RECENT RESEARCHES ON THE SECOND DUAL OF BANACH ALGERAS

H.R. Ebrahimi Vishki

Ferdowsi University of Mashhad

(4 Esfand 1390) Damghan

Outline

 \bullet Arens products on $A^{\ast\ast}$

- ${\ensuremath{\, \circ }}$ Arens products on A^{**}
- The size of topological centers.

- \bullet Arens products on $A^{\ast\ast}$
- The size of topological centers.
- Quantum groups.

- \bullet Arens products on $A^{\ast\ast}$
- The size of topological centers.
- Quantum groups.
- Amenability and weak amenability of A^{**} .

- \bullet Arens products on $A^{\ast\ast}$
- The size of topological centers.
- Quantum groups.
- \bullet Amenability and weak amenability of $A^{\ast\ast}.$
- Some research problems.

Definition ([, Arens 1951])

A bounded bilinear mapping $f : \mathcal{X} \times \mathfrak{Y} \longrightarrow \mathcal{Z}$ has two extensions

$$f^{***}: \mathcal{X}^{**} \times \mathfrak{Y}^{**} \to \mathcal{Z}^{**}, \quad f^{r***r}: \mathcal{X}^{**} \times \mathfrak{Y}^{**} \to \mathcal{Z}^{**}.$$

in which the adjoint $f^*: \mathcal{Z}^* \times \mathcal{X} \longrightarrow \mathfrak{Y}^*$ of f is defined by

$$\langle f^*(z^*, x), y \rangle = \langle z^*, f(x, y) \rangle.$$

We define f^{**} and f^{***} of f by $f^{**} = (f^{*})^*$ and $f^{***} = (f^{**})^*$. We also denote by f^r the flip map of f. If $f^{***} = f^{r***r}$ then f is said to be (Arens) regular.

For A = Banach algebra with $\pi : A \times A \longrightarrow A$ we write $\Box = \pi^{***} = the$ first Arens product. $\Diamond = \pi^{r***r} = the$ second Arens product. Then (A^{**}, \Box) and (A^{**}, \Diamond) are Banach algebras. A is said to be Arens regular if $\Box = \Diamond$.

Example

- (Sherman 1950; Takeda 1954; Civin Yood 1961)
 Every C*-algebra is Arens regular.
- (Young 1975; Lau and Losert 1988)
 L¹(G) is Arens regular if and only if G is finite.

The left topological center:

$$Z_1(\mathcal{A}^{**}): = \{ m \in \mathcal{A}^{**} : n \mapsto m \Box n \text{ is } w^* - w^* \text{ continuous} \}$$

= $\{ m \in \mathcal{A}^{**} : m \Box n = m \Diamond n \text{ for all } n \in A^{**} \}.$

The right topological center:

$$Z_2(\mathcal{A}^{**}): = \{ m \in \mathcal{A}^{**} : n \mapsto n \Diamond m \text{ is } w^* - w^* \text{continuous} \}$$

= $\{ m \in \mathcal{A}^{**} : n \Box m = n \Diamond m \text{ for all } n \in A^{**} \}.$

A is Arens regular if and only if $Z_1(\mathcal{A}^{**}) = A^{**}$ if and only $Z_2(\mathcal{A}^{**}) = A^{**}$.

A is said to be left (resp. right) strongly irregular $Z_1(\mathcal{A}^{**}) = A$ (resp. $Z_1(\mathcal{A}^{**}) = A$).

Example

- (Lau and Losert 1988; Neufang 2004)
 L¹(G) is strongly Arens irregular.
- (Losert, Neufang, Pachl and Steprvans 201?1?2?3)
 M(G) is strongly irregular.

Factorization Property and Mazur property

- Property F_κ: The dual A* of a Banach algebra A has the property F_κ (κ is a cardinal number) if for every net {h_α}_{α∈I} in Ball(A*) with |I| = κ, there exist a family {H_α}_{α∈I} in Ball(A**) and one single functional h ∈ A* such that h_α = H_α · h (α ∈ I).
- Property M_κ: A Banach space X has the property M_κ if every w^{*} - κ-continuous element of X^{**} is actually w^{*}-continuous.

Theorem ([, Neufang 2005])

Let \mathcal{A} be a Banach algebra satisfying M_{κ} and whose dual \mathcal{A}^* has the property F_{κ} , for some $\kappa \geq \aleph_0$. Then \mathcal{A} is left strongly Arens irregular, i.e. $Z_1(\mathcal{A}^{**}) = \mathcal{A}$. If in addition \mathcal{A} has also a BAI then $Z_1((\mathcal{A}^* \cdot \mathcal{A})^*) = RM(\mathcal{A})$.

Corollary ([, Lau 1986; Lau and Losert 1988; Lau and Ulger 1996; Neufang 2005])

 $L^{1}(G)$ is strongly Arens irregular and $Z_{1}(LUC(G)^{*}) = M(G)$.

Corollary ([, Raisi Toosi; Kamyabi Gol and Ebrahimi Vishki 2012])

 $L^1(G/H)$ is strongly Arens irregular, for the homogenous space G/H, where H is a compact subgroup of G.

A Hopf von Neumann Algebra is a pair (\mathfrak{M}, Γ) where \mathfrak{M} is a von Neumann algebra and $\Gamma : \mathfrak{M} \to \mathfrak{M} \bar{\otimes} \mathfrak{M}$ is a normal, unital *-homomorphism satisfying $(\iota \otimes \Gamma)\Gamma = (\Gamma \otimes \iota)\Gamma$.

Let (\mathfrak{M}, Γ) be a Hopf von Neumann algebra then the unique predual \mathfrak{M}_* of \mathfrak{M} turns into a Banach algebra under the product * given by:

 $(\omega * \omega')(x) = (\omega \otimes \omega')(\Gamma(x)).$

A Hopf von Neumann algebra (\mathfrak{M}, Γ) equipped with a pair (φ, ψ) where φ and ψ are a left and right invariant Haar weight on \mathfrak{M} , respectively, is called a locally compact quantum group.

Example

For a locally compact group G define

• $\mathbb{G}_a = (\mathcal{L}^{\infty}(G), \Gamma_a)$ is a locally compact quantum group, where $\Gamma_a(f)(s, t) = f(st)$ and φ_a and ψ_a are the left and right Haar integrals on $\mathcal{L}^{\infty}(G)$, respectively.

Q G_s = (VN(G), Γ_s) is a locally compact quantum group; where Γ_s : VN(G) → VN(G) ⊗VN(G), λ(t) → λ(t) ⊗ λ(t); with λ is the left regular representation of G on L²(G) and φ_s = ψ_s is the Plancherel weight on VN(G).

Notation

For a locally compact quantum group $\mathbb{G} = (\mathfrak{M}, \Gamma)$ we write:

- $L^{\infty}(\mathbb{G})$ for \mathfrak{M} .
- ${\rm 2} \ L^1(\mathbb{G}) \ \text{for} \ \mathfrak{M}_*.$
- $L^2(\mathbb{G})$ for H.
- LUC(\mathbb{G}) for $L^{\infty}(\mathbb{G}) \cdot L^{1}(\mathbb{G})$.
- WAP(\mathbb{G}) for WAP($L^1(\mathbb{G})$).

Example

For a locally compact group G

- $L^{\infty}(\mathbb{G}_s) = VN(G).$
- $2 L^1(\mathbb{G}_s) = A(G).$
- $IUC(\mathbb{G}_s) = UCB(\hat{G}).$

Theorem ([, Ramezanpour and Ebrahimi Vishki 2009])

For a co-amenable locally compact quantum group \mathbb{G} , $Z_1(LUC(\mathbb{G})^*) = M(\mathbb{G})$ and $LUC(\mathbb{G}) = WAP(\mathbb{G})$ if and only if \mathbb{G} is compact.

Example ([, Losert 2003])

Let G be either \mathbb{F}_2 or SU_3 then $Z_1(UCB(\hat{G})^*) \neq B(G)$ or equivalently $Z_1(LUC(\mathbb{G}_s)^*) \neq M(\mathbb{G}_s)$.

- Let A be a Banach algebra and X be a Banach A−module. A bounded linear operator D : A → X is said to be a derivation if D(ab) = D(a) · b + a · D(b).
- For $x \in \mathcal{X}$ the mapping $\delta_x : \mathcal{A} \to \mathcal{X}$ defined by $\delta_x(a) = ax xa$ is called an inner derivation.
- If H¹(A, X) = the first cohomological group of A with coefficients in X.

Amenability and Weak amenability

Definition

A Banach algebra \mathcal{A} is said to be

- amenable if $H^1(\mathcal{A}, \mathcal{X}^*) = \{0\}$, for every Banach \mathcal{A} -module X.
- weakly amenable if $H^1(\mathcal{A}, \mathcal{A}^*) = \{0\}$.
- *n*-weakly amenable if $H^1(\mathcal{A}, \mathcal{A}^{(n)}) = \{0\}$.

Example

- (Johnson 1971)
 L¹(G) is amenable if and only G is amenable.
- (Dales, Ghahramani and Helemskii 2002) M(G) is amenable if and only G is amenable and discrete + M(G) is weakly amenable if and only G is discrete.
- (Johnson 1991; Ghahramani and Despic 1998) L¹(G) is always weakly amenable.

Question :

Does n-weakly amenability of \mathcal{A}^{**} force \mathcal{A} to be n-weakly amenable?

→ <

Answer: (Ebrahimi Vishki and Barootkoob 2011) YES, for n ≥ 2.

Question 1:

Does weakly amenability of \mathcal{A}^{**} force \mathcal{A} to be weakly amenable?

Question 1':

Is weakly amenability of (\mathcal{A}^{**},\Box) equivalent to the weakly amenability of $(\mathcal{A}^{**},\Diamond)?$

Question 2:

Let \mathcal{A} be a unital dual Banach algebra and let \mathcal{I} be a norm closed weak^{*}-dense ideal of \mathcal{A} with a bounded approximate identity. Does the strong irregularity of \mathcal{I} imply the strong irregularity of \mathcal{A}

Dedicated to Professor M. A. Pourabdollah

