From Riemman's Integral to the Amenability of Banach algebras

H.R. Ebrahimi Vishki

Ferdowsi University of Mashhad

(26th of Azar, 1391) Sabzevar

Riemman's Integral on $\mathbb R$

The main property of the Riemman's integral on $\mathbb R$ is the invariant property.

$$\int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} f(a+x) dx, \quad (a \in \mathbb{R}).$$

Define $I: C(\mathbb{R}) \longrightarrow C$ by $I(f) = \int_{\mathbb{R}} f(x) \, dx$ then I is a linear functional satisfying

- $I(L_a f) = I(f), (a \in \mathbb{R}), \text{ where } L_a(f)(x) = f(a+x).$
- **2** $||I|| \neq 1$,
- **3** $I(1) \neq 1$.

Invariant mean on $(\mathbb{R},+)$

For a fixed $t \in \mathbb{R}$, define $M_t : C(\mathbb{R}) \longrightarrow \mathbb{C}$ by

$$M_t(f) = \frac{1}{2t} \int_{-t}^{t} f(x) dx$$

then every w^* -cluster point M of $\{M_t\}$ satisfies

- $M(L_a f) = M(f), \quad (a \in \mathbb{R},)$
- ||M|| = 1 = M(1); or equivalently,

$$\inf_{a\in\mathbb{R}} f(a) \le M(f) \le \sup_{a\in\mathbb{R}} f(a), \quad (f \in C(\mathbb{R})_r).$$

Invariant mean on $(\mathbb{Z},+)$

For a fixed $n \in \mathbb{Z}$, define $M_n : \ell^{\infty}(\mathbb{Z}) \longrightarrow \mathbb{C}$ by

$$M_n(f) = \frac{1}{2n} \sum_{k=-n}^{n} f(k)$$

then every w^* -cluster point M of $\{M_n\}$ satisfies

- ||M|| = 1 = M(1); or equivalently,

$$\inf_{m\in\mathbb{Z}} f(m) \le M(f) \le \sup_{m\in\mathbb{Z}} f(m), \quad (f \in \ell^{\infty}(\mathbb{Z})_r).$$

Invariant mean on (\mathbb{T},\cdot)

Define $M: C(\mathbb{T}) \longrightarrow \mathbb{C}$ by

$$M(f) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f(z)}{z} dz$$

then M satisfies

- ||M|| = 1 = M(1).

Topological group

A group $\ensuremath{\mathbb{G}}$ equipped with a Hausdorff topology is called a topological group if

$$(x,y)\mapsto xy^{-1}:\mathbb{G}\times\mathbb{G}\to\mathbb{G}$$

is jointly continuous. The basic examples are $(\mathbb{R},+),(\mathbb{Z},+),(\mathbb{R}\setminus 0,\cdot)$ and $(\mathbb{T},\cdot).$

Haar measure

Every locally compact topological group \mathbb{G} enjoys a unique positive left invariant Radon measure λ .

- **1** $(\mathbb{R},+)$: $\lambda=$ the Lebesgue measure.
- **2** $(\mathbb{Z},+)$: $\lambda=$ the counting measure.

Invariant mean

Let $\mathbb G$ be a locally compact topological group. A linear functional $M: C(\mathbb G) \longrightarrow \mathbb C$ is called an invariant mean of $\mathbb G$ if

- ||M|| = 1 = M(1); or equivalently,

$$\inf_{a\in\mathbb{G}} f(a) \le M(f) \le \sup_{a\in\mathbb{G}} f(a), \quad (f \in C(\mathbb{G})_r).$$

 \mathbb{G} is said to be amenable if it enjoys an invariant mean.

Amenable Group

- Every abelian group is amenable.
- 2 Every compact group is amenable.
- 3 Every solvable group is amenable.
- \mathbb{F}_2 =the free group of two generator is not amenable.
- \bullet $GL_n(\mathbb{C})$ and $SL_n(\mathbb{C})$, $(n \geq 2)$, are not amenable.

Towards Amenable Banach Algebras

The Group Algebra $L^1(\mathbb{G})$

For a locally compact group $\mathbb G$ equipped with the left Haar measure λ ,

$$L^1(\mathbb{G}) := \{ f \colon f \colon \mathbb{G} \to \mathbb{C} \text{ is integrable} \}$$

is a Banach algebra under the usual vector space operations, the norm $\|f\|_1=\int_{\mathbb{G}}|f|\,d\lambda$ and the multiplication

$$f * g(x) = \int_{\mathbb{G}} f(y)g(y^{-1}x)d\lambda(y).$$

Derivations

- Let A be a Banach algebra and X be a Banach A-module. A bounded linear operator $D:A\to X$ is said to be a derivation if $D(ab)=D(a)\cdot b+a\cdot D(b)$.
- ② For $x \in X$ the mapping $\delta_x : A \to X$ defined by $\delta_x(a) = ax xa$ is called an inner derivation.
- **3** $H^1(A, X)$ = the first cohomological group of A with coefficients in X.

Amenable Banach algebra

A Banach algebra A is said to be amenable if $H^1(A,X^*)=\{0\},$ for every Banach A-module X. Equivalently, Every derivation $D:A\to X^*$ is inner, for every Banach A-module X.

Johnson Celebrated Theorem, 1972

A locally compact group $\mathbb G$ is amenable if and only if the Banach algebra $L^1(\mathbb G)$ is amenable.

Examples

- Every commutative C^* -algebra is amenable.
- ② K(H), the C^* -algebra of compact operators on H, is amenable.
- **1** The disc algebra $\mathcal{A}(\mathbb{D})$ is not amenable.
- The measure algebra $M(\mathbb{G})$ is amenable if and only if \mathbb{G} is amenable and discrete.

Towards New Concepts

- Weak Amenability
- Super Amenability
- Sential Amenability
- Approximate Amenability

Amenability of A^{**}

The second dual A^{**} of a Banach algebra A, equipped with each Arens products \square and \lozenge is a Banach algebra.

Question:

Is amenability of $(\mathcal{A}^{**}, \square)$ equivalent to the amenability of $(\mathcal{A}^{**}, \lozenge)$?

Dedicated to Professor M. A. Pourabdollah

