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35 Abstract

36 This study presents a hybrid approach for the estimation of real-time water demand multipliers using the Kalman filter 
37 (KF) and extended Kalman filter (EKF). Multiple Linear Regression (MLR) and Nonlinear Regression (NLR) models 
38 were applied to predict water demand multipliers at each time step with historical flow data. The estimation performance 
39 of EKF is highly affected by the state noise covariance matrix (Q) and the measurement noise covariance matrix (R). 
40 An inappropriate value of Q and R significantly degrades the EKF’s performance and makes the filter diverge. So, the 
41 particle swarm optimization algorithm (PSO) was used to tune the noise covariance matrices Q and R at each time step 
42 of EKF. Then the optimal values of noise covariance matrices are inserted in the real-time water demand multiplier 
43 estimation process. To find the optimal values of Q and R, the mean absolute percentage error (MAPE) between 
44 measured and simulated pressure was minimized. The proposed method was evaluated in Net1 and Net3 benchmark 
45 networks. The root means square error (RMSE) of EKF-PSO estimated water demand multiplier for Net1 and Net3 were 
46 0.063 and 0.198, respectively. The simulation results indicated that the EKF-PSO algorithm was more accurate than the 
47 conventional EKF algorithm. Moreover, the KF-PSO performed poorly when dealing with nonlinear hydraulic systems. 

48 Keywords: Demand multiplier, PSO, Online Calibration, Water Distribution Networks, EPANET

49

50

51

52

53

54

55

56

57 1. Introduction

58

59 Hydraulic analysis models are widely used by water utilities and others who are involved in the analysis, 
60 design, operation, and maintenance of water distribution networks (WDNs). The estimation of water demand 
61 patterns to achieve the optimal operation of water distribution networks is crucial. (Abu-Mahfouz et al., 2019). 
62 Estimation of water demand patterns is one of the critical steps in the planning and design of water distribution 
63 systems. Due to economic limitations, it is practically impossible to measure real-time nodal demand for all 
64 water consumers (Zhao et al., 2018), but the monitoring data (e.g., measured pressure data from Supervisory 
65 Control and Data Acquisition or SCADA) and water distribution model (EPANET) can be assimilated 
66 simultaneously to give a real-time water demand pattern. Generally, the data assimilation (DA) technique 
67 updates the model states or parameters using real-time observations.

68 Data assimilation is widely used in many subjects, including electric power systems (Blood et al., 2008; 
69 Netto et al., 2016), petroleum engineering (Kang et al., 2017), prediction of soil moisture and temperature 
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70 (Liu et al., 2010; Yu et al., 2014), estimation of soil hydraulic parameters (Liu et al., 2021), prediction of 
71 groundwater contaminant concentration (Assumaning and Chang, 2016), river water temperature (Rajesh and 
72 Rehana 2021), river flood forecasting (Li et al., 2014), management of water resources (Kurtz et al., 2017), 
73 hydrology (Wang, 2009), and meteorological sciences (Pelosi et al., 2017).

74 Several studies have integrated online measurements into hydraulic state estimation models. For example, 
75 Preis et al. (2011) employed genetic algorithms (GA) to update the predictions of the water demand multiplier 
76 based on online measurements. Nasseri et al (2012) proposed a hybrid model that combines the Extended 
77 Kalman Filter (EKF) and Genetic Programming (GP) for forecasting water demand. Vassiljev and Koppel 
78 (2015) applied the Levenberg-Marquardt algorithm (LMA) and the Genetic algorithm (GA) to estimate real-
79 time demands in a water distribution system. Their results demonstrated that the LMA works much faster than 
80 the GA. Do et al. (2016) used the genetic algorithm (GA) to calibrate the predicted demand multiplier factors. 
81 Their results showed that GA has a high computational cost. Salloom et al. (2021) proposed a novel deep 
82 neural network for real-time water demand forecasting. This model depends on water demand history, making 
83 it susceptible to abnormalities in water demand. Zhang et al. (2023) proposed a deep fuzzy mapping 
84 nonparametric model (DFM) to estimate real-time nodal demands in water distribution systems. The DFM 
85 approach includes a unique analytical solution derived through mathematical theory. The results showed that 
86 this method is more accurate and computationally efficient compared to traditional calibration methods. 
87 Although the capabilities of artificial neural networks (ANNs) can be improved using larger training datasets, 
88 it would be computationally expensive and impracticable, especially for large WDSs (Garzón et al., 2022). 
89 One practical advantage of data assimilation models is that there is no need for historical data, so it is 
90 appropriate for real-time forecasting problems.

91 Some researchers have studied the issue of near-real-time demand estimation using data assimilation 
92 methodologies based on the Kalman filter. For example, Shang et al. (2006) used an extended Kalman filter 
93 (EKF), a predictor-corrector method, to estimate water demand patterns. In this paper, water demand patterns 
94 were predicted by a seasonal autoregressive integrated moving average (ARIMA) time-series model. Kang 
95 and Lansey (2009) applied two real-time methods for the demand estimation problem, the Kalman filter (KF) 
96 and the tracking state estimator (TSE). The results showed that KF performed poorly in a looped network. 
97 They also stated that pipe flow data are significantly more effective than pressure measurements in estimating 
98 reliable demands. Okeya et al. (2014b) applied DA methods to estimate unmetered domestic demands of a 
99 WDN and demonstrated that the Ensemble Kalman Filter (EnKF) performed well compared to KF in terms 

100 of updating water demand model parameters. However, KF is less time-consuming than EnKF. Jung et al. 
101 (2016) proposed an optimal node grouping model to improve real-time demand estimation. They linked the 
102 Kalman filter-based demand estimation and a genetic algorithm for node group optimization. According to 
103 their results, more pipe flow sensors can enhance demand estimation accuracy. Do et al. (2017) employed the 
104 particle filter method for the estimation of near-real-time demand multipliers. In their presented method, the 
105 nodal water demand is predicted by a nonlinear model, and the prediction is corrected by real-time pressure 
106 measurements. Zhou et al. (2018) proposed a self-adaptive method based on KF for dual calibration of pipe 
107 roughness and nodal demands. They aimed to assimilate online pressure data from pressure sensors in a water 
108 hydraulic model (EPANET) to estimate the real-time water demand. In most nonlinear systems, the EnKF is 
109 favored over than EKF. Nonetheless, the EKF is used to increase the effectiveness of the estimation because 
110 it is brief and explicit (Chen et al., 2019). Compared to other data assimilation methods, EKF is straightforward 
111 to implement, but it suffers from the costly calculation of state and measurement noise covariance matrices 
112 (Sun et al., 2016; Chen et al., 2021). One of the main challenges of the EKF method is finding the optimal values 
113 of tuning parameters such as covariance matrices Q and R of state and measurement noises. This issue has 
114 rarely been addressed in the literature. 

115 The optimal performance of the Kalman filter depends on the quality of prior assumptions of the process 
116 noise covariance matrix, Q and the measurements noise covariance matrix, R (Mohamed and Schwarz, 1999). 



4

117 In the EKF process, the values of Q and R matrices have a significant impact on the convergence rate and 
118 estimation error (Wang and Mu, 2019). The improper value of Q and R may significantly demote the EKF’s 
119 performance and even make the filter diverge (Akhlaghi et al., 2017). If R and/or Q are too small in the 
120 estimation process, the uncertainty around the true value will reduce and a biased solution will be made. If R 
121 and/or Q are selected too large, the filter may diverge (Mohamed and Schwarz, 1999). For instance, when R 
122 rises, Kalman gain reduces, which makes a diverging estimate (Maheshwari and Nageswari, 2022). So the 
123 noise covariance matrices Q and R should be obtained by taking into account the stochastic properties of the 
124 corresponding noises (Laamari et al., 2015); but, more often these are unknown, in most cases, the covariance 
125 matrices are employed as free tuning parameters. In several cases, these matrices were adjusted by trial and 
126 error approaches which suffer from large time consumption. To overcome this problem, evolutionary 
127 algorithms were used to find the optimal values of the two matrices Q and R (Shi et al., 2002).  Kaba and 
128 Kıyak (2020) proposed an evolutionary algorithm based on the Kalman filter (EA–KF) for tuning the noise 
129 covariance matrices to simulate quadrotors. Rossi et al. (2022) presented a hybrid method that combines an 
130 extended Kalman filter (EKF) with a genetic algorithm for the estimation of Li-Ion cell parameters. They 
131 tuned the covariance matrices of the EKF by using genetic algorithms (GA). Jatoth and Kumar (2009) 
132 investigated the tuning of Unscented Kalman filters (UKF) using Particle Swarm Optimization (PSO) and 
133 Bacterial Foraging Optimization (BFO). Their result demonstrated that UKF-PSO is superior to UKF-BFO.

134 In the present study, the particle swarm optimization (PSO) method is combined with KF and EKF to 
135 estimate the water demand pattern based on measured pressure values. In other words, to optimize the process 
136 noise covariance Q and observation noise covariance R, an evolutionary optimization algorithm is used to 
137 reduce the estimation error of KF and EKF. The time interval between two successive measurements in the 
138 water demand estimation problem allows us to run PSO in each estimation step and achieve optimal values of 
139 Q and R. This approach in water demand estimation is used for the first time in this paper. Therefore, this 
140 investigation aims to highlight the impact of a hybrid approach (EKF-PSO) to estimate real-time water demand 
141 multipliers in WDNs.

142

143 2. Methodology

144

145 The proposed approach was established in two steps. First, KF/EKF was used and the covariance matrices 
146 of state noise and measurement noise were optimized by particle swarm optimization (PSO) at each time step 
147 of the EKF. Then the optimal values of these covariance matrices were applied in a real-time water demand 
148 multiplier estimation loop. 

149 The proposed approach was evaluated in two modified benchmark networks (i.e., Net1 and Net3). A 
150 detailed description of the KF and EKF methodologies that are applied for water demand-state estimation in 
151 WDN is presented first.

152

153 2.1. Water Demand Forecasting Model (WDFM)

154

155 WDFM is a vital part of the real-time hydraulic model. A variety of methods has been used to forecast 
156 water demand patterns including regression analysis. 
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157 In this study, the WDFMs are based on Multiple Linear Regression (MLR) and Nonlinear Regression 
158 (NLR). MLR models are relatively simple to implement. Nevertheless, they are limited to the high-
159 nonlinearity system. A multiple linear regression equation is defined as follows [Montgomery et al., 2021]:

160

161
1 1 6 6 12 12 18 18 24 24 30 30 36 36 42 42 48 48    (1)

t t i t i

t t t t t t t t t t t t t t t t t t t

d w d
d w d w d w d w d w d w d w d w d w d

 
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

        


162 where and  are the water demand multiplier from time step and  respectively and is the td t id  t t i t iw

163 associated weight for  (e.g., t-6 indicates 6 hours before the current time when the time step is 1 hour). t id 

164 Additionally, a nonlinear regression model (NLR) was used to linearize the complex system which is essential 
165 for EKF. Nonlinear regression is a form of regression to find nonlinear models between a dependent variable 
166 and a set of independent variables. The nonlinear equation was considered as follows:

167

168 6 8 10 16 182 4 12 14
1 1 3 6 5 12 7 18 9 24 11 30 13 36 15 42 17 48                                        (2)t t t t t t t t t td d d d d d d d d d                               

169 where are the parameters for the nonlinear regression model. All of the regression models were trained 1 2 18, ,...,  
170 using 80 percent of the total data and then tested using the rest of 20 percent.

171

172 2.2 WDN hydraulics equation

173

174 The steady-state hydraulic relationships in WDN can be presented by the nodal flow continuity and pipe 
175 head loss equations (Bhave and Gupta, 2006). For steady incompressible flow, for each node, the algebraic 
176 sum of inflow and outflow must be zero. Thus,

177

178
, 1

0                                                                 (3)
N

ij i
i j

Q q


 

179 in which is nodal demand, is pipe flows and N is the number of nodes. Pipe head loss relationship for iq i jQ
180 all pipes in the network can be expressed as follows,

181

182         (4)n
f i j ij ijh He He R Q  

183 where  is the head loss in a pipe;  are nodal head for node i and node j, the exponent n is equal to fh ,i jHe He
184 1.852 for Hazen–Williams formula and  is resistance constant of pipe that obtained as follows,ijR

185
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186 1.852 4.87

10.68                     (5)
HW

LR
C D






187 where is the Hazen-Williams coefficient, is pipe length in meters, and  is pipe diameter in meters. HWC L D
188 Eq. (4) can also be expressed as:

189

190

1

=                                                           (6)
n

i j
ij

ij

He He
Q

R
 
  
 

191 Using Equation (6), Equation (3) can be rewritten as:

192

193

1

, 1
0                                               (7)

nN
i j

j
i j ij

He He
q

R

 
   

 


194 The relation between the demand pattern and nodal head can be obtained by substituting 
195 in Eq. (7).

jj base patternq q q 

196

197 2.3. Evolutionary algorithm (EA)

198

199 Evolutionary algorithms (EAs) are stochastic optimization techniques and population-based that mimic 
200 natural evolution. A lot of swarm intelligence optimization algorithms, such as Particle Swarm Optimization 
201 (PSO) (Eberhart and Kennedy, 1995), Ant Colony Optimization (ACO) (Dorigo et al., 1996), Brain Storm 
202 Optimization (BSO) (Shi, 2011), Invasive Weed Optimization (IWO) (Mehrabian and Lucas, 2006), 
203 Imperialist Competitive Algorithm (ICA) (Atashpaz Gargari and Lucas, 2007), Bacterial Foraging 
204 Optimization (BFO) (Passino, 2012), Grey Wolf Optimization (GWO) (Mirjalili et al., 2014), Orthogonal 
205 Learning framework for Brain Storm Optimization (OLBSO) (Ma et al., 2020), have been proposed to tackle 
206 complex optimization problems.

207 In the last decade, evolutionary algorithms (EAs) have been applied for the optimization of WDNs (Jung 
208 and Karney, 2008; Dini and Tabesh, 2014; Do et al, 2016). Attarzadeh et al. (2022) and Attarzadeh et al. (2023) 
209 applied six evolutionary algorithms (EAs) to calibrate the pipe roughness coefficient and water demand 
210 coefficient in water distribution systems. These EAs include the genetic algorithm (GA), the particle swarm 
211 optimization (PSO), the Gray Wolf Optimization algorithm (GWO), the invasive weed optimization (IWO), 
212 the Imperialist Competitive Algorithm (ICA), and the Simulated Annealing (SA). The results showed that all 
213 six algorithms can decrease the difference between observed and simulated pressure and flow data after 
214 calibration. The results obtained for the Apulian network indicate that the performance of the PSO is superior 
215 in terms of accuracy, the number of objective function evaluations (NFE), run time, and convergence rate.

216  PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic 
217 techniques, because of its simplicity and ability to be used in a wide range of applications. Compared to other 
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218 heuristic algorithms, PSO does not need to learn many parameters. It is suitable for multidimensional 
219 engineering problems and is capable of finding optimal solutions quickly (Sun et al., 2021; Song and Rahmat-
220 Samii, 2021). Yarat et al. (2021) also reported its capability in various application fields. In this study, the 
221 PSO is implemented to tune the parameters of the Extended Kalman Filter to improve its performance.

222

223 2.3.1. Particle Swarm Optimization (PSO) algorithm

224

225 The PSO is a population-based optimization technique first proposed by Eberhart and Kennedy (1995). 
226 This algorithm is inspired by the behavior of a flock of birds or fish and applies swarm intelligence to find 
227 optimal solutions. The process starts with a set of particles ( ). In PSO, each bird is represented by a particle, 0P
228 and a collection of birds is identified as a swarm. Each particle has a fitness value, which is based on the 
229 objective function value. In each iteration, the particles move from their current position ( ) to their new X t

i

230 position ( ) according to Eq. (8):1t
iX 

231

232 1 1X                                                                   (8)t t t
i i iX V  

233 The particle velocity ( ) can be calculated using the following formula (Eq. (9)):1t
iV 

234

235 1
1 1 2 2(Pbest X ) (Gbest X )                                                    (9)t t t t

i i i i i iV wV c r c r     

236 where  is the best particle position, is the global best particle position,  and  are Pbest i Gbest i 1 2c  2 2c 
237 acceleration constants which were found by trial and error that works well for almost all applications,  and 1r
238  are random numbers between 0 and 1 (Babu and Vijayalakshmi, 2012; Moghaddam et al., 2018), is the 2r w
239 inertia weight that represents the exploration and exploitation ability of the algorithm for which the allowable 
240 value changes in the range of 0.4 to 0.9. In this algorithm, a reduction coefficient called  is used to wdamp

241 increase the exploration characteristics in the final steps (see Eq. 10). The value of  factor considered in dampw
242 this paper is 0.998 (Zaji and Bonakdari, 2014; Moghaddam et al., 2018).

243

244 1=                                                               (10)t t
dampw w w 

245

246 2.4. Objective Function

247

248 In this study, the covariance matrices of state noise and measurement noise are modified simultaneously to 
249 achieve the optimal solution. The objective function of the model is to minimize the mean absolute percentage 
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250 error (MAPE) between the measured and estimated nodal head values. The objective function is given as Eq. 
251 (11): 

252

253
1

1 100                                                                          (11)
n

obs sim

i obs

He HeMAPE
n He


 

254 where  is the number of nodal head measurement locations in the network,  is the observed nodal head n obsHe
255 (m), and is the estimated nodal head (m).simHe

256

257 2.5. Data assimilation

258

259 The Kalman Filter (KF) is an optimal recursive algorithm to estimate the state of a process which was 
260 introduced and developed by Kalman (1960). The general framework of the KF consists mainly of two steps 
261 including forward prediction and measurement correction. In the state equation, the priori state estimation of 
262 the water demand multiplier  is computed as below:tx 

263

264 1                    (12)t t tx Ax  
 

265 where  is the state vector at time ;  is a transition matrix that converts the state vector from time 1tx 
 1t  A 1t 

266 to the next time ;  is the error vector and the superscripts – and + represent the predicted variable and the t t
267 updated variable, respectively. The prior error covariance matrix at time t has been shown in Eq. (13). tP

268

269 1           (13)T
t t t tP AP A Q 

 

270 where  is the posterior error covariance at time . In the simulation, the error covariance matrix  1tP
 1t  0P

271 of EKF is initially set as a unit matrix (Shi et al., 2002).  is the state noise covariance which should be Q
272 tuned. If the number of state estimation (water demand multiplier) is equal to , the value of measurement n
273 noise covariance matrix will be , where  is the unit matrix with dimension  and  is the ini nQ Q I  nI n n iniQ
274 initial value for  . The posterior state estimate of the water demand multiplier is given by:Q

275

276 ( )                                           (14)t t t t t tx x K z H x    



9

277 where  is the measurement operator matrix which converts the model states (i.e., demands) to the WDN tH
278 observations (i.e., pressure); is measurement variable (i.e., pressure);  is Kalman gain matrix at time step tz tK
279 calculated with Eq. (15).t

280

281 1( )                                                                             (15)T T
t t t t t tK P H H P H R   

282 where  is the transposed measurement operator, and  is the covariance matrix of measurement noise. If T
tH R

283 the number of pressure measurement points is equal to , the value of measurement noise covariance matrix m
284 will be , where  is the unit matrix with dimension  and  is the initial value for  . The ini mR R I  mI m m iniR R
285 posterior error covariance matrix is calculated as (Sen et al., 2004):

286

287             (16)t t t t tP P K H P   

288 According to Eq. (7) the relationship between the water demand multiplier and the nodal head is as 
289 follows:

290

291

1

, 1

1 0                                        (17)
j

nN
i j

pattern
i jbase ij

He He
F q

q R

 
    

 


292 where the measurement operator matrix,  can be obtained by inverting the Jacobian matrix  as follows:tH J

293

294

1 1 1

1 2

2 2 2

1 2

1 2

J

J

J J J

J

F F F
He He He
F F F

He He HeJ

F F F
He He He

   
    

   
     
 
    
    





   



 (18)

295   1J                                           (19)t J J
H 




296 In the extended Kalman Filter (EKF), the estimated state is defined as:

297
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298 1( )                                                       (20)t t tx f x  
 

299 where  is the nonlinear function of and the linearized system dynamics can be written as:f 1tx 


300

301 1                   (21)t t tx Ax  
 

302 is a nonlinear model operator of the partial differential function which is written as follows:A

303

304

305

1 1 1

1 2

2 2 2

1 2

1 2

n

n

m m m

n

f f f
x x x
f f f
x x xA

f f f
x x x

   
    

   
     
 
    
    





   



         (22)

306

307 2.6. Proposed Framework

308

309 As discussed before, the parameters to be modified are the noise covariance matrices Q and R. To improve 
310 the performance of EKF, the PSO algorithm was used to optimize these parameters. The framework of the 
311 EKF-PSO is illustrated in Fig.1. In the first step, the initial state of the system ( ), the covariance of the 0x 

312 estimation error ( ), the process noise covariance Q and observation noise covariance R are manually 0P 

313 chosen to provide good performance. Then water demand forecasting models are developed to predict water 
314 demand multipliers based on historical flow data. These models are used as an estimate of water demand 
315 multipliers in the previous time step. In the second step, the state vector ( ) and the covariance error ( ) tx 

tP

316 are predicted. Then, Kalman gain is obtained by considering the measurement operator matrix  which tH
317 relates the true model state to the observations. After that, the error covariance matrix ( ) is computed. When tP

318 the SCADA measurements of the current time step ( ) or nodal head measurements are available, the state tz
319 estimation vector ( ) is corrected. So the EKF method gives an estimation of the water demand multipliers tx 

320 by using measured nodal heads and the water demand forecasting model. Then the EPANET is executed to 
321 simulate the nodal head. The MAPE criterion is calculated as an objective function between the measured and 
322 simulated nodal head. If the value of MAPE is not acceptable, the covariance matrices Q and R are optimized 
323 by the PSO algorithm. The new updated Q and R are then used for the adaptation of the EKF for the next 
324 iteration until the criterion (number of iterations) is established. This step works at each time step of the EKF. 
325 In the third step, obtained values Q and R from the previous step are inserted into EKF to estimate the real-
326 time water demand multipliers. 
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327

328

Fig. 1. Block chart of the Extended Kalman Filter tuning procedure based on PSO 

329
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Fig. 2. The flowchart of the EKF-PSO algorithm

330 The data assimilation algorithms were implemented using the EPANET toolkit in MATLAB version 
331 R2018b. These algorithms were evaluated in two modified examples of the EPANET software, i.e., the Net1 
332 and Net3 networks.

333

334 2.7. Case study 1: Net1

335

336 The features of the first case study were illustrated in Fig. 3 (Chu et al., 2021). This network has 8 nodes, 
337 11 pipes, and 1 reservoir. Three hypothetical pressure gages were considered in Nodes 3, 5, and 7. A single 
338 demand pattern was considered as an actual pattern for all nodal demands that varies every 15 min (see Fig. 
339 4). To create noisy measured pressure data, the network model was run with EPANET using the assumed 
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340 demand pattern, and pressure values in these nodes were obtained. Then a random noise with a normal 
341 distribution ( = 0,  = 0.1) was added to the simulated pressure values. 

342

Fig. 3. Schematic view of Net1
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345

346

347 2.8. Case study 2- Net3 

348

349 To assess the performance of the proposed method in a WDN with multiple demand patterns, the Net3 
350 network was selected (see Fig. 5). This network consists of 92 nodes, 3 tanks, 2 reservoirs, 117 pipes, and 2 
351 pumps. The nodal demands were categorized into four groups based on the magnitudes of the base demand: 
352 nodes with base demands less than 10 L/s are DMP11, nodes with base demands from 10 L/s to 20 L/s are 
353 DMP2, nodes with base demands from 20 L/s to 30 L/s are DMP3 and nodes with base demands larger than 
354 30 L/s are DMP4. The nodal pressure has been reported in 12 nodes and three measured tank levels were 
355 available (see Fig. 6). According to Do et al. (2017), four actual demand patterns have been obtained by adding 
356 a random noise with a normal distribution ( = 0,  = 0.15). A set of pressure measurement data are simulated 
357 by EPANET for 48 hours. Then a random error (∆measurement = ±1.0 m.) is added to provide noisy nodal 
358 pressure.

359

Fig. 5. Schematic view of Net 3

1 Demand Multiplier Pattern (DMP)
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361

362 2.9. Model performance

363

364 The proposed models were evaluated with five different performance indices, including coefficient of 
365 determination (R2), mean absolute percentage error (MAPE), root mean square error (RMSE), normalized 
366 root mean squared error (NRMSE), and Nash-Sutcliffe efficiency (NSE), which are calculated as follows 
367 (Chen et al.,2019):

368
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374 where n represents the number of data, is the data set average, and  denote the predicted and the y ˆ iy iy

375 observed water demand pattern, respectively. The NSE value ranges from -∞ to 1. The NSE< 0 implies that 
376 the mean observed value is better than the predicted value.

377

378 3. Results and Discussions

379

380 In this section, the results obtained for each case study are shown and discussed. For all simulations, an 
381 Intel (R) Core (TM) i7-8550U CPU 1.99 GHz processor with 8 GB of RAM on a 64-bit Windows operating 
382 system was used. The water demand forecasting models based on MLR and NLR for both case studies 1 and 
383 2 are presented in Table 1. The predicted demand multipliers and the confidence intervals for both case studies 
384 have been plotted in Fig. 7 and Fig. 8. These figures confirm a good agreement between the actual and 
385 estimated demand patterns by MLR and NLR. However, 26, and 23% of actual demand multipliers are out of 
386 the range of 95 % confidence intervals for MLR and NLR, which shows the better performance of NLR. In 
387 Fig. 8 the forecasted demand multipliers approximately yield a good match with the actual demand multipliers 
388 for four demand patterns over 48 hours.

389

Table 1. Water demand forecasting models for both case studies 1 and 2 

MLR 1 6 12 18 240.178 0.003 0.00015 0.0045 0.82                                       (26)t t t t t td d d d d d        

Net 1 DMP1

NLR 0.035 0.016 0.003 0 9
1 6 12 18 4

.00 1.1 2
2

7             (27)4.589 1.926 8.834 2.641 0.675t t t t t td d d d d d 





     

MLR 1 6 12 18 24

30 36 42 48

0.113 0.036 0.008 0.012 0.029
+0.021 +0.005 0.004 +0.849                            (28)

t t t t t t

t t t t

d d d d d d
d d d d

    

   

    


DMP1

NLR 1 6 12 18 24
2

0.017 0.019 0.013 0.034 0.018

7.10 0.067
0

0.0021 2.222
3 36 42 48+   -0.0000007                            (29)

3.119 2.534 2.025 0.292 0.987

1.261 0.0583 6.777
t t t t t t

t t t t

d d d d d d

d d d d
    


  

  










  



MLR 1 6 12 18 24

30 36 42 48

0.066 0.033 0.014 0.004 0.019
+0.012 +0.022 0.019 +0.908                           (30)

t t t t t t

t t t t

d d d d d d
d d d d

    

   

    


Net 3

DMP2

NLR
0.004 0.003 0.0009

0.0096 0

0.007 0.002
1 6 12 18 24

5.752 25.925
30 36 4

9
2

0
4

. 0 3
8

15.282 15.149   1.081 15.412 17.142

0.0 )541 0.21           13 .8281 5 2  (5. 368
t t t t t t

t t t t

d d d d d d

d d d d
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
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MLR 1 6 12 18 24

30 36 42 48

0.004 0.009 0.005 0.0019 0.0017
+0.0016 +0.0033 0.0077 +0.996                     (32)

t t t t t t

t t t t

d d d d d d
d d d d
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0.00
6

05 0.000

0.006 0.0001
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0.0001
30 3 4

3
2 4
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8

6.1
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99 0.956

57.735 60.243 335.427
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59.186  +                        (33
t t t t t t

t t t t

d d d d d d

d d d d

 
    
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 
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047 0.0 8

0.756   

   (35)

0.015 2.189 3.141 1.247

1.623 0.053 1.922 8.11
t t t t t t

t t t t

d d d d d d

d d d d

 
    

  








 

 

 

390

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Predicted DMP by MLR
Actual DMP
95 % confidence interval

RMSE=0.04
R2=0.97

Time (Hour)

D
em

an
d 

M
ul

tip
lie

r 
Pa

tt
er

n

(a)



18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Predicted DMP by NLR
Actual DMP
95 % confidence interval

RMSE=0.0398
R2=0.975

Time (Hour)

D
em

an
d 

M
ul

tip
lie

r 
Pa

tt
er

n

Fig. 7. Predicted demand patterns for Net 1 using (a) MLR and (b) NLR
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Fig. 8. Four predicted demand patterns for Net 3 using MLR and NLR and their confidence interval

392

393 The values of noise covariance matrices Q and R have an important effect on the KF and EKF 
394 performance. The manually varied covariance matrices Q and R of EKF with their corresponding 
395 performances (MAPE and RMSEs) are presented in Table 2. The manual adjustment of Q and R values is 
396 very time-consuming and improper values of these covariances lead to imprecise estimates (cases 1 and 5 in 
397 Table 2). It is difficult to figure out a relationship between the value of the covariance matrices and the best-
398 simulated demand pattern. Therefore, to achieve the optimal covariance matrices, the PSO algorithm was 
399 applied. The results of KF-PSO and EKF-PSO are shown in Table 3. 

400

Table 2. The EKF performances for different Q and R values 

Network Case Q R MAPE (%) RMSE Qualification

1 1e-8 0.01 12.375 0.196 Very poor

2 1e-6 0.01 11.527 0.179 Poor

3 1e-7 0.001 8.329 0.127 Good

Net 1

4 0.001 0.01 6.15 0.076 Very Good

5 1e-9 1e-8 662.525 2.722 Very poor

6 0.001 0.01 61.876 0.390 Poor

7 0.0001 0.001 51.694 0.34 Good

Net 3

8 1e-6 1e-9 49.891 0.293 Very Good

401

402

403
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Table 3. Comparison of KF-PSO and EKF-PSO results for the optimal R and Q

Network Methods MAPE (%) RMSE NSE Optimization time (s)

KF-PSO 5.945 0.064 0.93 638

Net 1

EKF-PSO 5.927 0.063 0.93 639

KF-PSO 33.869 0.229 0.14 8401

Net 3

EKF-PSO 25.822 0.198 0.3 8538

404

405 As seen in Table 3, the EKF-PSO showed better performance, especially for Net 3. The Nash-Sutcliffe 
406 efficiency coefficient (NSE) is obtained at 0.93 and 0.14 for Net 1 and Net 3 respectively. The MAPE of EKF-
407 PSO (25.02%) is smaller than KF-PSO (30.46%) while the execution time of KF-PSO is less than EKF-PSO. 
408 Since the EKF estimates the nonlinear states, the EKF computational cost is a little more than the KF. For 
409 example, in Net 3, the time required by the EKF algorithm at each step was 38 seconds. For the EKF-PSO 
410 algorithm, the computation time is related to the population of the swarm size and the iterations. In this study, 
411 the swarm size and iteration were set at 30 and 20, respectively, and the computation time of EKF-PSO at 
412 each time step was 177 seconds. Although the hybrid of PSO into EKF slows the computational speed, it 
413 improves the performance of state estimation. Since the time interval between two successive head 
414 measurements was one hour, there was enough time to optimize the covariance matrices in each time step. 
415 This optimization can be implemented even in smaller time steps. Moreover, The optimization time depends 
416 on the complexity of the water distribution network. In most real water distribution networks, the time interval 
417 between two pressure measurements ranges from 30 minutes to one hour. So, there was enough time to 
418 optimize the covariance matrices in each time step. On the other hand, the manual adjustment of EKF needs 
419 great effort and it is not possible to easily find the best values of the covariance matrices by trial and error 
420 method. It is noteworthy that KF-PSO gives an improper result for Net 3 due to larger nonlinearity compared 
421 to Net 1. The setting parameters of the PSO algorithm were selected by sensitivity analysis and they have been 
422 listed in Table 4.

423

Table 4. Particle swarm optimization algorithm parameters.

Iteration 20

Swarm size 30

Inertia weight (0–1) 0.729
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Inertia weight damping ratio 0.99

Personal learning coefficient (0–2) 2

Global learning coefficient (0–2) 2

424
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Fig. 9. Hourly estimated demand pattern curves (a, c, e, g) and Scatter grams (b, d, f, h) for 
estimated demand pattern in Net 3.

425

426 In the right graphs of Fig. 9, the scattergrams of the four estimated demand patterns by all methods were 
427 compared with Do et al. (2017) results. The results demonstrate that the EKF-PSO method provided good 
428 accuracy of demand multiplier pattern estimation compared to the conventional EKF method and KF-PSO 
429 method. On the other hand, the estimated demand patterns derived from the particle filter (PF) method in Do 
430 et al. (2017) deviated significantly from the actual value. The estimated DMPs were derived from all methods 
431 by using a measurement error of ±1.0 m.

432
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Table 5. Error indices for different methods in Net3

Methods EKF EKF-PSO

DMPs 1 2 3 4 Ave.* 1 2 3 4 Ave.

MAPE (%) 20.556 16.53 50 112.47 49.89 17.788 20.145 29.992 35.181 25.759

RMSE 0.157 0.136 0.399 0.480 0.293 0.128 0.14 0.241 0.281 0.198

NRMSE 0.254 0.218 0.436 0.480 0.347 0.207 0.224 0.264 0.281 0.244

NSE -0.590 -0.037 -0.142 0.269 -0.125 -0.045 -0.088 0.583 0.75 0.3

R2 0.35 0.34 0.23 0.31 0.307 0.49 0.36 0.63 0.78 0.565

Methods KF-PSO Do et al. (2017)

DMPs 1 2 3 4 Ave. 1 2 3 4 Ave.

MAPE (%) 19.015 21.025 36.721 58.335 33.774 23.307 23.051 29.449 43.270 29.769

RMSE 0.144 0.142 0.305 0.325 0.229 0.169 0.186 0.277 0.285 0.229

NRMSE 0.233 0.226 0.333 0.325 0.279 0.273 0.297 0.303 0.285 0.29

NSE -0.326 -0.113 0.334 0.665 0.14 -0.821 -0.919 0.448 0.744 -0.137

R2 0.59 0.418 0.447 0.67 0.531 0.19 0.329 0.63 0.76 0.477

433                 *Average

434

435 Table 5 shows the Performance indicators for four methods including the EKF, the KF-PSO, the EKF-PSO, 
436 and the particle filter (PF) used by Do et al. (2017). The root mean square errors between the estimated demand 
437 multipliers and the actual demand multipliers indicate that the EKF-PSO method (RMSE=0.198) obtained 
438 relatively better results than the EKF method (RMSE=0.480), the KF-PSO method (RMSE=0.229) and PF 
439 method (RMSE=0.229). The NSE values for DMP1 and DMP2 (estimated by all models) are negative but for 
440 DMP3 and DMP4 are positive. The DMP3 and DMP4 have a significantly greater mean and variance (Figs. 
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441 9 (e) and 9 (g)). To properly compare the methods' performance, each DMP was separately evaluated, i.e., For 
442 DMP4, the EKF-PSO method has the highest NSE (0.75), R2 (0.78), and the lowest RMSE (0.281). Thus, the 
443 EKF-PSO method was the best. The performances of KF-PSO, EKF, and PF (Do et al., 2017) are all inferior 
444 to the EKF-PSO method. 

445 To validate the correctness of the results, the estimated demand multipliers were substituted as inputs in 
446 EPANET then simulated nodal pressures were compared with the measured value. As depicted in Fig. 10, the 
447 EKF-PSO method can reasonably capture the measured pressure but the curve of the EKF method deviates 
448 significantly from the measured value, especially from t=40 to t=46 hours. On the other hand, the base demand 
449 of node 26 and node 19 are 8.85 L/s and 36.48 L/s respectively. This could be one of the reasons for the 
450 differences between simulated and measured pressure at node 19. Any small changes in the water demand 
451 pattern can cause a large change in the demand, which in turn will increase the pressure. As shown in Table 
452 6, in terms of the assessment factors, RMSE, NRMSE, NSE, and R2, the EKF-PSO produced better results 
453 compared with the other models. The overall results proved that the simulated pressure corresponds very well 
454 with the measured pressure 
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Fig. 10. Comparison of simulated nodal pressures with those measured in Net 3
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Table 6. Error indices for simulated nodal pressures with those measured in Net3

Node 19 26



26

Methods EKF-PSO KF-PSO EKF EKF-PSO KF-PSO EKF

MAPE (%) 0.55 0.62 0.72 0.13 0.17 0.16

RMSE 0.33 0.39 0.46 0.07 0.15 0.10

NRMSE 0.006 0.008 0.009 0.001 0.003 0.002

NSE 0.69 0.57 0.40 0.96 0.86 0.94

R2 0.71 0.62 0.50 0.97 0.87 0.94
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Fig. 11. Evaluation of best cost of proposed methods

458

459 Fig. 11 represents the convergence rate of proposed methods in reaching the minimum MAPE in Net3. The 
460 EKF-PSO method has achieved the optimum solution (MAPE=25.02%) with 9 iterations. Fig. 12 shows the 
461 time variation of the noise covariance matrices Q and R. As can be seen, in the early time step, the value of 
462 covariance matrices Q and R shows hourly fluctuation, but it will gradually tend to a certain value. This shows 
463 that in the long run, the EKF-PSO computation cost is gradually decreased.

464
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Fig. 12. Time variation of the noise covariance matrices (a)Q and (b) R

465

466 4. Conclusions

467

468 In this study, a predictor-corrector approach has been adopted by a hybrid technique. Multiple Linear 
469 Regression (MLR) and Nonlinear Regression (NLR) models were applied to predict water demand multipliers 
470 at each time step with past historical data. A series of online pressure observations were used to correct the 
471 prediction. This paper has developed a combination of the Kalman filter methods with the particle swarm 
472 optimization (PSO) algorithm to achieve high performance in the estimation of real-time demand multipliers. 
473 The output of Kalman filter methods strongly depends on the state noise covariance matrix (Q) and the 
474 measurement noise covariance matrix (R). The PSO algorithm was applied for the optimization of these 
475 matrices at each time step of the EKF. Then the optimal values of noise covariance matrices are used in the 
476 real-time water demand multiplier estimation loop. The performance of the proposed methodologies was 
477 tested and validated in two WDNs, two modified examples of the EPANET software, the Net1 and Net3 
478 networks. The results indicated that the KF-PSO method works poorly due to the nonlinearities of hydraulic 
479 systems. The comparison of the results demonstrated that obtained estimations by the EKF-PSO method are 
480 more precise than the conventional EKF method.
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