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feature selection and calculates the distance of an object to 
the center of hypersphere dynamically at test time based on 
these selected features. We apply the method to the anomaly 
detection problem in mobile ad hoc networks as well as two 
UCI datasets by which the performance of SVDD improves 
significantly in separating the target and outlier objects.

Keywords Support vector data description (SVDD) · 
Group decision making · Ordered weighted averaging 
(OWA) · Mobile ad hoc networks (MANETs)

1 Introduction

One-class classification aims to make a description of a tar-
get set of objects and to detect which new objects resemble 
this training set [1–4]. The difference with conventional 
classification is that in the training process of one-class 
classification problems, only objects of one class are availa-
ble. The objects from this class are called the target objects, 
and all other objects are called the outlier objects. The one-
class classification also referred as data description, outlier 
detection, novelty detection, and anomaly detection accord-
ing to the applications to which one-class classification has 
been applied. In one-class classification problems, the clas-
sification process must rely on one-class classifiers that can 
train specifications of one existing class. Tax [1] grouped 
one-class classifiers into three types, namely the density 
methods (e.g., mixture of Gaussian models [5] and Parzen 
density estimator [6]), the boundary methods (e.g., nearest 
neighbor [7], one-class support vector machine [8], and sup-
port vector data description [9, 10]), and the reconstruction 
methods (e.g., k-means [11], learning vector quantization 
[12], principal component analysis [13], and self-organizing 
maps [14]).

Abstract We add a new phase, called reforming phase, 
to support vector data description (SVDD) between the 
training and testing phases. The reforming phase enables 
us to reconsider the SVDD’s assumption of the uniform-
ity of features in calculating the distance of an object to 
the center of hypersphere. In the reforming phase, the fea-
tures are assumed as a group of experts who have different 
impacts in overall outlier detection. In doing so, the propor-
tion of each feature in the distance of an object to the center 
of hypersphere is specified. Subsequently, the opinions of 
the experts about the label of the corresponding object are 
determined based on these measured proportions. By using 
different group decision-making methods for aggregating 
the opinions of the experts, a large variety of new models 
are obtained based on one SVDD’s trained model. Specially, 
we utilize a kind of ordered weighted averaging operator as 
group decision-making method and introduce cDFS-SVDD 
based on this method. cDFS-SVDD performs runtime 
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In all one-class classification methods two distinct ele-
ments should be specified. The first one is a measure for the 
distance d(x) or resemblance p(x) of an object x to one exist-
ing class. The second one is a threshold � on this distance 
or resemblance. For prediction, a new object x is labeled as 
normal when the distance to the target class is smaller than 
the threshold [d(x) < 𝜃] or when the resemblance is larger 
than the threshold [p(x) > 𝜃]. The one-class classifiers can 
be utilized individually or by any combination methods to 
better describe the specification of the target class [15–21].

The support vector data description (SVDD) proposed by 
Tax and Duin [9, 10] tries to construct a boundary with minimal 
volume around the target data. In the simplest case, a hyper-
sphere is constructed which contains all target objects, but to 
minimize the chance of accepting outliers, the volume of this 
hypersphere is minimized. Inspired from SVM [8], the decision 
boundary of SVDD is described by a number of target objects 
called support vectors. In general, the hypersphere model is not 
flexible enough to give a good description of the target class 
[22]. Analogous to SVM, SVDD offers the ability to transform 
the data to a new, high-dimensional feature space using kernel 
functions by which the more flexible descriptions are obtained.

Several extensions, pre-processing, and post-processing 
methods on SVDD have been proposed in the literature [22–24] 
to obtain more flexible descriptions and to improve the per-
formance of SVDD. The aim of this paper is also to change 
the trained boundary of SVDD in order to better separate the 
target and outlier objects. In contrast to traditional SVDD which 
assumes that the features have similar impacts in measuring 
the distance of an object to the center (and in other words, in 
outlier detection), we consider different impacts of the features 
in distance measuring (outlier detection). For this purpose, we 
add a new phase, called reforming phase, between the training 
phase and the testing phase of SVDD such that it can construct 
new decision boundaries based on one SVDD’s trained support 
vectors. In doing so, a technique called distance decomposition 
is introduced. The idea behind feature-based distance decom-
position of SVDD is to specify the proportion of each feature 
in the distance of an object to the center of hypersphere. After 
that, each feature is considered as an expert who participates in 
outlier detection, where its opinion about the label of the cor-
responding object is shaped based on its measured proportion. 
By using different group decision-making methods [25–27] 
for aggregating the opinions of the experts, a large number of 
(maybe infinite) new decision boundaries are obtained.

The main contribution of the paper is as follows:

• We introduced the concept of distance decomposition of 
SVDD, mapping SVDD to group decision-making prob-
lem, and considering different roles of the features in out-
lier detection task. Note that the superiority of one feature 
to another feature is determined at runtime for each test 
object case by case.

• Unlike all other related works that change the SVDD’s 
algorithm and its decision boundary based on training data-
set, our proposed method is the first effort that changes the 
decision boundary of SVDD after training time and based 
on test objects. Indeed, we can obtain different decision 
boundary for each test object case by case.

The remainder of the paper is organized as follows. In Sect. 2, 
we survey some extensions, pre-processing, and post-process-
ing methods proposed on SVDD. In Sect. 3, we present our 
method for mapping support vector data description to group 
decision-making problem in the reforming phase. In Sect. 4, 
we introduce a case study by which we examine our method 
and also show the results of experiments. In Sect. 5, we utilize 
the proposed method to examine UCI datasets. Finally Sect. 6 
closes the paper with our conclusions.

2  SVDD and its extensions

Support vector data description (SVDD) [9, 10] is a SVM-
based one-class classifier that constructs a minimum hyper-
sphere around the target data in a d-dimensional feature space 
which is characterized by a center a = (a1, a2,… , ad) and a 
radius R. The distance from objects to the center a should not 
be strictly smaller than R2, but larger distances should be penal-
ized. Inspired from SVM, the boundary of hypersphere is deter-
mined by a number of target objects called support vectors.

Let D = [�1, �2,… , �n]
T be the target dataset that contains 

n objects of dimension d. The problem of finding the minimum 
hypersphere around the target data can be formulated as:

where �is are objects of the training dataset, the slack vari-
able �i is a penalty for object �i laid outside the decision 
boundary, and the regularization parameter C gives the 
trade-off between the volume of the description and the 
errors. By introducing Lagrange multipliers, this problem 
can be transformed into minimizing the following function:

where �is are Lagrange multipliers with the constraints 
0 ≤ �i ≤ C,

∑
i �i = 1,

∑
i �ixi = a.

The minimization of L with the mentioned constraints 
is a quadratic programming problem that finds the optimal 
values for the Lagrange multipliers �i. When an object �i 
satisfies the inequality ‖�i − a‖2 < R2 + 𝜉i, the correspond-
ing Lagrange multiplier will be zero (�i = 0). For objects 
satisfying the equality ‖�i − a‖2 = R2 + �i the Lagrange 
multiplier will become unequal zero (𝛼i > 0). Only objects 

(1)
minR2 + C

�

i

�i

subject to‖�i − a‖2 ≤ R2 + �i, �i ≥ 0,∀i,

(2)L =
∑

i

�i(�i.�i) −
∑

i,j

�i�j(�i.�j),
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�i with 𝛼i > 0 are needed in the description and therefore be 
called the support vectors of the description (SV’s) [9, 10].

In SVDD, the distance of an input object z from the center 
of the hypersphere is calculated as:

where K is the kernel function, �i is ith support vector, and �i 
is the Lagrange multiplier of the support vector �i.

In the case of linear kernel, we have K(X, Y) = (X.Y). So, 
(DSVDD(z))

2 is re-formulated as:

The radius of the hypersphere is determined as:

when the selected support vector �l is on the boundary (i.e., 
𝛼l < C). Accordingly, decision procedure for SVDD is deter-
mined as:

where the indicator function I is defined as:

Many research efforts have been done on SVDD to obtain a 
better description of data. Tax and Juszczak [22] proposed 
kernel principal component analysis (kernel PCA) as a pre-
processing method for SVDD. The data are projected onto 
the principal components and transformed to a new dataset 
with zero mean and unit variance in all dimensions. The 
transformed data can then be better described by the SVDD.

Lee et  al. [24] proposed a density-induced SVDD 
(D-SVDD) to reflect the density distribution of a dataset by 
introducing the concept of relative density degree for each 
data point which represents how dense is the region of that 
data point. By using density-induced distance measure-
ments for target data based on the proposed relative degrees, 
D-SVDD can shift the center of hypersphere to the denser 
region based on the assumption that there are more data points 
in a denser region. They proposed two methods to extract the 
relative density degree for each data point, the nearest neigh-
borhood method, and the Parzen window method.

(3)

�
DSVDD(z)

�2
= ‖z − a‖2 = K(z, z)

− 2 ×
�

i

�iK(z, �i) +
�

i

�

j

�i�jK(�i, �j),

(4)
(DSVDD(z))

2 = ‖z − a‖2 = (z.z)

− 2 ×
�

i

�i(z.�i) +
�

i

�

j

�i�j(�i.�j).

(5)

R2 = (�l.�l) − 2 ×
∑

i

�i(�l.�i)

+
∑

i

∑

j

�i�j(�i.�j),

(6)fSVDD(z) = I((DSVDD(z))
2
≤ R2),

(7)I(A) =

{
target if A is true,

outlier otherwise.

Fuzzy support vector machine (FSVM) [28, 29] deals 
with the situations in which each input object may not be 
fully assigned to one of two target or outlier classes. FSVM 
assigns a membership degree to each object and reformu-
lates the SVM in such a way that different objects can have 
different impacts in the construction of decision boundary. 
The proposed method causes the SVM to be robust against 
the noises in data objects. Inspired from fuzzy SVM, Zhang 
et al. [30] proposed fuzzy SVDD by assigning a weight to 
each data point which represents fuzzy membership degree 
to the target data (or degree of importance) computed by the 
improved possibilistic c-means method. Forghani et al. [31] 
proposed an extension of fuzzy SVDD in which the features 
of training objects are fuzzy numbers.

Liu et al. [32] also handle the problem of SVDD-based 
outlier detection in the presence of uncertain data. Their pro-
posed approach operates in two steps. In the first step, they 
generate a pseudo-training dataset by assigning a confidence 
level to each input object. In the second step, they incorpo-
rate the generated confidence score for each object into the 
SVDD’s training process. By introducing a confidence score 
in the training phase, each object contributes differently to 
the construction of the decision boundary.

Huang et al. [33] considered the differences between the 
objects in the target dataset and proposed two-class SVDD 
(TC-SVDD) for the situations in which the target dataset 
contains two class of objects and each class of objects needs 
to be described simultaneously. GhasemiGol et al. [34] 
found a minimal hyperellipse around the target data instead 
of hypersphere.

Efficient SVDD (E-SVDD) [35] is proposed to improve 
the prediction speed of SVDD. E-SVDD assumes that the 
target data contain more than one cluster, and then assigns 
a unique pre-image to each cluster. If a target training data-
set contains c clusters, the E-SVDD first finds the centroid 
points for these clusters in the feature space and then deter-
mines the pre-images for these centroid points. Finally, it 
uses the expansion of the images of these pre-images to 
approximate the center of SVDD. Since the most real data-
sets only contain at most a few clusters, the E-SVDD only 
needs a few points to represent the center of SVDD and then 
improves the test speed of SVDD. Compared to fast SVDD 
[36], E-SVDD obtains the slower prediction speed but better 
prediction performance.

Guo et al. [23] proposed a post-processing method that 
constructs a new decision boundary based on the SVDD 
boundary by derivation of the distance between an object 
in the input space and its nearest boundary point. The pro-
posed method builds new boundary a distance away from 
the boundary points such that the boundary still follows the 
shape of the target distribution but allows more target objects 
to be accepted.
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Note that all the related works, as a pre-processing or 
a post-processing method, change the SVDD’s algorithm 
and its decision boundary based on the training dataset. The 
approach presented in this paper is different from those of 
the previous ones. To our best knowledge, this is the first 
effort that changes the decision boundary of SVDD after 
training time, regardless of training dataset, and based on 
any assumption on the distribution of test data. This is done 
by transforming support vector data description to group 
decision-making problem by which a large variety of new 
SVDD models can be obtained.

3  Three‑phase SVDD

The aim of our proposed approach is not only to obtain a 
tighter boundary around the training data, but is also to 
reform the decision boundary of SVDD after training time 
in order to improve the performance of SVDD in accepting 
the target objects and rejecting the outlier objects.

The block diagram of the proposed method is shown in 
Fig. 1 in which we add a new phase, called reforming phase, 

between the training and testing phases of SVDD. In the 
reforming phase, we use the trained model of SVDD to con-
struct new decision boundaries by reconsidering the SVDD’s 
assumption of the uniformity of features in classification 
task. In this phase, we reform the trained boundary of SVDD 
according to the aggregation policy. In doing so, we first deter-
mine the proportion of each feature in the distance of an object 
to the center of hypersphere [in Fig. 1, Di(z) is the proportion 
of feature i for an input object z, and d is the number of fea-
tures]. Subsequently, each feature is assumed to be an expert 
who participates in outlier detection, where its opinion about 
the label of the corresponding object is shaped based on its 
measured proportion. Several methods have been proposed in 
the literature for group decision making [25–27], which can be 
applied in the aggregation. By utilizing these different meth-
ods (i.e., by assigning different roles to the features in outlier 
detection), the reformation will lead to new boundary shapes.

3.1  Feature‑based distance decomposition of SVDD

The idea behind distance decomposition of SVDD is to 
specify the proportion of each feature in the distance of an 

Fig. 1  Three-phase support 
vector data description
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object to the center of hypersphere. Let z = (z1, z2,… , zd) 
be a d-dimensional object in the input space. Distance 
decomposition for kth feature, k = 1,… , d, of the object z 
using SVDD is carried out as:

where �i = (�i1, �i2,… , �id) is ith support vector, and �i is the 
Lagrange multiplier of the support vector �i.

Now, feature k is an expert whose opinion about 
the object z is shaped based on (DSVDD,k(z))

2. Note that 
(DSVDD(z))

2 =
∑d

i=1
(DSVDD,i(z))

2.

3.2  WA‑SVDD and OWA‑SVDD

We examine two special methods, namely weighted aver-
age (WA) and ordered weighted average (OWA) [25], pro-
posed for group decision making and define WA-SVDD 
and OWA-SVDD based on these methods. In WA-SVDD 
and OWA-SVDD, instead of calculating sum of the pro-
portions of features (which is performed in traditional 
SVDD), we calculate weighted sum and ordered weighted 
sum of the proportions, respectively.

Let DSVDD,i(z) be the proportion of feature i in the dis-
tance of object z to the center of hypersphere. The WA-
SVDD assigns a fixed weight to each feature. So, we have:

where wi is the weight of ith feature, and 
∑d

i=1
wi = d.

OWA-SVDD uses OWA operator to signify those fea-
tures that make more (or less) deviations from the center 
of hypersphere. So, we have:

(8)

(DSVDD,k(z))
2 = zk

2 − 2 × zk ×
∑

i

(�i × �ik)

+
∑

i

∑

j

(�i × �j × �ik × �jk),

(9)(DWA-SVDD(z))
2 =

d∑

i=1

wi × (DSVDD,i(z))
2,

(10)(DOWA-SVDD(z))
2 =

d∑

i=1

wiBi,

where Bi is the ith largest element of the bag 
<(DSVDD,1(z))

2,… , (DSVDD,d(z))
2>, wi is the weight of Bi, 

and ∑d

i=1
wi = d.

By using different weighting vectors, different bound-
ary shapes for WA-SVDD and OWA-SVDD are obtained. 
Note that in both WA-SVDD and OWA-SVDD, if we use 
W = (1, 1,… , 1) weighting vector, the classifiers become 
idempotent and we have:

We can use different decision procedures for WA-SVDD 
and OWA-SVDD. For example, decision procedure for WA-
SVDD (and OWA-SVDD) can be defined as:

where �2 is calculated as:

where n is the number of support vectors, and �i is ith sup-
port vector. Alternatively, the threshold can be tuned such 
that the new classifier has the same false-positive rate as the 
SVDD model, meaning that it rejects the same number of 
training objects by the constructed boundary.

3.3  An illustrative example

Figure 2 shows the reformed boundaries of SVDD according 
to three different types of outlier objects. In the figure, the 
two-dimensional training dataset D is shown in pink color 
and the outlier objects are shown in blue color. Figure 2a 
shows three different models obtained by using SVDD on 
the dataset D with three different � parameters. The bounda-
ries of three models are shown in brown, red, and green 
colors for � equal to 0.26, 0.4, and 0.66, respectively. In 
the example, the closer the false-positive rate (FP) to 0 and 
the detection rate (DR) to 1 for a classifier, that classifier is 
more powerful in accepting the target objects and rejecting 
the outlier objects.

(11)(DSVDD(z))
2 = (DWA-SVDD(z))

2 = (DOWA-SVDD(z))
2.

(12)fWA-SVDD(z) = I((DWA-SVDD(z))
2
≤ �2),

(13)�2 =
1

n

n∑

i=1

(DWA-SVDD(�i))
2,

(a) The training dataset and three different SVDD models
The pink points: training dataset
The blue points: outlier objects

The boundary of SVDD with ν=0.26, R= 0.858836
The boundary of SVDD with ν=0.4, R= 0.769415
The boundary of SVDD with ν=0.66, R= 0.582477
(b) The boundary of WA-SVDD with weighting vector w = (1.55, 0.45), and θ=0.71
(c) The boundary of OWA-SVDD with weighting vector w = (1.9, 0.1), and θ= 1.0564
(d) The boundary of OWA-SVDD with weighting vector w = (0.1, 1.9), and θ= 0.4437

(b) (c) (d)

FP DR FP DR FP DR FP DR FP DR FP DR FP DR FP DR FP DR
0.4080 0.932 0.6578 0.999 0.4069 1 0.4080 0.997 0.2611 0.9354 0.2611 0.9941 0.4080 0.903 0.6578 0.979 0.3957 0.9967
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In Fig.  2b, we aim to classify a special type of out-
lier objects that are shown in blue color by three classifi-
ers, the SVDD with red boundary, the SVDD with green 
boundary, and the WA-SVDD with the weighting vector 
w = (1.55, 0.45), i.e., the black boundary. In this case, if we 
use SVDD with red boundary, we obtain the detection rate 
equal to 0.9322 at the expense of 0.4080 false-positive rate. 
Subsequently, if we want to increase the detection rate to 
0.9990 by SVDD, we must utilize SVDD with green bound-
ary at the expense of 0.6578 false-positive rate, while, by 
WA-SVDD, the classifier obtains the detection rate approxi-
mately equal to the SVDD with green boundary (1) and the 
false-positive rate approximately equal to the SVDD with 
red boundary (0.4069).

Furthermore, in Fig. 2c, the OWA-SVDD classifier with 
the weighting vector w = (1.9, 0.1), i.e., the black boundary, 
has detection rate approximately equal to the SVDD with red 
boundary and the false-positive rate approximately equal to 
the SVDD with brown boundary. Also, in Fig. 2d, the OWA-
SVDD classifier with the weighting vector w = (0.1, 1.9), 
i.e., the black boundary, has detection rate approximately 
equal to the SVDD with green boundary and the false-
positive rate approximately equal to the SVDD with red 
boundary.

As it is shown in Fig. 2, for all three types of outlier 
objects, the decision boundary of one trained classifier is 
reformed according to the distribution of the test objects. 

This reformation enables us to change the target objects that 
are rejected by the classifier in order to better reject a spe-
cific type of outliers, and leads to the better performance 
by improving the detection rates for the same false-positive 
rates or by decreasing the false-positive rates for the same 
detection rates.

Specially, as it is shown in Fig. 2b, the WA-SVDD con-
structs a hyperellipse around the training data and allows 
the target objects to have more distance in the direction of 
features that have fewer weights. Furthermore, in OWA-
SVDD, according to Fig. 2c, if we use descendant weights, 
the target objects are allowed to be farther from the center 
when the features of the objects deviate uniformly from the 
center (this can be interestingly stated as: When the experts 
have different opinions, they should pay the penalties, or 
alternatively when the experts have relatively the same opin-
ions, they will gain the awards). In this case, a square-shaped 
model can be obtained by the classifier. Moreover, according 
to Fig. 2d, if we use ascendant weighting vector, the target 
objects are allowed to have more distance in the direction of 
Cartesian axes (this can be stated as: The opinions of those 
experts are more important who are more optimistic). In this 
case, a fan-shaped model can be obtained by the classifier. 
Note that these exciting models are only obtained by WA-
SVDD and OWA-SVDD, whereas, if we use other group 
decision-making methods, the more and more different mod-
els will be obtained.

Fig. 2  The models obtained by using SVDD, WA-SVDD, and OWA-SVDD (color figure online)
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4  Experiments

To evaluate the proposed method, we apply the method to 
the anomaly detection problem in mobile ad hoc networks 
with AODV routing protocol. AODV assumes that all nodes 
of the network can be trusted to perform their tasks truth-
fully, and as such, is vulnerable to several attacks and mis-
behavior. Anomaly detection refers to detecting the behav-
ior of nodes that do not conform to a pre-defined normal 
behavior (the trained model), where the deviations from the 
network’s normal behavior are considered as anomalies or 
attacks1 (i.e., outliers).

In our proposed method, each node of the network uses 
a time slot to analyze the state of the network. In each time 
slot, the network behavior is expressed by a 40-dimensional 
feature vector in which each feature is measured to describe 
a part of AODV protocol characteristics. We assume that 
the mobile ad hoc network is flat and completely distrib-
uted. Each node collects its own data in the network, and 
there is no need for monitoring the behavior of a node by 
its neighbors.

We begin by training the SVDD on the training dataset 
which contains only normal objects. In the method, the train-
ing is offline and the trained model is stored in each node of 
the network for anomaly detection. Subsequently, for online 
network traffic (i.e., the test data), we measure deviations 
from the trained model by the transformed SVDD to identify 
the attack and normal objects according to the measured 
deviations.

4.1  Overview of AODV protocol

AODV [37, 38] is a reactive routing protocol for MANETs, 
where each node maintains a routing table. AODV uses two 
mechanisms, namely route discovery and route maintenance. 
The process of route discovery begins when the source node 
wants to send a data packet to the destination and there is 
no valid route for that destination in its routing table. In this 
case, the source node broadcasts the route request (RREQ) 
packet in the network. When the RREQ packet reaches a 
node that knows a route to the destination, the node will 
unicast the route reply (RREP) packet to the node that it has 
received the RREQ packet from it, and this action will repeat 
until the RREP packet reaches the source node. As soon 
as the source node receives the RREP packet, it can start 
transmitting data packets. The process of route maintenance 
begins when a broken link is detected or the next node is 
inaccessible. In this case the node that detects this will send 

a route error (RERR) packet to all its active neighbors for 
that destination.

4.2  Definition of features

Each node uses a time slot to analyze the state of the net-
work according to its own ingoing and outgoing traffic, 
routing table, packet queue, etc. In each time slot, the 
network state is expressed by a 40-dimensional object 
z = (z1, z2,… , z40), where each feature zi, i = 1,… , 40 is 
measured to describe a part of AODV protocol character-
istics. The defined features are grouped into three catego-
ries, traffic-related features, extracted fields of observed 
packets, and routing table-related features as shown in 
Table 1.

4.3  Attack implementation

We launch the following attacks on the network to evaluate 
our proposed method:

1. Blackhole: In this attack, a malicious node tries to pass 
the networks traffic through itself (by sending fake 
RREP packets) and then drop any control or data pack-
ets that reach it.

2. Denial of service (with the name of DoS): In this attack, 
a malicious node intentionally uses the resources (band-
width and energy) of other nodes in the network or 
makes the target node unavailable. This is done by con-
tinuous injection of data packets to the network.

3. RERR fabrication: In this attack, a malicious node can 
fake some RERR packets, which can lead to the destruc-
tion of the main route, and the imposition of overhead 
to the network.

4.4  Dynamic feature selection by OWA‑SVDD

Let z = (z1, z2,… , zd) be a d-dimensional object in the input 
space. A c-dynamic feature selection ordered weighted 
average (cDFSOWA) operator of dimension d is a mapping 
cDFSOWA:Rd

→ R that has an associated d-dimensional 
weighting vector W = (w1,w2,… ,wd), such that:

and

(14)wi =

{ d

c
1 ≤ i ≤ c,

0 otherwise.

(15)cDFSOWA(z) =

d∑

i=1

wiBi,

1 In this section, we use the terms normal and attack instead of target 
and outlier, respectively, because of the special application to which 
we involved.
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where c, 1 ≤ c ≤ d, is a cutting parameter specified by user, 
and Bi is the ith largest element of the bag <z1,… , zd>. 
Note that 

∑d

i=1
wi = d, and if c = d, then W = (1, 1,… , 1) 

and cDFSOWA becomes idempotent.
We define cDFS-SVDD classifier such that it uses cDF-

SOWA operator for group decision making. cDFS-SVDD is 
a runtime feature selection operator. The number of c fea-
tures that make more deviations from the center is selected 
dynamically for each test object. In other words, cDFS-
SVDD calculates the distance of an object to the center of 
hypersphere only based on those dynamically selected fea-
tures, and other features will be disregarded.

We define cDFS-SVDD based on the experiences that we 
gained from the anomaly detection task in mobile ad hoc 
network (MANET):

1. The distribution of attacks (the outlier data) on AODV 
routing protocol in MANET does not conform to the 
distribution of the normal behavior (the target data).

2. Although the SVDD considers all “non-target” objects 
as “outliers” and aims to reject all outlier objects, the 
outlier objects have different types and patterns. Each 
type of outliers (attacks) has its own pattern and makes 
more deviation in the magnitude of some specific fea-

tures, but these features are different for each type of 
outliers. In other words, each attack has its own “impor-
tant features” which are different from the other attacks.

3. We cannot specify these important features anyway in 
the training time. Amazingly, the features that seem more 
useless in the training time may be the more important 
features in the testing time for detection of attacks.

Based on these observations, we found out that the applica-
tion strongly needs a classifier that makes decision based on 
a dynamic subset of features. So, we have altered the SVDD 
and added the reforming phase to SVDD in which we map 
the support vector data description to group decision-making 
problem. By using ordered weighted average in the reforming 
phase as group decision-making method, we define cDFS-
SVDD that can determine dynamically the more important 
and valuable features in the testing time for each type of 
attacks and for each input object case by case, and only use 
these features in data description and outlier detection task.

4.5  Data scaling

The performance of SVDD critically depends on the scaling 
of data. In this paper for all training and testing objects, we 

Table 1  Defined features

Feature number Description

A. Traffic-related features (21 features)
 1–2 Number of sent [packets/control packets]
 3–6 Number of sent [RREQ/RREP/RERR/data] packets
 7–8 Number of [packets/control packets] received by node
 9–12 Number of received [RREQ/RREP/RERR/data] packets
 13–16 Number of dropped [RREQ/RREP/RERR/data] packets
 17–19 Number of replicated [RREQ/RREP/data] packets received by node
 20–21 Number of added packets to queue—max queue length

B. Extracted fields of observed packets (8 features)
 22–23 Total differences between the magnitude of hop count of received [RREQ/RREP] packets 

and the magnitude of hop count of related entries in the routing table
 24–27 [Max/total] differences between the magnitude of sequence number of received [RREQ/

RREP] packets and the magnitude of sequence number of related entries in the routing 
table

C. Routing table-related features (11 features)
 28–29 [Average/max] changes in the magnitude of sequence number of routing table entries
 30–31 Number of times that sequence number field of routing table entries updated (for valid 

routes)—total changes of this field
 32–33 Number of times that sequence number field of routing table entries fixed (for invalid 

routes)—total changes of this field
 34–35 Number of times that hop count field of routing table entries [fixed (for invalid routes)/

updated (for valid routes)]
 36–39 Number of successful routing table lookups for [valid/invalid] routes—number of unsuc-

cessful routing table lookups, rate of routing table successful lookups
 40 Number of valid routes div by number of invalid routes
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use a well-known min–max data scaling method performed 
by Library for Support Vector Machines (LIBSVM) [39] 
that transforms data to a new dataset with unit range in all 
feature directions.

Let D = [�1, �2,… , �n]
T be the target dataset that con-

tains n objects of dimension d, where �i = (�i1, �i2,… , �id), 
�̌ = (�̌1, �̌2,… , �̌d) be the minimum of D, �̂ be the maximum 
of D, and Δ = �̂ − �̌ = (𝛿1, 𝛿2,… , 𝛿d). To scale D, we trans-
form D to D� = [��

1
, ��

2
,… , ��

n
]T, where ��

i
= (��

i1
, ��

i2
,… , ��

id
) 

as:

After that, each new test dataset T = [�1, �2,… , �m]
T , 

where �i = (�i1, �i2,… , �id), is scaled by transformation to 
T � = [��

1
, ��

2
,… , ��

m
]T, where ��

i
= (��

i1
, ��

i2
,… , ��

id
) as:

4.6  Feature sensitivity analysis

Feature sensitivity analysis (FSA) is an offline process that 
compares two datasets containing the objects of the same 
feature space. FSA aims to characterize those features of 
the objects of a test dataset T that make more deviations 
from the corresponding features of the objects of the train-
ing dataset D.

Suppose the training dataset D and the test dataset T are 
scaled to D′ and T ′, respectively, by the method presented 
in Sect. 4.5.

Let �� = (��
1
, ��

2
,… , ��

d
) be the mean of D′, and 

�� = (��
1
, ��

2
,… , ��

d
) be the mean of T ′. FSA is performed by 

the calculation of average feature deviation for dataset T and 
feature k, AFD(T , k) as:

4.7  Simulation environments

We use Network Simulator NS-2 version 2.34 [40] to run 
MANET simulations. Our experiments are based on 50 
wireless mobile nodes distributed in a 1000 × 1000 m area, 
which follow the random way-point mobility model with the 
maximum speed of 5 m/s and a pause time of 10 s. Network 
traffic type is constant bit rate (CBR), data packet size is 512 
bytes, routing protocol is AODV, and the maximum number 
of connections is 40 packets per second. Simulation time is 
3000 s, and each time slot is 30 s. Regular nodes normally 
perform routing as well as anomaly detection. In contrast, 

(16)�
�

ij
=

�ij − �̌j

𝛿j
, i = 1,… , n, j = 1,… , d.

(17)�
�

ij
=

�ij − �̌j

𝛿j
, i = 1,… ,m, j = 1,… , d.

(18)AFD(T , k) = �
�
k
− �

�
k
, k = 1,… , d.

each malicious node launches attacks (i.e., blackhole, DoS, 
and RERR fabrication). The simulations are done on 100 
different traffic patterns and movement scenarios, and the 
average results are shown.

4.8  Simulation results

We now compare the performances of the traditional 
SVDD and cDFS-SVDD on the application of anomaly 
detection in MANETs. The ROC curves for three men-
tioned attacks by SVDD and 4DFS-SVDD (cDFS-SVDD 
with parameter c equal to 4) are shown in Fig. 3. By 4DFS-
SVDD, those 4 features that make more deviations from the 
saved normal profile are selected dynamically in runtime. 
These features may be different for each type of attacks 
(and also for each object case by case). Note that all data 
have been scaled before training and testing phases by the 
method presented in Sect. 4.5. Also, for calculating detec-
tion rates and false-positive rates, a time slot is labeled as 
“attack” if five (or more) nodes of the network label that 
time slot as “attack.”

According to Fig. 3, in summary, the blackhole attack 
is detected with the highest detection rate and the RERR 
fabrication attack is detected with the lowest detection rate. 
Figure 3a shows the ROC curves for blackhole attack by two 
classifiers using 40 basic features (presented in Table 1), 
where the attack is detected with the rate near to %100 by 
the two classifiers. In Fig. 3b, c, the ROC curves for DoS 
and RERR fabrication attacks are shown, where it shows that 
for all false-positive rates, the detection rates of DoS attack 
improve about 0.06 and the detection rates of RouteError 
fabrication attack improve about 0.1. The AUC of these two 
classifiers is shown in Table 2 in which 4DFS-SVDD shows 
better performance than the SVDD on average.

Figure 4 shows AFD(T , k) for one normal test dataset and 
three attack datasets (based on 40 basic features). As it is 
shown, each attack makes more deviations in the magnitude 
of some specific features, but these features are different in 
the case of different attacks. Indeed, 4DFS-SVDD selects 
these important features dynamically and only uses these 
features in distance measuring (in contrast to the existing 
feature selection methods that select a fixed subset of fea-
tures statically).

4.9  Utilizing cDFS‑SVDD in principal components 
space

To show the effectiveness of our proposal, we utilize 4DFS-
SVDD in principal components (PCs) space. In doing so, 
we transform data to PCs space by using Tax pre-processing 
method [22] and obtain 35-dimensional feature space (by 
selecting the first 35 features in the transformed space). 
Table  3 compares AUC of SVDD and 4DFS-SVDD in 
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35-dimensional feature spaces. As it is shown, 4DFS-SVDD 
also improves AUC of SVDD in PCs space.

In order to clarify the improvements, we perform fea-
ture sensitivity analysis on one normal and three attack 
datasets in PCs space. As it can be seen in Fig. 5, the non-
uniformity of the feature deviations from the saved normal 
profile is also hold in PCs space, and this is the evidence 
for why 4DFS-SVDD performs better than SVDD even 
using Tax pre-processing method. According to Fig. 5, it 

is clear that the first few dimensions are crucial for normal 
patterns, but this is not necessarily true for each type of 
attacks.

Table  4 compares the AUC of SVDD on 4-dimen-
sional feature space (the first 4 features in PCs space) and 
4DFS-SVDD on 35-dimensional feature space. As it can 
be seen, 4 dynamically selected features perform signifi-
cantly better than 4 statically selected features in detecting 
anomalies.

Fig. 3  ROC curves for SVDD and 4DFS-SVDD on 40 basic features X-axis: false-positive rate, Y-axis: detection rate

Table 2  Comparison of the 
AUC of SVDD and 4DFS-
SVDD on 40 basic features

Blackhole mean/
SD

DoS mean/SD RERR fabrication 
mean/SD

Average mean/SD

SVDD 0.1/0 0.0848/0.0026 0.0494/0.0044 0.0781/0.0023
4DFS-SVDD 0.1/0 0.0894/0.0014 0.0602/0.0041 0.0832/0.0018

Fig. 4  FSA for one normal test dataset and three attack datasets X-axis: feature number, Y-axis: AFD(T , k)

Table 3  Comparison of the 
AUC of SVDD and 4DFS-
SVDD on 35 features obtained 
by using Tax pre-processing 
method [22]

Blackhole mean/
SD

DoS mean/SD RERR fabrication 
mean/SD

Average mean/SD

SVDD 0.1/0 0.0905/0.0008 0.0781/0.0024 0.08953/0.0010
4DFS-SVDD 0.1/0 0.0936/0.0008 0.0803/0.0026 0.0913/0.0011
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5  Evaluations and discussion

In this section, we apply our proposed method to two standard 
UCI datasets, i.e., image segmentation and wholesale customer 
datasets. These datasets are taken from the UCI machine learn-
ing repository [41]. Table 5 shows the specifications of these 
two datasets used for evaluating our proposed method.

As it is shown in Table 5, the image segmentation dataset 
contains 2100 objects with 19 features in seven different 
classes. For one-class classification, we use each of Class1, 
Class3, Class5, and Class7 datasets in turn as target dataset 
and all other classes as outliers, according to one-against-all 
strategy. Table 6 shows the performance of cDFS-SVDD 
as compared to SVDD (with RBF kernel) based on true-
positive rates (TP) and false-positive rates (FP), where the 
closer the FP to 0 and the TP to 1 for a classifier, that clas-
sifier is more powerful in accepting the target objects and 
rejecting the outlier objects. Note that in each case, we show 
the FPs of SVDD/cDFS-SVDD for two selected TPs, i.e., 
TP1 and TP2.

According to Table 6, the performance of cDFS-SVDD 
is always equal to or greater than the performance of SVDD 
in all four cases of target datasets, meaning that it exhibits 
less FP for the same TP. The reduction more than 0.05 (%5) 
of FP for the same TP is shown in bold font in Table 6. For 
example, if we use Class7 as target object, and other classes 
as outliers, for TP equal to 0.64, cDFS-SVDD can reduce 
the FP of Class3 about 0.56 as compared to SVDD, i.e., a 
significant improvement in the performance of classifica-
tion task.

Figure 6 shows the results of feature sensitivity analysis 
of five test datasets (Class7 dataset containing test target 
objects, and Class1, Class2, Class3, Class4 datasets contain-
ing four types of test outlier objects). Note that the results 
of Class5 and Class6 datasets are forbidden because by both 
SVDD and cDFS-SVDD classifiers are classified with the 
same and low (0) FP. As it is shown in Fig. 6, each type of 
outliers has its own important features which are different 
from other types of outliers, the case that cDFS-SVDD can 
be used for classification.

We also used the wholesale customers dataset for com-
paring the performance of cDFS-SVDD and SVDD. The 
dataset contains 440 objects with eight features in six dif-
ferent classes. For one-class classification task, we use 
Channel1 data (Region1, Region2, and Region3) in turn 
as training datasets and Channel2 data (Region1, Region2, 
and Region3) as test objects. Table 7 compares the perfor-
mance of the classifiers, which shows a relatively better 

Fig. 5  FSA for 35 features when data are transformed to PCs space by Tax pre-processing method [22] X-axis: feature number, Y-axis: 
AFD(T , k)

Table 4  Comparison of the 
AUC of 4 dynamically selected 
features (from 35 features) and 
4 statically selected features on 
PCs space

Blackhole 
mean/SD

DoS mean/SD RERR fabrication 
mean/SD

Average mean/SD

Four dynamically 
selected features 
(4DFS-SVDD)

0.1/0 0.0936/0.0008 0.0803/0.0026 0.0913/0.0011

Four statically selected 
features (SVDD)

0.1/0 0.0531/0.0059 0.052/0.0040 0.06836/0.0033

Table 5  Properties of two standard datasets

No. Name No. of samples No. of features No. of 
classes

1 Image segmentation 2100 19 7
2 Wholesale customers 440 8 6
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performance for cDFS-SVDD as compared to SVDD with 
RBF kernel. The reduction more than 0.05 (%5) of FP for the 
same TP are shown in bold font in Table 7. For example, if 
we use Class3 as target object, for TP equal to 0.98, cDFS-
SVDD can reduce the FP of Class5 about 0.09 as compared 
to SVDD.

6  Conclusion

In this paper, we mapped the support vector data descrip-
tion to a group decision-making problem through ascrib-
ing different roles to features in outlier detection task. In 
doing so, a technique called feature-based distance decom-
position of SVDD is introduced by which the proportion 
of each feature in making the distance of an object to the 
center of hypersphere is specified. After that, each feature is 
considered as an expert who participates in outlier detection 

task, in which its opinion about the label of corresponding 
object is shaped based on its measured proportion. By using 
different group decision-making methods for aggregating 
the opinions of the experts, a large number of new deci-
sion boundaries are obtained in testing time based on one 
SVDD’s trained model. Specially, we examined a specific 
widely used group decision-making method, the ordered 
weighted average method, and introduced cDFS-SVDD 
based on this method. cDFS-SVDD performs runtime fea-
ture selection and calculates the distance of an object to the 
center of hypersphere dynamically based on c features that 
have more deviations from the center, and other features will 
be ignored. The selected features may be different for each 
object and determined dynamically at runtime. The proposed 
method can be utilized in the problems for which all features 
of target objects have the same importance, but the outlier 
objects have different types and patterns and each outlier 
object has its own important features which are different 

Table 6  The comparison of SVDD (with RBF kernel) and cDFS-SVDD on image segmentation dataset

Target dataset TP for tar-
get dataset

FP for Class1 
SVDD/cDFS-
SVDD

FP for Class2 
SVDD/cDFS-
SVDD

FP for Class3 
SVDD/cDFS-
SVDD

FP for Class4 
SVDD/cDFS-
SVDD

FP for Class5 
SVDD/cDFS-
SVDD

FP for Class6 
SVDD/cDFS-
SVDD

FP for Class7 
SVDD/cDFS-
SVDD

Class1 (brick-
face)

TP1 0.82 – 0.05/0.03 0.01/0.01 0/0 0/0 0/0 0.15/0.1

TP2 0.79 – 0.03/0.01 0.01/0.01 0/0 0/0 0/0 0.08/0.04
Class3 (foli-

age)
TP1 0.87 0.03/0.02 0.33/0.33 – 0/0 0.12/0.09 0/0 0.65/0.65

TP2 0.84 0.02/0.01 0.31/0.31 – 0/0 0.11/0.02 0/0 0.61/0.60
Class5 (path) TP1 0.87 0/0 0.01/0 0/0 0/0 – 0/0 0/0

TP2 0.82 0/0 0.01/0 0/0 0/0 – 0/0 0/0
Class7 (win-

dow)
TP1 0.64 0.50/0.04 0.04/0.04 0.68/0.12 0.32/0 0/0 0/0 –

TP2 0.60 0.44/0.04 0.04/0.04 0.58/0.12 0.16/0 0/0 0/0 –

Fig. 6  Feature sensitivity analysis for image segmentation dataset, Class7 as target dataset, and other classes as outliers X-axis: feature number, 
Y-axis: AFD(T , k)
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from the other ones. We applied the method to anomaly 
detection problem in mobile ad hoc networks as well as two 
UCI datasets. The results of experiments showed that cDFS-
SVDD improves the performance of SVDD in detecting the 
target and outlier objects.
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