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a b s t r a c t

Twin K-class support vector classification (Twin-KSVC) is a novel multi-class method based on twin
support vector machine (TWSVM). In this paper, we formulate a least squares version of Twin-KSVC
called as LST-KSVC. This formulation leads to extremely simple and fast algorithm. LST-KSVC, same as the
Twin-KSVC, evaluates all the training data into a “1-versus-1-versus-rest” structure, so it generates
ternary output {�1, 0, þ1}. In LST-KSVC, the solution of the two modified primal problems is reduced to
solving only two systems of linear equations whereas Twin-KSVC needs to solve two quadratic
programming problems (QPPs) along with two systems of linear equations. Our experiments on UCI
and face datasets indicate that the proposed method has comparable accuracy in classification to that of
Twin-KSVC but with remarkably less computational time. Also, because of the structure “1-versus-1-
versus-rest”, the classification accuracy of LST-KSVC is higher than typical multi-class method based
on SVMs.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Support vector machine (SVM) was originally proposed by
Vapnik [1,2] for binary classification. In contrast with other
machine learning approach like artificial neural network which
aims at reducing empirical risk, SVM implements the structural
risk minimization (SRM) that minimizes the upper bound of
generation error. SVM has been successfully applied in wide
spectrum of research areas like face recognition, text categoriza-
tion, and biomedicine [3–9]. One of the main challenges in the
classical SVM is the high computational complexity of quadratic
programming problem (QPP) [10]. The computational complexity
of SVM is Oðl3Þ, where l denotes as the total size of training data.
This drawback restricts the application of SVM to large-scale
problem domains.

Twin support vector machines (TWSVM) were proposed by
Jayadeva et al. in [11] for binary classification. TWSVM generates
two nonparallel hyper-planes by solving two smaller-sized QPPs
such that each hyper-plane is closer to one class and as far as
possible from the other. The idea of solving two smaller-sized QPPs
rather than a single larger-sized QPP in SVM makes the learning of
TWSVM four times faster than the conventional SVM [11]. Some
extensions of TWSVM such as twin bounded support vector
machines (TBSVM) [12], Robust TWSVM [13] and Projection
TWSVM [14] have been proposed to achieve higher accuracy with

lower computational time in comparing with SVM families. Least
squares twin support vector machine (LS-TWSVM) [15] has been
proposed as a way to replace the convex QPPs in TWSVM with a
convex linear system by using a squared loss function instead of
the hinge one. Inspired by LS-TWSVM, LS-PTWSVM has been
introduced as a least squares version of projection twin support
vector machine [16]. LS-TWSVM and LS-PTWSVM have extremely
fast training speed since their separating hyper-planes are deter-
mined by solving a single system of linear equations.

SVM and TWSVM are suitable for binary classification pro-
blems. However, Multi-class classification problem is often
occurred in real life. In the SVM and TWSVM family framework,
“1-versus-rest” [17] and “1-versus-1” [18] approaches are usually
resolve multi-class classification. In “1-versus-rest”, K binary SVM
classifiers are constructed. Each binary SVM is trained with all of
the patterns, so it easily leads to the class imbalance problem,
Whereas TWSVM address this problem. The second structure,
“1-versus-1”, needs to construct K(K-1)/2 binary (Twin) SVMs.
Each classifier is involved with the training data of two classes. In
this case, the information of the remaining samples is omitted in
each binary classification. Therefore, unfavorable results may be
received [19]. A new multi-class method based on “1-versus-1-
versus-rest” structure called K-SVCR (support vector classification
regression for K-class classification) was proposed in [19]. It
constructs K(K- 1)/2 binary K-SVCR classifiers for a K-class classi-
fication. This structure provides better forecasting results. How-
ever, as all the training data are utilized in constricting the
decision classification, its time complexity is higher than the
former structures. Twin-KSVC based on K-SVCR and TWSVM was
proposed in [20]. It takes the advantage of both TWSVM and
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K-SVCR. In the term of computational time, Twin-KSVC requires
nearly the same run-time as “1-versus-rest” structure of TWSVM,
while its runtime is far lower than K-SVCR.

In this paper, following the line of research in [11,15,20], we
propose a least squares version of Twin-KSVC, called least squares
twin K-class support vector classification (LST-KSVC) using the
strategy of LS-TWSVM and K-SVCR. The QPPs of our LST-KSVC have
only equality constraints while inequality constraints appear in the
Twin-KSVC. Thus, the solution of LST-KSVC follows directly from
solving two systems of linear equation as opposed to solving two
QPPs and two systems of linear equation in Twin-KSVC. It takes
both the advantages of LS-TWSVM in time complexity and K-SVCR
in higher multi-class classification accuracy based on “1-versus-1-
versus-rest” structure. The experimental results on benchmark
datasets show that the proposed LST-KSVC has comparable classi-
fication accuracy to that of the Twin-KSVC but with remarkably
less computational time. In addition, the proposed algorithm can
properly cope with large dataset without any external optimizers.

This paper is organized as follows. Section 2 briefly dwells on the
TWSVM, K-SVCR and Twin-KSVC. LST-KSVC is formulated and
described in Section 3, which includes linear, nonlinear cases and
classification decision rule. Section 4 provides some interesting
experimental results on datasets to investigate our proposed multi-
class algorithm and concluding remarks are given in Section 5.

2. Preliminaries

In this section, we give a brief description of TWSVM and
Multi-Class SVM based on “1-versus-1-versus-rest” structure for
classification purposes.

2.1. TWSVM

TWSVM is a binary classifier that performs classification by the
use of two non-parallel hyperplanes unlike SVM which used a
single hyperplane [11]. Let us consider dataset D which dþ is
training set with label þ1 and d� is training set with label �1 in
the m-dimensional real space Rm. Let matrix AARdþ �m represent
the training data belong þ1 and matrix BARd� �m represents the
training data belong to the class �1. The linear TWSVM search for
two non-parallel hyper-planes in Rm as follows:

xTwð1Þ þbð1Þ ¼ 0 and xTwð2Þ þbð2Þ ¼ 0 ð1Þ
Such that each hyperplane is closest to the training data of one
class and farthest from the training data of another class. A new

data sample is assigned to class þ1 or �1 depends on which of
the two planes is closest to it. The linear TWSVM solves two QPPs
(2) and (3) with objective function corresponding to one class and
constraints corresponding to the other class.

min
wð1Þ ;bð1Þ

1
2
JAwð1Þ þe1bð1Þ J2þc1eT2λ2

s:t: �ðBwð1Þ þe2bð1ÞÞþλ2Ze2; λ2Z0: ð2Þ

and

min
wð2Þ ;bð2Þ

1
2
JBwð2Þ þe2bð2Þ J2þc2eT1λ1

s:t: Awð2Þ þe2bð2Þ
� �þλ1Ze1; λ1Z0: ð3Þ

where c1, c240 are penalty parameters, e1 and e2 are vectors of
ones of appropriate dimensions and λ1 and λ2 are vectors of slack
variables respectively. Let P ¼ B e2½ � and Q ¼ A e1½ �. The Wolf dual
problems of (2) and (3) have been shown to be

max
α

eT2α�
1
2
αTP QTQ

� ��1
PTα

s:t: 0rαrc1e2; ð4Þ

and

max
α

eT1β�
1
2
βTQ PTP

� ��1
QTβ

s:t: 0rβrc2e1; ð5Þ

where Lagrangian multipliers are αARm2 and βARm1 . In order to
deal with the case when PTP or QTQ becomes singular and to
avoid the possible ill-conditioning of PTP and QTQ , TWSVM
introduces a term εI ðε40Þ where I is an identity matrix of
appropriate dimensions. The non-parallel hyperplanes (1) can be
obtained from the solutions α and β of (4) and (5) by

z1 ¼ � QTQþεI
� ��1

PTα and z2 ¼ � PTPþεI
� ��1

QTβ; ð6Þ

where zðiÞ ¼ wT
ðiÞ bðiÞ

h iT
; ði¼ 1;2Þ.

A new point xARm is assigned to class i (i¼þ1,�1), depending
on which of the two hyperplanes in (1) is closer to, i.e.

ClassðiÞ ¼ arg mini ¼ 1;2
jxTwðiÞ þbðiÞj

JwðiÞ J
ð7Þ

where j:j is the absolute value.
TWSVM was also extended in [11] to handle nonlinear kernels

by considering two non-parallel kernel generated surfaces.

Fig. 1. Illustration of multi-class SVM and TWSVM with ternary output {�1, 0, þ1}: (a) K-SVCR and (b) Twin-KSVC.
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2.2. Multi-class SVMs

In this subsection, we briefly introduce two multi-class methods
based on “1-versus-1-versus-rest” structure for the training set.

K-SVCR: a multi-class classification support vector machine:
K-SVCR was introduced in [14] based on SVM theory and ternary
output {�1, 0, þ1}. As illustrated in Fig. 1(a), it evaluates all the
training data in the decomposition phase by using mixed classi-
fication and regression machine formulation. K-SVCR can be
achieved by solving the following QPP:

min
w;b;ξ;n;nn

1
2
JwJ2þc1 ∑

l

i ¼ 1
ξiþc2 ∑

o

i ¼ 1
niþnn

i

� �
s:t yi w:ϕ xið Þþb

� �
Z1�ξi; i¼ 1;2;…; l:

�ε�nn

i ow:ϕ xið Þþb; i¼ 1;2…; o:

w:ϕ xið Þþbrεþni; i¼ 1;2…; o:

ξi;ni;n
n

i Z0; ð8Þ
where ξi, ni and nn

i are slack variables. The positive parameter ε is
restricted to be lower than 1 to avoid overlapping. l is the number
of patterns belong to the two classes to be separated and o is the
number of patterns belong to other classes that is labeled “0”. The
hyperplane decision function could be written as

f ðXÞ ¼

þ1 if ∑
no:sv

i ¼ 1
αi kðxi; xÞþbZε

�1 if ∑
no:sv

i ¼ 1
αi kðxi; xÞþbr�ε

0 otherwise

8>>>>><
>>>>>:

ð9Þ

In the above αi and no:sv are Lagrangian multipliers and the
number of support vectors respectively. K-SVCR improved the
standard two-class classifiers in the multi-classification structure
since all the data are given full consideration while the focus of
algorithm is a two-class partition, but (8) is composed of a single
larger-sized QPP. Moreover, the two focused kinds of samples are
used once in constraints, whereas the remaining samples are used
twice in constraints, which leads to low computational speed.

Twin multi-class classification support vector machine: Twin-
KSVC [20] is a new multi-class classification based on TWSVM
formulation. Like K-SVCR, the proposed algorithm evaluates all
training points into a “1-versus-1-versus-rest” structure with
ternary output {�1, 0, þ1}. It finds two nonparallel planes for
each of two kinds of samples selected from K classes. The rest of
the samples are mapped into a region between the two nonpar-
allel planes.

Let matrix AARl1�m represent the training data belong to “þ1”,
BARl2�m represents the training data belong to the class “�1” and
CARl3�m indicates the rest training data which are labeled “0”. The
patterns are denoted in rows and the features of each pattern are
shown as m column. The two nonparallel hyperplanes are defined
as follows:

xTwð1Þ þbð1Þ ¼ 0 and xTwð2Þ þbð2Þ ¼ 0 ð10Þ
They can be obtained by resolving the following pair of QPPs,

Min
wð1Þ ;bð1Þ ;ξ;η

1
2
JAwð1Þ þe1bð1Þ J2þc1eT2ξþc2eT3η

s:t: � Bwð1Þ þe2bð1Þ
� �þξZe2;

� Cwð1Þ þe3bð1Þ
� �þηZe3 1�εð Þ;
ξZ0e; ηZ0e; ð11Þ

and

Min
wð2Þ ;bð2Þ ;ξ

n
;ηn

1
2
JBwð2Þ þe2bð2Þ J2þc3eT1ξ

nþc4eT3η
n

s:t: Awð2Þ þe1bð2Þ
� �þξnZe1;

Cwð2Þ þe3bð2Þ
� �þηnZe3ð1�εÞ;
ξnZ0e; ηnZ0e; ð12Þ

where ε is a positive parameter chosen prior while the other
parameters are same as defined in TWSVM. Twin-KSVC seeks to
nonparallel in (10). Meanwhile, it obtains two corresponding hyper-
planes xTw1þb1 ¼ �1 and xTw2þb2 ¼ þ1, and they are at a
distance of 1 from two focused hyperplane. As illustrated in Fig. 1(b),
these two hyperplanes divide the whole plane into three parts. Twin-
KSVC classifies sample points according to which region they belong.
By introducing the lagrangian vectors, the dual QPPs of (11) and (12)
can be represented as follows:

max
γ

�1
2
γTN HTH

� ��1
NTγþeT4γ

s:t: 0rγrF; ð13Þ
where H ¼ A e1½ �, G¼ B e2½ �, M ¼ C e3½ �, N¼ ½G;M�, F ¼ c1e2; c2e3½ �
and e4 ¼ e2; e3ð1�ϵÞ½ �

max
ρ

�1
2
ρTP GTG

� ��1
PTγþeT5ρ

s:t: 0rρrFn; ð14Þ
where, P ¼ ½H;M�, Fn ¼ c3e1; c4e3½ �, e5 ¼ e1; e3ð1�ϵÞ½ �.

For a new testing point xi, Twin-KSVC determines its class label
by the following decision function.

f ðxiÞ ¼
þ1 if xiwð1Þ þebð1Þ4�1þε
�1 if xiwð2Þ þebð2Þo1�ε
0 otherwise

8><
>: ð15Þ

It is shown that Twin-KSVC requires nearly the same run-time as
“1-versus-rest” structure of TWSVM. Moreover, it requires far
lower computational time than K-SVCR [20].

3. Least squared twin multi-class support vector machine

In this section, we introduce a least squares version of Twin-
KSVC called least squared twin K-class support vector classification
(LST-KSVC). Following the idea of PSVM that proposed in [21], the
decision function of LST-KSVC is obtained by the primal problem
directly. Similar to Twin-KSVC, let matrix AARl1�m represent the
training data belong to “þ1”, BARl2�m represents the training data
belong to the class “�1” and CARl3�m indicates the rest training
data which are labeled “0”.

3.1. Linear LST-KSVC

We modify the primal problem (11) of linear Twin-KSVC in
least squares sense at (16), with the inequality constraint replaced
with equality constraints as follows:

Min
wð1Þ ;bð1Þ

1
2
JAwð1Þ þe1bð1Þ J2þ

c1
2
yTyþc2

2
zTz

s:t: � Bwð1Þ þe2bð1Þ
� �þy¼ e2;

� Cwð1Þ þe3bð1Þ
� �þz¼ e3ð1�εÞ; ð16Þ

Note that the loss function in (16) is the square of 2-norm of slack
variables y and z with weights c1=2 and c2=2 instead of 1-norm of y
and z with weights c1 and c2 as used in (11), which makes the
constraint yZ0 and zZ0 redundant [33]. This simple modification
allows us to solve the QPPs (16) by solving a simultaneous system of
linear equations. By substituting the equality constraints into the
objective function of QPP (16) we obtain:

Min
wð1Þ ;bð1Þ

1
2
JAwð1Þ þe1bð1Þ J2þ

c1
2
JBwð1Þ þe2bð1Þ þe2 J2

þc1
2
JCwð1Þ þe3bð1Þ þe3ð1�εÞJ2 ð17Þ

J.A. Nasiri et al. / Pattern Recognition 48 (2015) 984–992986



Setting the gradient of (17) with respect to wð1Þ and bð1Þ to zero gives

AT Awð1Þ þe1bð1Þ
� �þc1B

T Bwð1Þ þe2bð1Þ þe2
� �

þc2C
T Cwð1Þ þe3bð1Þ þe3ð1�εÞ� �¼ 0; ð18Þ

eT1 Awð1Þ þe1bð1Þ
� �þc1eT2 Bwð1Þ þe2bð1Þ þe2

� �
þc2eT3 Cwð1Þ þe3bð1Þ þe3ð1�εÞ� �¼ 0; ð19Þ

Arranging (18) and (19) in matrix form and solving for wð1Þ and bð1Þ
gives

c1
BTB BTe2
eT2B l2

" #
wð1Þ
bð1Þ

" #
þ ATA ATe1

eT1A l1

" #
wð1Þ
bð1Þ

" #

þc2
CTC CTe3
eT3C l3

" #
wð1Þ
bð1Þ

" #
þ c1B

Te2þc2C
Te3ð1�εÞ

c1l2þc2l3ð1�εÞ

" #
¼ 0 ð20Þ

wð1Þ
bð1Þ

" #
¼ c1B

TBþATAþc2C
TC c1B

Te2þATe1þc2C
Te3

c1eT2BþeT1Aþc2eT3C c1l2þ l1þc2l3

" #�1

� �c1B
Te2�c2C

Te3ð1�εÞ
�c1l2�c2l3ð1�εÞ

" #
ð21Þ

wð1Þ
bð1Þ

" #
¼ � c1

BT

eT2

" #
B e2½ �þ AT

eT1

" #
A e1½ �þc2

CT

eT3

" #
C e3½ �

" #�1

� c1
BTe2
l2

" #
þc2

CTe3ð1�εÞ
l3ð1�εÞ

" #" #
ð22Þ

Lets E¼ A e1½ �, F ¼ B e2½ � and G¼ C e3½ �, the solution becomes:

wð1Þ
bð1Þ

" #
¼ � c1F

TFþETEþc2G
TG

� ��1
c1F

Te5þc2G
Te6 1�εð Þ

� �
:

ð23Þ
similarly, the solution of QPP (24) can be shown to be (25) as follows:

Min
wð2Þ ;bð2Þ

1
2
JBwð2Þ þe2bð2Þ J2þ

c3
2
yTyþc4

2
zTz

s:t: Awð2Þ þe1bð2Þ
� �þy¼ e1;

Cwð2Þ þe3bð2Þ
� �þz¼ e3ð1�εÞ; ð24Þ

wð2Þ
bð2Þ

" #
¼ c3E

TEþFTFþc4G
TG

� ��1
c3E

Te4þc4G
Te6 1�εð Þ

� �
: ð25Þ

In this regard, two nonparallel separating hyperplanes of (10) are
obtained. The linear LST-KSVC completely solves the classification
problem with just two matrix inverses of much smaller dimensional
matrix rather than solving two QPPs in Twin-KSVC or two larger
sized of QPPs in K-SVCR.

3.2. Nonlinear LST-KSVC

We have extended the linear LST-KSVC to the nonlinear one by
considering the following kernel generated surfaces:

K xT ;DT
� �

uð1Þ þγð1Þ ¼ 0 and K xT ;DT
� �

uð2Þ þγð2Þ ¼ 0 ð26Þ

where, D¼ ½A;B;C� and K is an arbitrary kernel. The primal QPPs of
the nonlinear LST-KSVC can be modified in the same way with
2-norm of slack variables and equality constraints corresponding
to surfaces (26) are given in (27) and (28).

min
uð1Þ ;γð1Þ

1
2
JK A;DT
� �

uð1Þ þe1γð1Þ J
2þc1

2
yTyþc2

2
zTz

s:t: � K B;DT
� �

uð1Þ þe2γð1Þ
� �

þy¼ e2;

� K C;DT
� �

uð1Þ þe3γð1Þ
� �

þz¼ e3ð1�εÞ; ð27Þ

and

min
uð2Þ ;γð2Þ

1
2
JK B;DT
� �

uð2Þ þe2γð2Þ J
2þc3

2
yTyþc4

2
zTz

s:t: K A;DT
� �

uð2Þ þe1γð2Þ
� �

þy¼ e1;

K C;DT
� �

uð2Þ þe3γð2Þ
� �

þz¼ e3ð1�εÞ; ð28Þ

By substituting the constraints into the objective function, these
QPPs become

Min
uð1Þ ;γð1Þ

1
2
JK A;DT
� �

uð1Þ þe1γð1Þ J
2þc1

2
JK B;DT
� �

uð1Þ þe2γð1Þ þe2 J2

þc2
2
JK C;DT
� �

uð1Þ þe3γð1Þ þe3ð1�εÞJ2 ð29Þ

Min
uð2Þ ;γð2Þ

1
2
JK B;DT
� �

uð2Þ þe2γð2Þ J
2þc3

2
J�K A;DT

� �
uð2Þ �e1γð2Þ þe1 J2

þc4
2
J�K C;DT

� �
uð2Þ �e3γð2Þ þe3ð1�εÞJ2 ð30Þ

The solution of QPPs (29) and (30) can be derived as

uð1Þ
γð1Þ

" #
¼ � c1N

TNþMTMþc2O
TO

� ��1
c1N

Te5þc2O
Te6ð1�εÞ

� �
ð31Þ

uð2Þ
γð2Þ

" #
¼ c3M

TMþNTNþc4O
TO

� ��1
c3M

Te4þc4O
Te6ð1�εÞ

� �
ð32Þ

where M¼ ½K A;DT
� �

e1�, N¼ ½K B;DT
� �

e2�, and O¼ ½K C;DT
� �

e3�.
It can be noted that the solution of nonlinear LST-KSVC requires
inversion of matrix of size ðlþ1Þ � ðlþ1Þ twice. Therefore, to
reduce the computation cost, the Sherman–Morrison–Woodbury
(SMW) formula [22] is used to recast (31) and (32) as

uð1Þ
γð1Þ

" #
¼ � Z�ZNT I

c1
þNZNT

� ��1

NZ

 !

� c1N
Te5þc2O

Te6ð1�εÞ
� �

ð33Þ

uð2Þ
γð2Þ

" #
¼ F�FMT I

c3
þMFMT

� ��1

MF

 !

� c3M
Te4þc4O

Te6 1�εð Þ
� �

ð34Þ

where Z ¼ ðMTMþc2O
TOÞ�1 and F ¼ ðNTNþc4O

TOÞ�1 can be
found using SMW formula as

Z ¼ 1
c2

Y�YMT c2IþMYMT
� ��1

MY
� �

ð35Þ

F ¼ 1
c4

Y�YNT c4IþNYNT
� ��1

NY
� �

ð36Þ

here Y ¼ ðOTOÞ�1. Regarding to [11,15], we use a regularization
term αI;α40 to Y to take care of problems due to the possible ill-
conditioning of OTO.

Y ¼ 1
α

I�OT αIþOOT
� ��1

O
� �

ð37Þ

3.3. Classification decision rule

As shown in Sections 3.1 and 3.2, LST-KSVC evaluates all
training points into the “1-versus-1-versus-rest” structure with
ternary output {�1, 0, þ1}. For a new testing point xi, we
determine its class label by the following decision function in
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the linear case:

f ðxiÞ ¼
þ1 if xiwð1Þ þebð1Þ4�1þε
�1 if xiwð2Þ þebð2Þo1�ε
0 otherwise

8><
>: ð38Þ

In the case of nonlinear LST-KSVC, the corresponding decision
function is designed as

f ðxiÞ ¼
þ1 if K xi;D

T
� �

uð1Þ þeγð1Þ4�1þε

�1 if K xi;D
T

� �
uð2Þ þeγð2Þo1�ε

0 otherwise

8>>><
>>>:

ð39Þ

In the “1-versus-1-versus-rest” structure, the proposed method
constructs K(k-1)/2 LST-KSVC classifiers for K-class classification.
Each (i,j)-LST-KSVC is trained over all the pattern set while
considering “specialized training” on two classes from ensemble
[19,20]. The labels “þ1”, “�1”, and “0” are assigned to samples of
class(i), class(j), and all remaining classes, respectively. For a new
testing point xi, a vote is given to the class(i) or class(j) based on
which condition is satisfied. Finally, the given testing point xi is
assigned to the class label that gets the most votes.

3.4. Computational complexity

It has been shown that the computational complexity of SVM is
Oðl3Þ and TWSVM is Oðl3=4Þ, where l is the total size of training data
points, which implies that TWSVM is approximately 4 times faster
than SVM [11]. As it has been discussed in [20], the learning run-time
of Twin-KSVC is approximately 4 times faster than K-SVCR.

The linear LST-KSVC completely solved with just two matrix
inversions with order of ðmþ1Þ � ðmþ1Þ where m is the dimen-
sion of the input space. The computing time of LST-KSVC is related
to the sample dimensionality ðmÞ. However, in Twin-KSVC, it is
related to the training set size ðlÞ where m{l.

In nonlinear LST-KSVC , it can be found that the inverses of the
matrices with size ðlþ1Þ � ðlþ1Þ is required. Sherman–Morrison–
Woodbury (SMW) [22] formula have been utilized to reduce the
computational cost. We show that formula (31) can be solved by
(33), (35) and (37) using three inverses of smaller dimension
ðl1 � l1Þ, ðl2 � l2Þ and ðl3 � l3Þ.

In addition, the rectangular kernel technique [23] in nonlinear
least squares algorithm [15,16,21] and nonlinear LST-KSVC have
been utilized to reduce the computational cost. Rectangular kernel
technique reduces the l� l dimensionality of kernel matrices to a
much smaller l� l where l is small as 1% of l. It is worth
mentioning that the reduced kernel technique slightly affects on
computational time of Twin-KSVC, TWSVM and K-SVCR since in
QPPs, the computing time is related to the number of training set.

4. Numerical experiments

Artificial, image (face [24]), several publicly UCI [25] and NDC
data generator [26] datasets are used to show the ability of our
LST-KSVC. All experiments except those shown in Table 5, have
been implemented in Matlab 7.9 on a PC with system configura-
tion Intel core2 Duo CPU at 2.53 GHz with 4 GB of RAM , and
Windows 7 operating system. The results of Table 5 have been
utilized from a PC with system configuration Intel Core i7 CPU

Fig. 2. Illustration of LST-KSVC with different ε insensitivity levels for linear kernel; (a) ε¼0.05; (b) ε¼0.10; and (c) ε¼0.15.
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3.40 GHz and 14 GB RAM. For resolving QPPs to obtain the optimal
solution “quadprog.m” function is utilized. In the implementation
of our LST-KSVC, as LS-TSVM [15] and LSPTSVM [16], the involved
system of linear equations is realized by MATLAB operation “n”.

4.1. Artificial dataset

To illustrate the effect of ε parameter on the final classification
results, a two-dimensional artificial data set has been generated with
45 patterns equally distributed in three classes. Fig. 2 and 3 show
three possible i-versus-j-versus rests LST-KSVC and the final decision
functionwith ternary output {�1, 0, þ1} when the insensitivity level

(ε) is increased. Linear kernel and polynomial kernel of degree 4 have
been used in Figs. 2 and 3 respectively. In the case of i-versus-j-
versus-rest sub figures; white, black and gray regions belong to class
i, j and the rest classes respectively and in final classification sub
figures black region does not belong to any class. We can observe
that ε (insensitivity) parameter, which is in the constraints of the
0-labelled patterns, has a high effect on optimal hyperplane deter-
mination. It is evidence that the optimal value of ε is dependent on
dataset that is similar to the C parameter in SVM.

4.2. Face database

Illumination variation is one of the challenging issues in face
recognition. We conducted our method in face Illumination variation.
Two popular databases Yale B and Extended Yale B [24] have been
used for evaluation. In our experiments, only 64 frontal images per
person under different illumination conditions are considered. After
combining the Extended Yale B with the Yale B, there are 2414
images of 38 subjects named as the Completed Yale B. The images are
divided into 5 subsets according to the light source direction and the
camera axis. In this section, each subset is called a lighting class. We
directly use the cropped and aligned images provided by [27], the
size of images is 192�168 pixels. The lighting class of each test face
image is estimated by using TWSVM, Twin-KSVC and LST-KSVC.

Similar to [27], discrete cosine transform (DCT) was applied to
extract proper features. PCA was applied for reducing the dimen-
sions of the features into 20, 50, 100, and 150. The optimal
parameters are selected by 10-fold cross validation method. The
classification accuracy and training time of different methods with
linear kernel are reported in Table 1.

Fig. 3. Illustration of LST-KSVC with different ε insensitivity levels for polynomial kernel; (a) ε¼0.15; (b) ε¼0.35; and (c) ε¼0.45.

Table 1
Performance comparison on face datasets.

Dataset TWSVM ðc1 ; c2Þ Twin-KSVC ðc1; c2; εÞ LST-KSVC ðc1 ; c2 ; εÞ
Acc7Std Acc7Std Acc7Std
Time (s) Time (s) Time (s)

Face-20 2�1 ;21 2�3;20 ;0:4 23 ;2�5, 0.25
63.20976.33 65.08371.67 66.32571.09
27.0486 5708.6 0.0110

Face-50 25;23 2�5;21 , 0.2 24 ;20, 0.13
73.95473.9 74.83170.27 77.29871.39
24.4925 5558.9 0.0656

Face-100 21;23 21 ;2�5, 0.1 23 ;2�5, 0.3
84.31475.9 87.73473.35 86.03271.45
19.2034 2286.4 0.0717

Face-150 21;23 25 ;2�6, 0.2 25 ;2�5, 0.2
87.73275.1 89.07270.51 89.970.10
18.6568 1157.7 0.3208
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As it is shown, LST-LSVC performed several orders of magni-
tude faster than TWSVM and Twin-KSVC on all dimensions of face
datasets while the accuracy has been kept similar to other
methods.

4.3. UCI datasets

In the third experiment, we conduct some experiments on nine
benchmark datasets: teaching evaluation, Iris, Wine, Soybean,
Ecoli, Glass, Car, Balance, and Dermatology from the UCI machine
learning Repository [25].

4.3.1. Parameter selection
It is clear that the performance of SVMs and TSVMs methods

depends heavily on the choices of parameters [20]. In the experi-
ment, 5-fold cross validation and the Gaussian kernel function
kðxi; xjÞ ¼ expð� Jxi�xj J2=γ2Þ are selected to evaluate the perfor-
mance of different multiclass classification. The optimal values for
the parameters were found by the grid search method. In Twin-
KSVC and LST-KSVC, we set c1 ¼ c3 and c2 ¼ c4 to reduce the
computational complexity of parameter selection. The optimal
values for c parameters in the all methods were selected from
the range of f2iji¼ �4; �2;0;1;2;4;6;8g and Gaussian kernel
parameter γ was selected from f2iji¼ �4; �2;0;2;4;6;8g.

In K-SVCR, the optimal value of parameter ε ranged from set
f0:1;0:3;…;0:9g but in Twin-KSVC and LST-KSVC this parameter
was set to a small value and chosen from set f0;…;0:4g. The result
of the former three methods comes from [20].

4.3.2. Result comparisons and discussion
From the result of Table 2, it is found that the performances of

Twin-KSVC and LST-KSVC are better than that of the original
TWSVM. It emphasizes the necessity of designing multi-class

TWSVM base model for the multi-class classification. It also
reveals that the classification accuracy of LST-KSVC and Twin-
KSVC is almost the same except for the Car, Balance, and Derma-
tology data sets.

There are two kinds of constraints in each QPP of Twin-KSVC
(focused class and other class). In general, the number of samples
of focused class is smaller than class “other”. It becomes worse in
imbalanced data set. In addition, it is not easy to take into account
unequal misclassification costs ðc1; c2; c3; c4Þ in the large samples as
well as large class number datasets. So, Twin-KSVC may lead to
suboptimal solutions in this situation [28].

Different classification techniques employ different loss func-
tions to get better classification accuracy [29]. Twin-KSVC mini-
mizes the hinge loss function and LST-KSVC uses the least square
(LS) loss function. LST-KSVC does not have quadratic programming
problem (QPP) and classification solution is learned by two linear
equations. It seems that LST-KSVC is able to reduce the above-
mentioned problems in Twin-KSVC by using analytical solution.

Characteristics of UCI datasets summarized in Table 3. The class
imbalance of the datasets is indicated by the high ratio between
the number of instances of the majority class and the minority
class. The scale of search space for finding the optimal misclassi-
fication costs is defined by the number of samples � class. For Car
dataset, the imbalance ratio and scale of search space is 18.91 and
6912, respectively. The mentioned parameter is much larger than
other UCI datasets where the accuracy improved by 21.83% in LST-
KSVC. The Dermatology dataset shows that the imbalance ratio
and scale of search space is 5.63 and 2148, respectively. In this
case, the accuracy improved by 10.92%. In the Teaching evaluate,
Iris, Wine, and Soybean UCI datasets the imbalance ratios are
much smaller, so the classification accuracy of LST-KSVC and Twin-
KSVC is almost the same.

By keeping same or better accuracy, LST-KSVC performed
several orders of magnitude faster than K-SVCR, TWSVM and

Table 2
Performance comparison of Multi-class algorithms with RBF kernel.

Dataset K-SVCR TWSVM Twin-KSVC LST-KSVC
ðc1 ; c2 ; γ; εÞ ðc1 ; c2 ; γÞ ðc1 ; c2 ; γ; εÞ ðc1 ; c2 ; γ; εÞ
Acc7std Acc7std Acc7std Acc7std
Time (s) Time (s) Time (s) Time (s)

Teaching evaluation 20 ;2�2 ;2�4 ;0:9 26;26 ;2�2 20 ;2�2 ;2�2;0:2 2�4 ;23 ;24;0:1
151�5�3 64.47726.91 69.76728.33 71.01723.07 72.3375.38

1.8578 0.2552 0.2888 0.0087
Iris 22 ;22;2�2 ;0:5 2�2 ;20 ;2�2 20 ;20;22 ;0:2 25 ;25 ;2�1;0:15
150�4�3 98.0 72.26 96.00 73.26 98.13 72.66 99.2771.01

1.9864 0.2580 0.3037 0.0193
Wine 24 ;24;24 ;0:1 20;26 ;2�2 24 ;20;26 ;0:1 28 ;24 ;28 ;0:12
178�13�3 97.70 71.12 92.22 74.77 97.75 73.24 94.2773.77

2.7624 0.2413 0.8916 0.0125
Soybean 22 ;20;22 ;0:1 20;2�2 ;22 22 ;2�4 ;22 ;0:2 22 ;27 ;24 ;0:2
47�35�4 100.0 70.0 100.070.0 100.070.0 100.070.0

0.2935 0.2507 0.4022 0.0032
Ecoli 20 ;20;26 ;0:5 2�4 ;2�2;26 20 ;22;24 ;0:2 21 ;2�5 ;24;0:4
327� 7� 5 79.32 74.62 78.22 75.24 86.36 74.51 88.8971.16

75.39 1.1499 5.5621 0.2007
Glass 20 ;22;2�4 ;0:1 2�2 ;28 ;2�4 20 ;20;22 ;0:2 22 ;2�1 ;26;0:2
214�9�6 57.85 79.56 52.86 75.08 63.21 74.83 65.7672.00

32.1611 2.6340 11.5605 0.1179
Car 20 ;20;24 ;0:3 2�2 ;20 ;24 2�2;26 ;24 ;0:2 26 ;2�5 ;22;0:1
1728�6�4 71.8 75.28 71.8 74.68 72.3 75.04 94.1370.17

6477.1 306.7994 128.1238 13.5458
Balance 20 ;20;23 ;0:4 2�2 ;22 ;24 22 ;23;26 ;0:2 2�3 ;23 ;24;0:3
625�4�3 89.35 76.02 90.42 75.69 90.33 75.48 96.83 75.18

56.88 8.3999 50.5070 0.2910
Dermatology 2�1;2�1 ;22 ;0:4 2�2 ;22 ;22 21 ;2�2 ;22 ;0:1 20 ;25 ;25 ;0:1
358�34�6 84.18 72.13 84.08 72.06 84.26 72.01 95.1871.54

584.14 1.6727 7.1127 0.3523
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Twin-KSVC on all datasets. It is worth mentioning that LST-KSVC

does not require any special optimizers whereas others need. In
this experiment, fast interior point solvers of Mosek optimization
toolbox for MATLAB have been used. For Car dataset our method is
able to train the classifier in 13.5 s whereas the training time of
Twin-KSVC, TWSVM and K-SVCR on the same dataset are 128.1 s,
306.7 s and 6471.1 s respectively. The results undoubtedly prove
the boost of computational efficiency of LST-KSVC over K-SVCR,
TWSVM, and Twin-KSVC.

4.4. NDC datasets

To further show the advantage of our LST-KSVC in the training
speed, we have compared the CPU time in the training process of
our LST-KSVC with SVCR, TWSVM and Twin-KSVC on large
datasets. We extended the NDC database generator for multi class
classification [26] and produce several 3 class datasets with
the size increased from 102 to 106, while the feature number
was fixed at 32. The NDC datasets are divided into a training set
and prediction set. We report the training speed and prediction
accuracy, respectively.

The parameters of all algorithms have been fixed in advance
(c1;2;3;4 ¼ 1, γ¼0.125 and ε¼0.1). For the NDC dataset with 10k,
50k and 100k samples, we have employed rectangular kernel [23]
with 1%,1% and 0.1% of total data points respectively. According to
Table 4, we found that when the training size increases, the
proposed LST-KSVC becomes much faster than SVCR, TWSVM
and Twin-KSVC. For example, LST-KSVC easily classified 100k
patterns with 32 features in 1.16 s.

Table 5 shows how different sample ratios affect on prediction
accuracy. Although the parameters of LST-KSVC have been fixed in
advance (c1;2;3;4 ¼ 1, γ ¼ 2�17 and ε¼0.3), but results confirm that
using rectangular kernel not only makes large dataset tractable,
but it also leads to improved generalization by avoiding data over
fitting [23].

5. Conclusion

Twin K-class support vector classification (Twin-KSVC) is a
novel multi-class method based on twin support vector machine
(TWSVM). In this paper, we formulate a least squares version of
Twin-KSVC called as LST-KSVC for multi-class classification. This
formulation leads to extremely simple and fast algorithm. LST-
KSVC, similar to the Twin-KSVC, evaluates all the training data into
a “1-versus-1-versus-rest” structure, so it generates ternary output
{�1, 0, þ1}. In LST-KSVC, we solve two primal problems by
solving just two systems of linear equations. This allows LST-
KSVC to classify large datasets in shorter time, that is not true for
Twin-KSVC which requires large training time. Computational
results on Face, UCI and NDC datasets demonstrate that our LST-
KSVC obtains classification accuracy comparable to that of Twin-
KSVC, but at reduced computational effort. There are four para-
meters in our LST-KSVC same as Twin-KSVC, so the parameter
selection is a practical problem and should be addressed in the
future.
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