dx. (1.1)

Therefore, H( f ) measures the expected uncertainty contained in f (·) about the predictab-
ility of an outcome of X. In survival analysis and life testing, since the current age of
the system under consideration is also taken into account, the Shannon entropy is not
suitable for calculating uncertainty of a system that has survived for some unit of time.
Therefore, the notion of residual entropy has been introduced in the literature. The
residual lifetime of the system when it is still operating at time t is Xt = (X− t|X > t). It
can be readily shown that the comulative distribution function and probability density
function of Xt is given by

Ft(x) = 1 −
S(x + t)

S(t)
,

ft(x) =
f (x + t)

S(t)
,

respectively, where f (·) denotes the density function of X and S(t) = P(X > t) is the
reliability (or survival) function. Ebrahimi (1996) proposed the entropy of the residual
lifetime Xt as

H(t) := −

∫
∞

t
log( ft(x))dFt(x) (1.2)

= −

∫
∞

t

f (x)
S(t)

log
(

f (x)
S(t)

)
dx

= log(S(t)) −
1

S(t)

∫
∞

t
f (x) log f (x)dx. (1.3)

The residual entropy function, introduced in (1.3), is viewed as a dynamic measure of
uncertainty, since this measure finds applications in modeling and analysis of lifetime
data. In the literature, several estimators of residual entropy have been proposed for a
random sample. More recently, Ebrahimi (1997) considered the problem of testing the
monotonicity of this measure. Belzunce et al. (2001) proposed a kernel type estimation
of the residual entropy function in the case of independent complete data sets. Also
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Belzunce et al. (2004) established that if H(t) is increasing in t, then H(t) determines the
distribution uniquely. Given that an item has survived up to time t, H(t) measures the
uncertainty about its remaining life. Maya et al. (2014) proposed nonparametric estima-
tors for the Rényi information measure for the residual lifetime distribution based on
complete and censored data. Rajesh et al. (2015) discussed a nonparametric estimation
of the residual entropy function with censored dependent data. They also investigated
asymptotic properties of the estimator under suitable regularity conditions.

Kumar and Taneja (2015) handled the study on a length-biased dynamic measure of
past inaccuracy. Taneja et al. (2009) studied a dynamic measure of inaccuracy between
two residual life distributions. Tahmasebi and Daneshi (2018) considered a measure
of inaccuracy between distributions of the nth record value and parent random vari-
able. They also proposed the measure of residual inaccuracy of record values and
investigated characterization results of dynamic cumulative residual inaccuracy mea-
sure. Kayal et al. (2017) introduced a generalized measure of inaccuracy between two
residual and past lifetime distributions of a system. Rajesh et al. (2017) proposed non-
parametric estimators for the inaccuracy measure for the lifetime distribution based on
censored data. Kayal (2015) dealt with a generalized residual entropy of record values
and weighted distributions. Also, some results on monotone behavior of generalized
residual entropy in record values were obtained. For more discussion on the properties
and characterization results using the notion of residual entropy, we refe to Nair and
Rajesh (1998), Sankaran and Gupta (1999), and Asadi and Ebrahimi (2000).

For representing population, it is assumed that a sample has the same basic prop-
erties. However, the sample may not be entirely representative of the population in
practice and it is known as weighted data when bias is introduced in the sampling
scheme. The observed sample will not be representative of the population of interest,
once an appropriate randomization cannot be attained. Since in the real world this
biased sampling issue appears frequently, truly random sampling is not easily achiev-
able or practically feasible. Weighted data appear in many sampling processes. This
type of sample is produced when the probability of choosing an observation depends
on its value and/or other covariates of interest; see Patil and Rao (1978). Such data
are observed in a variety of fields such as biomedicine (Chakraborty and Rao, 2000),
epidemiology (Simon, 1980), textile fibers (Cox, 1969), social sciences, economics, and
quality control. It is worth knowing that biased sampling problems may occur even if
the sampling is unbiased. For a comprehensive overview of biased sampling, we refer
to Qin (2017).

Let X be a non-negative random variable with density function and distribution
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function of f (·) and F(·), respectively. The random variable Y has the length-biased
distribution of F(·) if the density function of Y reads as follows:

G(y) =
1
µ

∫ y

0
x f (x)dx, y ≥ 0, (1.4)

where µ =
∫ τ

0 x f (x)dx < ∞ and τ = sup{x : F(x) < 1}. We assume that τ is finite. Let
Y1, . . . ,Yn be a random sample from G. Then the empirical distribution function (edf)
of Y is given by

Gn(t) =
1
n

n∑
i=1

I(Yi ≤ t),

where I(A) denotes the indicator of the event A. The empirical estimator of F can be
written in the form

Fn(t) = µn

∫ t

0
y−1dGn(y), (1.5)

where

µ−1
n =

∫
∞

0
y−1dGn(y).

For various nonparametric estimations of f and F based on a length-biased sampling,
we refer to Guillamón et al. (1998), Vardi (1982), De Uña-álvarez (2004), Chaubey et al.
(2010), Jones (1991), Ajami et al. (2013), and references therein.

The importance of the biased sampling problem and residual entropy appears in
many fields of research; we are interested in the estimation of the residual entropy of
X in the length-biased setting. Although ample information about estimation of the
residual entropy with complete and censored data is available, there is few research in
the literature studying the estimation of the residual entropy with length-biased data.

Since Shannon’s entropy plays an important role in the context of the information
theory, Oliazadeh et al. (2021) proposed an estimator of Shannon entropy based on
kernel estimators of density function in a length-biased setting. Also, they proved
the strong consistency of the proposed estimator. Since this entropy is not applicable
to a system that is known to have survived beyond some time, say t, the concept of
residual entropy was later developed. Accordingly, in this paper, we study information
measures for residual lifetime distributions based on this measure. Considering the fact
that both residual entropy and length-biased data have wide applications in different
fields, for example in reliability for measuring uncertainty about the remaining lifetime
of the unit, in the present article, we extend the work of Oliazadeh et al. (2021) to
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an estimation of the residual entropy of X based on length-biased data and study the
strong consistency and asymptotic normality of the proposed estimator.

Given a random sample Y1, . . . ,Yn, drawn from the distribution G, the plug-in
estimator for H(t) can be defined as

Hn(t) := −
∫ τ

t

fn(x)
Sn(t)

log
( fn(x)

Sn(t)

)
dx

= log(Sn(t)) −
1

Sn(t)

∫
∞

t
fn(x) log( fn(x))dx, (1.6)

where

fn(t) =
µn

nhn

n∑
i=1

1
Yi

K
( t − Yi

hn

)
. (1.7)

The estimator (1.7) was proposed by Jones (1991). Its asymptotic behaviour considered
by Jones (1991) and Ajami et al. (2013). Our objective in this paper is to establish some
asymptotic behaviors of Hn(t).

We organize our article as follows. In Section 2, we propose some assumptions
and prove the main theorems on the strong consistency and asymptotic normality of
the proposed estimator. In Section 3, a simulation study to illustrate the behaviour
of the new estimator is carried out, and the results are compare with the competitor
estimator. Also, the new estimator and its competitor are applied to a real data set to
evaluate the new estimator. The conclusions of this study and suggestions for future
work, especially in the application, are given briefly in Section 4.

2 Main Result

In this section, we discuss strong consistency and asymptotic normality of the proposed
estimator for the residual entropy under the length-biased scheme. First, we list some
assumptions, which will be used in our results below.

(A1) Let K be a kernel function of bounded variation, vanishing outside of the interval
(−1, 1), with ∫ 1

−1
K(x)dx = 1,

∫ 1

−1
xK(x)dx = 0,

∫ 1

−1
x2K(x)dx < ∞.

(A2) Let f be twice differentiable with a continuous and bounded second derivative
f ′′.
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(A3)
∫ τ

0 | log f (x)|dx < ∞.

(A4) ν(r) =
∫
∞

0 u−2G1/r(u)du < ∞ for some r > 2.

(H1) log n/(n1/2+ρhn) = o(1), for any 0 < ρ < 1/2 − 1/r for some r > 2.

(H2) h−1/2
n n−ρ = o(1).

(H3) h5/2
n n1/2 = o(1).

Remark 1. Assumption (A1) is a commonly used smoothness condition. We need
Assumption (A2), because we use a second-order kernel. Assumptions (A3) and (A4)
are required to prove consistency and asymptotic normality of the proposed estimator.
Assumption (H1) gives a wide range, from O((log n)−α), α > 0, to O(n−β), 0 < β < 1

2 + ρ,
of bandwidths that include the optimal bandwidth in kernel density function, that is,
O(n−1/5). The conditions on the bandwidth in Assumptions (H2) and (H3) are also
not restrictive. Considering hn ∼ n−β, if we choose 0 < β < 1

5 ∧ 2ρ, then Assumptions
(H1) − (H3) are satisfied.

In the below theorems, we let T be such that S(T) > δ with some δ > 0. The first
theorem gives the strong uniform consistency of Hn(·).

Theorem 2.1. Let Assumptions (A1)–(A4) and (H1) be fulfilled. Then

sup
0<t≤T

|Hn(t) −H(t)| → 0 a.s.

Proof. First, we have

Hn(t) −H(t) = (mn(t) −m(t)) −
(
Hn(t)
Sn(t)

−
H(t)
S(t)

)
, (2.1)

where

m(t) = log(S(t)), mn(t) = log(Sn(t)),

H(t) =

∫ τ

t
f (x) log f (x)dx, Hn(t) =

∫ τ

t
fn(x) log fn(x)dx.

Using the Taylor expansion for the logarithm function S(t), we have

mn(t) −m(t) =
Sn(t) − S(t)

S∗n(t)
,
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where min{Sn(t),S(t)} < S∗n(t) < max{Sn(t),S(t)} for 0 < t ≤ T. Recall that the mean
values S∗n(·) on the line segment between S(·) and Sn(·) are bounded from below by δ−1

on (0,T]. Thus, Theorem 2.1. of Horváth (1985) implies that

sup
0<t≤T

|mn(t) −m(t)| ≤ δ−1 sup
0<t≤T

|Sn(t) − S(t)|

= o(1), a.s. n→∞. (2.2)

Note that for every t ≥ 0,

Hn(t)
Sn(t)

−
H(t)
S(t)

=
Hn(t) −H(t)

S(t)
+
Hn(t)(Fn(t) − F(t))

S2(t)

+
Hn(t)(Fn(t) − F(t))2

Sn(t)S2(t)
. (2.3)

Clearly

|Hn(t) −H(t)| ≤
∣∣∣∣∣∫ τ

t
fn(x)[log fn(x) − log f (x)]dx

∣∣∣∣∣
+

∣∣∣∣∣∫ τ

t
log f (x)[ fn(x) − f (x)]dx

∣∣∣∣∣
≤

∫ τ

t
f (x)

∣∣∣∣∣ fn(x)
f (x)

log
fn(x)
f (x)

∣∣∣∣∣ dx

+ ‖ fn − f ‖∞

∫ τ

t
| log f (x)|dx

=:I1n + I2n. (2.4)

where ‖ · ‖∞ denotes the usual sup norm, that is, ‖H‖∞ = sup{|H(x)| : x > 0}. To deal
with I1n, since |z log z| ≤ |z − 1|(1 + z) for all z ≥ 0, we have∣∣∣∣∣ fn(x)

f (x)
log

fn(x)
f (x)

∣∣∣∣∣ ≤ ∣∣∣∣∣ fn(x)
f (x)

− 1
∣∣∣∣∣ (1 +

fn(x)
f (x)

)
.

Hence, with finite τ and almost sure convergence of fn, for every 0 < t ≤ T, we have

I1n ≤

∫ τ

t

∣∣∣ fn(x) − f (x)
∣∣∣ (1 +

fn(x)
f (x)

)
dx

≤ ‖ fn − f ‖∞

∫ τ

0

(
1 +

fn(x)
f (x)

)
dx

≤ ‖ fn − f ‖∞

(
2τ +

‖ fn − f ‖∞
inf0<t≤T f (t)

)
→ 0, a.s. (2.5)
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To deal with I2n, using Assumption (A3) and Theorem 2 in Ajami et al. (2013), we have

I2n ≤ C‖ fn − f ‖∞ → 0 a.s. (2.6)

Then, using (2.4)–(2.6), we have

sup
0<t≤T

|Hn(t) −H(t)| = o(1) a.s. n→∞. (2.7)

By the strong uniform consistency of Fn (Horváth, 1985) for the second and third part
of the right side of equation (2.3) we have

Hn(t)
Sn(t)

−
H(t)
S(t)

→ 0 a.s. (2.8)

uniformly on (0,T]. In view of (2.1), (2.2) and (2.8) together imply that

sup
0<t≤T

|Hn(t) −H(t)| → 0 a.s.

�

The next theorem proves that Hn(·) is an asymptotically normally distributed esti-
mator.

Theorem 2.2. Suppose that Assumptions (A1)–(A4) and bandwidth conditions (H1)–(H3)
hold. Then,

√
nhn(Hn(t) −H(t)) converges weakly to a normal distribution with mean zero and

variance σ2(t) := R(t, t), that R(u, v) has been given in (2.10).

Proof. Utilizing (2.3) and (2.1), we have√
nhn(Hn(t) −H(t)) =

√
nhn(mn(t) −m(t)) −

√
nhn
Hn(t) −H(t)

S(t)

−

√
nhn
Hn(t)(Fn(t) − F(t))

S2(t)
−

√
nhn
Hn(t)(Fn(t) − F(t))2

Sn(t)S2(t)
= : J1 + J2 + J3 + J4.

The Taylor expansion for logarithm functions gives us

J1 = −
√

nhn
(Fn(t) − F(t))

S∗n(t)
,
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where min{Sn(t),S(t)} < S∗n(t) < max{Sn(t),S(t)} for 0 < t ≤ T. Using Theorem 4.1. in
Horváth (1985), we have

√
n(Fn(t) − F(t)) = Op(1). Now, since S∗n(t) → S(t) as n → ∞,

we get J1 = op(1). Similarly, utilizing Theorem 2.1, J3 = op(1), and J4 = op(1). To deal
with J2, we first obtain the limiting distribution of

√
nhn(Hn(t)−H(t)). Using the Taylor

expansion for the logarithm function and Theorem 2.2 in Ajami et al. (2013), we have

√
nhn(Hn(t) −H(t)) =

√
nhn

∫ τ

t
( fn(x) − f (x))(1 + log f (x))dx + op(1). (2.9)

It follows, from Lemma A.3 in Akbari et al. (2019) that there exists a sequence of a mean
zero Gaussian processes {%(x,n), x > 0} such that, 0 < ρ < 1/2 − 1/r for some r > 2.

sup
x>0

∣∣∣∣ √nhn( fn(x) − f (x)) − %(x,n)
∣∣∣∣ = O(h−1/2

n n−ρ ∨ n1/2h5/2
n ), a.s.,

where

%(x,n) = −h−1
n

∫
∞

0
Γ(t,n)dtK

( t − x
hn

)
dx,

in which, Γ(x,n) is a two-parameter Gaussian process with mean zero and covariance
function E(Γ(x,n)Γ(y,m)) with complicated structure which mentioned in Lemma A.3
in Akbari et al. (2019). This result and (2.9) yields

sup
t>0

∣∣∣∣∣ √nhn(Hn(t) −H(t)) −
∫ τ

t
%(x,n)(1 + log f (x))dx

∣∣∣∣∣ = op(1).

Thus, it is immediate that the process
√

nhn
(Hn(t)−H(t))

S(t) is approximated in probability
by a Gaussian process with mean zero and covariance function

R(u, v) = E
(

1
S(u)

1
S(v)

∫ τ

u
%(x,n)(1 + log f (x))dx

∫ τ

v
%(y,n)(1 + log f (y))dy

)
. (2.10)

From this result
√

nhn(Hn(t)−H(t)) converges weekly to a normal random variable with
mean zero and variance R(u,u). �

Remark 2. Due to the complex form of the asymptotic variance of Hn(·), it is difficult
to directly obtain a consistent variance estimator for Hn(·). Alternatively, the bootstrap
procedure can be used to estimate σ2(t).
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Remark 3. It should be mention that H(t) → H( f ) as t → 0, where H( f ) is a Shannon’s
information measure of X mentioned in (1.1). This measure of uncertainty has been
investigated by Oliazadeh et al. (2021) in the length-biased setting. To estimate H( f ),
they considered H( fn), defined as,

H( fn) := −
∫

An

fn(x) log fn(x)dx, (2.11)

where fn(·) is given in (1.7), An = {x : fn(x) ≥ γn}, and γn ↓ 0 is a sequence of positive
constant. To circumvent problem related to a singularity at zero, An has been considered
to exclude the small values of fn(·). The choice of γn close to zero guarantees the
closeness of H( fn) to H( f ). Also, they proved strong consistency of the sequence of
estimators H( fn), i.e.,

|H( fn) −H( f )| → 0, a.s. as n→∞. (2.12)

Although H(t) is an extension of H( f ), its estimator, Hn(t), as t→ 0 is not the same
as H( fn). Since Oliazadeh et al. (2021) considered the estimator H( f ) over the set An, the
problem of singularity at the origin is avoided. The entropy of the residual lifetime Xt,
i.e., H(t), is defined for t > 0, therefore plug-in estimator for H(t) resolve the mentioned
problem. Strong uniform consistency of random function Hn(t) was proved in Theorem
2.1. In Theorem 2.2, asymptotic normality of the estimator Hn(t) was investigated. This
asymptotic property is missing in the work of Oliazadeh et al. (2021) for H( fn).

3 Illustration

3.1 Simulations

To evaluate finite sample performances of the proposed estimator, we conduct simula-
tion studies in three scenarios.

Scenario 1: Let X be a random variable having a Weibull distribution with proba-
bility density function

f (x) =
a
b

(x
b

)a−1
exp

{
−

(x
b

)a}
, x > 0, a, b > 0.

Scenario 2: Let X be a random variable having a log-normal distribution with
probability density function

f (x) =
1

√
2πσx

exp
{
−

(log x − µ)2

2σ2

}
, x > 0, µ ∈ R, σ > 0,
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where µ and σ are the mean and standard deviation of the logarithm of X, respectively.

Scenario 3: Let X be a random variable having a beta distribution with probability
density function

f (x) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − x)b−1, 0 ≤ x ≤ 1, a, b > 0,

where Γ(·) is the gamma function.

We use the notation W(a, b), LN(µ, σ), and Beta(a, b) to show that X has a Weibull,
log-normal and beta distribution, respectively. We should mention that these three
distributions are common in the reliability theory and survival analysis. We choose
these distributions because Weibull and log-Normal distributions are two distributions
with positive values that are important, suitable, common and useful for lifetime data.
Beta distribution is also used as a distribution with limited support.

Length-biased data are generated from Equation (1.4) through the inverse transfo-
rmation sampling method. We note that, if X has W(a, b), then the corresponding length-
biased form is GG(1 + 1/a, 1/b, a), where GG(a, b, c) follows the generalized gamma
distribution with probability density function

f (x) =
1

Γ(a)
bc(bx)ac−1 exp {−(bx)c

} , x > 0, a, b, c > 0.

Given a log-normal distributed random variable X with parameters µ and σ, then the
transformation Y = exp{2µ + σ2

}/X connects the length-biased version to the original
variable X. Also, in the Beta(a, b) case, the length-biased form is Beta(a + 1, b). In
the evaluation process of the proposed estimator, we can consider H∗n(t) as another
estimator for the baseline function H(t) as follows

H∗n(t) = −
1∑n

i=1 Y−1
i (t)

n∑
i=1

Y−1
i (t) log f̂n,i(Yi), (3.1)

in which Yi(t) = Y(i)I(Y(i) > t) and

f̂n,i(x) =
1

hn
∑

j,i Y−1
j (t)

∑
j,i

K
(Y j(t) − x

hn

)
.



12 F. Oliazadeh et al.

H∗n(t) provided with ideas from Belzunce et al. (2001) and Equation (1.2). We replaced
Cox empirical estimator Fn(t) from (1.5) in (1.2) only by considering Yi greater than t,
then we got the following estimator

Î(t) =

∫
∞

t
ft(x)dFn(x)

=
µn

n

n∑
i=1

1
Yi

log ft(Yi)I(Yi > t).

Because f is unknown, Î(t) cannot be used in practice. Hence we substitute the Jones’s
estimator fn(·) for ft(·) in Î(t). This estimator is also based on Yi greater than t. The
result is the estimator H∗n(t) in (3.1).

For these simulations, we use various sample sizes n = 50, 100, 200. The Epanechn-
ikov density function K(x) = 3/4(1 − x2)I(|x| < 1) is used as the kernel function. The
Monte Carlo mean square error (MSE) and bias are calculated for each estimator at
three points based on 1000 replications with bandwidths selected by the minimum
MSE method. We considered MSE(Hn) and MSE(H∗n) as a function of hn and choose
the value of hn that minimize the estimated MSE(Hn) and MSE(H∗n). We considered
this value as a optimal value for hn. Figure 1. shows estimated MSE as a function of
hn for different distributions. Table 1 summarizes MSE and bias (in the parentheses)
of two estimators for the Weibull distribution with the shape parameters a = 0.5, 1 and
2 and the scale parameters b = 1, at t = 0.5, 1.5 and 2.5. The estimator H∗n has been
constructed based on observation greater that t value. Thus, in Table 1, some values of
H∗n at point t = 2.5 are not specified because length-biased data were not larger than 2.5,
so the estimator (3.1) cannot be calculated. Infact for W(2, 1) the length-biased version
is GG(3/2, 1, 2) with pdf f (x) = 4/

√
πx2 exp(−x2) and P(X > 2.5) = 0.00585 which is

very small so it is rare to have data after this point. Table 2 summarizes MSE and bias
(in the parentheses) of two estimators for the log-normal distribution with µ = 0 and
σ = 0.5, 1 and 2 at t = 0.5, 1.5 and 2.5. In this table, for LN(0, 0.5) at point 2.5, H∗n cannot
be calculated for the same reason described earlier for W(2, 1). Table 3 summarizes
MSE and bias (in the parentheses) of two estimators for the Beta(1,1), Beta(0.5,0.5) and
Beta(2,2) at t = 0.5, 1.5 and 2.5.

As shown in Tables 1–3, the plug-in estimator Hn outperforms the estimator H∗n in
most cases. In view of Tables 1 and 2, we notice that it may be impossible to compute
the estimator H∗n for the moderate t.
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Table 1: MSE and bias (in the parentheses) of Weibull distribution with different pa-
rameters

t Estimator n W(0.5,1) W(1,1) W(2,1)
0.5 Hn 50 0.173(-0.071) 0.015(0.011) 0.006(0.003)

100 0.094(-0.019) 0.008(0.011) 0.003(0.002)
200 0.056(-0.007) 0.004(0.009) 0.002(0.002)

H∗n 50 0.397(-0.612) 0.092(-0.131) 0.116(0.308)
100 0.379(-0.608) 0.098(0.224) 0.099(0.298)
200 0.371(-0.605) 0.099(0.279) 0.089(0.290)

1.5 Hn 50 0.096(-0.016) 0.032(-0.026) 0.064(-0.008)
100 0.050(0.014) 0.015(-0.018) 0.028(-0.018)
200 0.028(0.014) 0.008(-0.006) 0.014(0.012)

H∗n 50 1.683(-1.293) 0.116(-0.180) 0.069(0.203)
100 1.664(-1.288) 0.157(0.318) 0.048(0.183)
200 1.664(-1.289) 0.343(0.557) 0.042(0.187)

2.5 Hn 50 0.097(-0.034) 0.096(-0.091) 0.582(0.402)
100 0.048(-0.001) 0.041(-0.046) 0.807(0.180)
200 0.027(-0.007) 0.02(-0.025) 0.124(-0.101)

H∗n 50 2.767(-1.659) 0.254(0.235) -
100 2.734(-1.652) 0.167(0.272) -
200 2.730(-1.651) 0.740(0.833) -

Table 2: MSE and bias (in the parentheses) of Lognormal distribution with different
parameters

t Estimator n LN(0,0.5) LN(0,1) LN(0,2)
0.5 Hn 50 0.009(0.009) 0.021(0.017) 0.650(-0.652)

100 0.005(0.006) 0.010(0.013) 0.615(-0.745)
200 0.003(0.023) 0.006(0.008) 0.429(-0.598)

H∗n 50 0.013(0.033) 0.031(0.012) 0.314(-0.169)
100 0.006(0.019) 0.016(0.006) 0.172(-0.013)
200 0.003(0.014) 0.008(0.001) 0.118(0.027)

1.5 Hn 50 0.0489(-0.009) 0.045(-0.040) 0.747(-0.770)
100 0.023(0.0001) 0.022(-0.020) 0.750(-0.835)
200 0.01(-0.001) 0.010(-0.006) 0.664(-0.754)

H∗n 50 0.652(0.784) 0.056(0.026) 0.361(-0.231)
100 0.628(0.781) 0.030(0.042) 0.213(-0.037)
200 0.614(0.778) 0.016(0.040) 0.145(0.025)

2.5 Hn 50 0.506(-0.251) 0.076(-0.071) 1.497(-1.179)
100 0.170(-0.114) 0.035(-0.04) 1.323(-1.127)
200 0.072(-0.106) 0.017(-0.023) 1.246(-1.118

H∗n 50 - 0.107(0.012) 0.313(-0.064)
100 2.786(1.637) 0.052(-0.004) 0.204(-0.050)
200 2.726(1.638) 0.099(0.282) 0.124(-0.092)



14 F. Oliazadeh et al.

Table 3: MSE and bias (in the parentheses) of Beta distribution with different parameters

t Estimator n Beta(1,1) Beta(0.5,0.5) Beta(2,2)
0.25 Hn 50 0.002(-0.004) 0.006(0.01) 0.003(-0.0004)

100 0.001(-0.003) 0.003(0.008) 0.001(-0.001)
200 0.0003(-0.001) 0.002(0.004) 0.001(-0.001)

H∗n 50 0.419(0.638) 0.066(0.158) 0.493(0.696)
100 0.382(0.614) 0.147(0.340) 0.467(0.680)
200 0.354(0.593) 0.246(0.481) 0.450(0.669)

0.5 Hn 50 0.002(-0.003) 0.007(0.012) 0.006(-0.002)
100 0.001(-0.002) 0.004(0.008) 0.002(-0.009)
200 0.0003(-0.001) 0.002(0.004) 0.001(0.001)

H∗n 50 0.186(0.424) 0.083(0.193) 0.246(0.492)
100 0.156(0.392) 0.125(0.336) 0.218(0.464)
200 0.136(0.368) 0.092(0.295) 0.197(0.443)

0.75 Hn 50 0.004(-0.002) 0.01(0.013) 0.014(0.027)
100 0.001(-0.001) 0.005(0.008) 0.006(0.019)
200 0.001(-0.001) 0.003(0.022) 0.003(0.013)

H∗n 50 0.100(0.300) 0.107(0.291) 0.158(0.360)
100 0.067(0.252) 0.035(0.173) 0.079(0.273)
200 0.048(0.218) 0.035(0.173) 0.079(0.273)

3.2 Real Data Analysis

In this section, we apply the proposed estimator (Hn) and its competitor (H∗n) to analyse
the automobile brake pads dataset from Lawless (2011). The data set includes the 98
automobile brake pads (in 1000-km units) for which each car brake pad lifetime is left
truncated at the current odometer reading. By analyzing several parametric models,
Lawless (2011) graphically showed that the log-normal distribution fits the data well.
Considering this distribution, we have obtained H(1) = 0.643 as a residual entropy
estimation for real data. Applying the test statistics Wn proposed by Addona and
Wolfson (2006) for testing the stationarity assumption, we found that the underlying
truncation time of brake pad data is uniformly distributed. Thus, the test does not reject
the null hypothesis that the data follow a length-biased distribution at significance
level α = 0.05. We calculate Hn(1) and H∗n(1), for the data. The observed values of these
estimators were approximately 0.395 and 1.291. It can be seen that for these data the
estimated residual entropy due to Hn is closer to H than H∗n.

4 Conclusions

In this paper, we introduced an estimator for the residual entropy under length-biased
samples, which will be useful for analysis and modeling of lifetime data. We considered
the estimator in (1.6) as the plug-in estimator for H(t), where fn was proposed by Jones
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(1991). In continuation, the asymptotic properties of Hn(t) were studied. To this goal the
strong convergence and asymptotic normality of the proposed estimator was derived.
To evaluate that, we simulated length-biased samples from three different distributions.
The Monte Carlo mean square error and bias were calculated for each estimator and
revealed that the proposed estimator has a lower bias and mean square error than the
competitor estimator. Finally for a real data set, we have shown that the data follow a
length-biased distribution and the proposed estimator provides a better value for the
estimated residual entropy in comparison to the competitor estimator.

More properties and applications of the new proposed estimator can be considered
in future researches. Also due to the charm of censorship, this work can be extended
to length-biased and right censored data. Further, the characterization problem of
distributions can be considered by the new proposed estimator with length-biased
data. Some new properties of the residual entropy in connection to order statistics and
record values can be derived in the length-biased setting.
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Figure 1: MSE as a function of bandwidth for proposed residual entropy esti-
mator (REE) and its competitor.

Optimal bandwidth of density estimator fn(x) under length-biased sampling:
Guillamon et al. (1998) determined an optimal bandwidth hopt as following
expression

hopt ≃ argmin
hn



h−1

n




n∑

j=1

n∑

i=1

(yiyj)
−1K(2)(

yi − yj
rn

) + 2K(0)
n∑

i=1

y−2
i





 ,

where K(2)(x) = K ∗K(x)− 2K(x).
For cross validation one can refer to page 126 of Wasserman’s book titled

”All of Nonparametric statistics”.

1

Figure 1: MSE as a function of bandwidth for proposed residual entropy estimator
(REE) and its competitor.
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