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Abstract: [llumination variation is a challenging issue in face recognition. In many conventional approaches the low-frequency
coefficients are usually discarded in order to compensate the illumination variations, and hence degrade the visual quality. To deal
with these problems, an adaptive normalisation-based method is proposed in this study. Each image is normalised according to its
lighting attribute by mapping the low-frequency components to the normal condition instead of discarding them by applying a
novel statistical concept called light mapping matrix. The method preserves the low-frequency facial features, maximising the

intra-individual correlation and improves the visual quality of face images in different lighting conditions.

1 Introduction

[llumination normalisation is one of the traditional
approaches used to eliminate the effects of unfavourable
lighting conditions, which normalises the face image before
recognition. Many approaches are proposed to perform
illumination normalisation in the past couple of decades.
Conventional algorithms such as histogram equalisation
[1, 2], logarithmic transformation [2-4] and contrast
modification [5-7] are widely used in computer vision and
image processing for image enhancement. Jobson ef al. [8]
propose single-scale retinex (SSR) approach based on
reflectance-illumination model which enhances image by
improving the local contrast. Chen et al. [9] introduce
logarithmic total variation model with the aim of estimating
the large-scale illumination components of a face image and
remove them to get the final normalised components.
A different method of normalising small-and large-scale
(S&L) features of a face image is proposed in [10].
Accordingly, the illumination normalisation is mainly
performed on the large-scale features. In another study, a
lighting aware preprocessing (LAP) is presented in [11] that
estimate the lighting attributes of a face image by using
spherical harmonic model, and then performs an adaptive
preprocessing according to lighting attributes. Ezoji and
Faez [12] present an approach for illumination-invariant
face recognition based on matrix polar decomposition. In
addition, several morphological methods [13, 14], which
divides the isolated regions by a threshold, are proposed for
extracting the shadow regions and eliminating them.

Chen et al. [9] introduce an approach which initially
discards the low-frequency coefficients to compensate the
illumination variations, since the illumination variations
mainly lie in the low-frequency band. Based on this fact,
various methods on discarding low-frequency coefficients in
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various transformed domains are proposed. Vishwakarma
et al. [15] proposed the rescaling low-frequency DCT
coefficients to lower values. Perez and Castillo [16] propose
a similar method which applies Genetic Algorithms to
search appropriate weights to rescale the low-frequency
DCT coefficients as well. Furthermore, Nie et al. [17] and
Zhichao and Joo [18] propose discarding coefficients,
respectively, in discrete wavelet transform (DWT) and
block-wise Walsh-Hadamard transform (WHT) instead of
DCT to eliminate the negative effects of illumination
variations. Preda and Vizireanu [19] use the wavelet
coefficients in luminance component for watermark
embedding. In all the above-mentioned methods, the fixed
elements in frequency domain are discarded or changed
with the same scale in order to compensate illumination
variations, whereas Dabbaghchian et al. [20] claimed that
the discrimination power of all the coefficients is not the
same, and some of them are more discriminant than others.
Dabbaghchian et al. [20] proposed a statistical approach to
select discriminant features which have small variation
within a class, and large variation between the classes.

On the other hand, most of the conventional approaches
preprocess all the face images in the same way without
considering the specific lighting in each face image.
However, in most cases the low-frequency coefficients are
discarded in order to compensate the illumination
variations. In this paper, we focus on developing a novel
method to adjust each of the low-frequency components
separately depending on the lighting conditions in image.
Accordingly, the proposed method preserves the
low-frequency features of the face and not only improves
the performance of face recognition, but also increases the
correlation between the images of an individual in different
lighting conditions. The main objectives of this paper are as
follows:
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1. Adaptive preprocessing for each testing image based on its
lighting condition.

2. Preserving and adjusting the low-frequency facial features
instead of discarding them.

3. Improving visual quality of reconstructed images.

In this paper, a light mapping matrix (LMM) is introduced
for adaptive illumination compensation. The rest of the paper
is organised as follows: Section 2 describes the illumination
compensation approach in detail. Experimental results and
discussions are presented in Section 3. Finally, the
conclusion is given in Section 4.

2 lllumination normalisation in logarithm
discrete cosine transform (DCT) domain

2.1 Feature extraction

Logarithm transform is used in image enhancement to expand
the values of dark pixels [1, 3]. Hence, as shown in [9],
illumination compensation can be implemented in the
logarithm domain.

On the other hand, it is found that the illumination
variations mainly lie in the low-frequency components of a
face image [9]. DCT is a powerful transform in image
processing applications, including face recognition [15, 20],
which is used to convert the spatial domain of an image
into the frequency one. The two-dimensional (2D) M x N
DCT for original image f(x, y) is defined as follows

M—-1N-1

F(u,v) = aa(v) Y Y f(x, y)cos
x=0 y=0
w2y + 1)v

X COST (1)

7(2x + Du
2M

where
{ 1/v/M,
a(u) =
V2/M,

{ 1/VN,
a(v) =
V2/N,

u=20

l<u<M-1
)
v=20

I<v<N-1

In the proposed approach, the DCT is used to obtain the
frequency components of the face image in logarithm
domain. The way of selecting DCT coefficients is shown in
Fig. 1. Dy represents the number of first row of DCT
coefficients that is used to illumination compensation; its
default is 20.

Discarding the low-frequency of DCT coefficients in the
logarithm domain is in expense of losing some vital
low-frequency facial features. The proposed illumination
compensation method normalises the low-frequency
components instead of discarding them.

2.2 Basis of LMM

In normal lighting conditions, variation of low-frequency
coefficients for an individual face image is very small and
ignorable. So the variance of low-frequency DCT
coefficients of specific individuals under normal lighting
conditions in successive iteration is almost the same.
Empirical study shows that by increasing the angle of
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Fig. 1 Way of selecting DCT coefficients

lighting for the same individuals the variance increases
significantly.

To estimate the LMM, the ratio of coefficient variation in
each lighting-class to its mnormal lighting-class (first
lighting-class) is used. The following steps describe creating
LMM.

First, various images from lighting-classes are randomly
selected as training images. Then, the frequency matrix * A’
is generated, for all training images by applying 2D-DCT
transform on logarithmic images.

Furthermore, the average of all training frequency matrices
in normal lighting-class (class 1) is found as follows

S
1 1
1 _ 2 : 1
MU = S—l - AU(S) (3)

where A° indicate the DCT transform matrix of the input
image of lighting-class ¢; and S, is the number of training
images in lighting-class c.
Afterward, the variance of each coefficient to the normal
lighting is computed for each class
s,

c

Vi =g (450 - m)"

¢ 5=

c=1,2...,5 (@

Finally, the LMM for each lighting-class is estimated as
follows

c c 1 172
LMMU.=<VU./V,.J.) L e=2.....5 (5)

where ¢ indicates as the lighting-class number.

Light mapping, would be performed on the coefficients
whose variance is more than that of the normal class.
Hence, the matrix elements of the LMM with smaller
amounts of one are replaced with ‘one’

1, LMM; <1

LMM;; = {LMMij, LMM; > 1 (6)

Fig. 2 shows the obtained LMM elements of four
lighting-classes of completed Yale B image data set. Only
the first 25x25 elements which correspond to the
low-frequency DCT  coefficients are shown for
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Lighting Class 2

Lighting Class 3

Fig. 2 LMMs in different lighting-classes

lighting-classes 2-5. The LMM elements for the normal
lighting-class are equal to ‘one’.

2.3 Proposed illumination compensation method

The overview of the proposed adaptive light mapping (ALM)
method is shown in Fig. 3. The method consists of two stages.
In the first stage, the lighting-class of the input image is
estimated based on the low-frequency components. Then, in
the second stage, LMMs will be applied on images with
unknown lighting conditions for illumination compensation.
The detail of each stage is explained in the following sections.

2.3.1 Lighting-class estimation: Since illumination
variations mainly lie in low-frequency components, the
lighting-class of a face can be estimated by these
coefficients. So we use the first DCT coefficients with Dyg;g
=20 to learn the lighting-classes of face images.

LS-TSVM is considerably fast and successful variant of
twin SVM, which perform the classification by using two
non-parallel hyperplanes unlike conventional SVMs which
utilise a single hyperplane [21]. Recent and on growing
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Fig. 3 Block diagram of the proposed ALM approach
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research [21, 22] shows that LS-TSVM is very powerful
and reaches better accuracy rate in classification application
with less time complexity. It only needs to compute two
linear equations instead of solving the quadratic
programming problems (QPPs).

In this paper, we have a multi-class LS-TSVM
classification. Therefore the binary LS-TSVM classifier is
applied on each pair of classes. In this case, we would have
N(N — 1)/2 pairs of non-parallel hyperplanes (which N is
the number of classes), and the lighting-class is determined
by voting of binary classifiers.

2.3.2 Adaptive illumination compensation: After
estimating the lighting-class of images, the corresponding
LMM is used to compensate the undesirable lighting effects
of the face image.

Suppose that ‘I*™® is a probe image with an unknown
lighting condition, then the matrix ‘4”°"® is defined as
2D-DCT transform of ‘I*™® in logarithm domain.

Accordingly, the lighting-class of the probe image is
determined by applying LS-TSVM on low-frequency

Illumination
Compensation
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Fig. 4 Light mapping for a hypothetical class P
A: normal lighting-class and N: adaptive light mapping of class P

components of ‘47>

¢ = TSVM (A};“’be) %)

Then, the illumination compensation is performed by
adjusting the low-frequency component of DCT as follows

®)

Fig. 4 shows an example of light mapping for hypothetical
class P. Assuming that the class A is the normal
lighting-class, class N shows the result of illumination
compensation for class P, Which is calculated by (8).

www.ietdl.org

Table 1 Result of classification of lighting-classes by different
learning methods.

Methods Lighting-class/(no. of images)
5/ 4/ 3/ 2/ 1/
(714)  (526)  (455)  (456)  (263)
Naive Bayes [24] 91.47 82.12 78.48 73.51 67.11
SVM [24] 94.70 88.44 84.61 78.99 65.15
LS-TSVM (¢, c; = 95.85 89.21 87.56 92.04 94.07
0.075)

3 Experiment results

3.1 Databases

Yale B [23] and extended Yale B [8] are two popular
databases used for the evaluation in this study. In Yale B
Face database, there are 64 different illumination conditions
for ten persons in nine different poses. The images are
divided into five subsets based on the angle between the
lighting direction and the camera axis. The extended Yale B
database consist 16 128 images of 28 persons with the same
condition as Yale B.

In our experiments, only 64 frontal images of per person
under different illumination conditions are considered. After
combining the extended Yale B with the Yale B, there are
2414 images of 38 subjects named as the completed Yale
B. The images are divided into five subsets according to the
light source directions and the camera axes (that are 0-12°,
13— 25°, 26— 50°, 51-77°, >77°). The cropped and aligned
images provided by Chen et al. [9] are directly used. Here,
the size of each image is 192 x 168. Images of subset 1 are
used as the gallery, and the rest of images as probes.
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Fig. 5 Error rate on the completed Yale B database with different D j;q
a DCT discarding
b Adjusting coefficient with proposed LMM
¢ Compare overall results of Figs. 5a and b
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Fig. 6 Reconstructed images with different D

a Ddis =5

b Ddis =20

c Ddis =35

d Ddis =50

(I) original image; (II) DCT discarding; and (III) proposed approach

Standard correlation coefficient between the probe and the
gallery images is used for recognition phase. In the
proposed method because of the extreme illumination
variations of lighting-classes 4 and 5, the adjusted
coefficients in these classes are used with a weight of 0.4 to
calculate the correlation.

3.2 Lighting-class estimation

As previously mentioned, the first DCT coefficients (with
Dgis =20) are used in LS-TSVM to learn and then to
estimate the lighting-classes. To evaluate the performance
of LS-TSVM, ten-fold cross validation method is used. The
accuracy of LS-TSVM method in completed Yale B is
compared with Naive Bayes and SVM [24], which are two
powerful methods for classification, in Table 1. F-measure
(the harmonic mean of precision and recall) is used to
evaluate the accuracy

precision x recall

F=2 ®

precision + recall

The results show the efficiency of LS-TSVM in lighting-class
estimation in comparison to other classification methods. This

Table 2 Comparison between different illumination
compensation methods
Method Subset

5 4 3 2
raw images 4.3 12.5 20.8 87.4
Hist.equal. (HE) 9.6 15.1 32.2 89.5
log correlation 7.8 16.7 57.4 86
LTV [25] 78.3 76.1 79.4 99.8
RLS log-DCT [26] 84.4 87.6 87.1 100
ARHE + EdgeE [27] 80.5 90.4 84.4 100
SSR [8] 77.3 78.7 99.1 100
S&L(NPL-QI) [10] 69.1 87.0 96.7 100
PP + LTP/DT [28] 97.2 99.2 100 100
DCT discarding (Dg;s = 20) 98.1 98.8 100 100
proposed LMM (Dy;s =20) 98.8 99.3 100 100
518
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Table 3 Results of the proposed illumination compensation
based on lighting-class estimation

Method Subset

5 4 3 2
Naive Bayes + LMM 89.7 91.3 91.4 99.3
SVM + LMM 87.7 93.7 95.3 84.1
LS-TSVM + LMM 97.8 98.6 98.3 99.2

is because of the ability of LS-TSVM to classify cross data set
(by using two non-parallel hyperplanes) over other classifiers.

Equation (10) shows the confusion matrix for LS-TSVM
classifier. As it is seen, the most errors occurred are
between the adjacent classes. However, it is inevitable
because of the vicinity of lighting angels in adjacent classes
and would not have much effect on the results of
illumination compensation

251 11 1 0 0
8 440 8 0 0

C=| 11 41 380 23 0 (10)
1 7 24 468 28
0 1 0 32 681

3.3 Adjusting DCT coefficients against discarding
them

[llumination variations and facial features are not separable in
frequency domain. Some illumination variations, especially
shadows and specularities, like some facial features lie in
the same frequency bands.

In most of the existing methods, for compensating these
variations, by discarding low frequency, some facial
information is also discarded [9].

Fig. 5a shows the error rate of discarding method,
simulation based on Chen’s approach in each
lighting-classes for different values of Dg;s. Although, Chen
et al. [9] showed that high performance can be still
obtained without these features, but with increasing
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Fig. 7 Intra-individual correlation in
a DCT discarding

different D, by

b Adjusting coefficients with the proposed LMM
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Fig. 8 Comparing overall intra-individual correlation in different

method in Dy, =20
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database size, the performance decreases. This is because of
limiting of features.

In the proposed method, the low-frequency facial features
are adjusted by mapping each feature to that of normal
lighting condition. In this way, it is possible to correctly
preserve the facial features as much as possible.

The error rate of the proposed method is calculated in each
lighting-class for different values of Dg;s as shown in Fig. 5b .
Fig. 5c provides the results of simulated Chen’s method and
the proposed approach on completed Yale B. As it is found,
both methods obtained their best results in Dg; = 20.

In Fig. 6, the reconstructed images obtained by DCT
discarding and the proposed method are shown for different
value of Dg;s. The results show that the proposed method is
able to preserve the more facial features in frequency domain.

Table 2 shows the results of some interesting approaches in
illumination compensation on completed Yale B. The last row

! '} '! T T r r T

; ; i - »=— class1

. ===w--- class2 |
H

—+— class3
|| 7 class4

Fig. 9 Average PSNR with respect to the original images in different D

a Raw images
b DCT discarding

¢ Adjusting coefficients with the proposed LMM

d Compare overall PSNR for Figs. 9a—c
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of Table 2 shows the face recognition rate obtained by the
proposed method. As it is found, the best results are
obtained by the proposed method for predefined
lighting-classes.

Table 3 shows the results of the proposed method when the
lighting-class estimation is found by some learning methods.
As it is seen, the classification error (as is shown in Table 1)
has affected on recognition rate in different subsets.The
results show the superiority of LS-TSVM+LMM in
illumination compensation based on lighting-class estimation.

3.4 Maximising intra-individual correlation

Ignoring the low-frequency facial features in illumination
invariant feature extraction methods, lead to decreasing the
correlation between the original gallery and the
reconstructed images of an individual as shown in Fig. 6a .
These methods also discard the low-frequency component
from gallery images applicable in identification.

One of the advantages of the proposed method is that, the
intra-individual correlation with the gallery images is
properly preserved in varying illumination; consequently,
there is no need to apply changes on the gallery images to
identify faces.

Fig. 7 shows the average correlation between the original
gallery images of each individual and the reconstructed
image of the same individual in different lighting-classes,
obtained by discarding method and proposed method for
different value of Dg;,.

As it can be found, the correlation coefficient is decreased
by increasing Dy;s in discarding method as shown in Fig. 7a.
On the other hand, this is incremental in the proposed method
as shown in Fig. 7b. Furthermore, it is converged to a constant
value for each lighting-class. In this regard, the proposed
method is also appropriate for face verification under
varying illumination, as it proposes the proper threshold for
each lighting-class. The average correlation obtained by
both methods in Dy =20 is compared in Fig. 8. As we can
see in Figs. 7 and 8, the significant improvement compared
to discarding method would be achieved.

3.5 Image quality evaluation

In this section, the quality of the reconstructed images is
evaluated by using the peak signal-to-noise ratio (PSNR)
which is one of the various objective evaluation algorithms
for measuring image quality [29] .

Fig. 9 shows the average PSNR results in different
lighting-classes  (with the exception of self-image
comparison in class 1). The higher PSNR represents the
closer similarity between reconstructed images and gallery.

As it can be seen, the proposed method has achieved the
better image quality (PSNR) in different lighting-classes.
Table 4 shows the average PSNR for different methods.

Table 4 PSNR results of reconstructed images by Dgy;s = 20

Methods Lighting class

1 2 3 4 5 Overall

original images 23.81 20.71 15.95 12.22 1286 15.97
DCT discarding 18.60 18.29 18.17 17.93 17.85 18.09
proposed LMM 23.81 21.09 20.76 20.28 20.16 20.88
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g | L‘ - J
Fig. 10 Normalised images with D, = 20

a Original image
b DCT discarding
¢ Proposed method

The proposed method represents an average PSNR growth
of 2.79 dB in comparison to discarding method.

In Fig. 10, the images of a person in different
lighting-classes are shown. The second and the third rows
show the reconstructed images by DCT discarding (Chen
method) and the proposed method, respectively . As it
shows, the clarity and the appearance of reconstructed
images are considerably improved in proposed approach.
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Fig. 11 Face recognition rate by
a SVM

b Naive-Bayes

¢ LDA in different lighting conditions
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3.6 Face recognition by different classifiers

As we can see from the experiments; the illumination
compensation method introduced in this paper can improve
the visual quality of face images, therefore it can be used as
one of the pre-processing of face images to improve the
face recognition results.

In this section we use several classifiers for face recognition
based on ALM. We evaluate their performance on Yale B
face database during two experiments.

First experiment : In this experiment, the seven images of
each person in normal lighting conditions (subset 1) are
applied to train the classifiers and the other images are used
for test.

We use of SVM, Naive-Bayes and LDA for face
recognition in different illumination and calculate the
recognition rate based on logarithmic images and the
reconstructed images (by ALM) for each classifier. Fig. 11
shows the results obtained by this experiment.

As can be seen in Fig. 11 in subsets 4 and 5 (which is
mostly due to the angle of lighting, shadows have more
severe), using the reconstructed images leads increasing
recognition rates in all classifiers. According to decrease of
recognition rate in subset 2, based on Naive-Bayes

1m M i 5
88.57 5714 ® Log_image = ALM_image
= 52868143
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Fig. 12 Face recognition rate
a SVM

b Naive-Bayes

¢ LDA in different lighting classes
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(Fig. 11b) and in subsets 2 and 3 based on LDA (Fig. 11c¢)
(which part of it is caused by classification error by
LS-TSVM), it can be concluded that by use of the proper
classifier we could ignore illumination compensation on
images with low illumination changes (e.g. subsets 2 and 3).

Second experiment: In this experiment, five subsets of Yale
B are considered as five independent lighting class and in
each class first five images is used for training and others
used for test. The recognition results obtained for each
subset by different classifier is shown in Fig. 12.

As we can see, using the reconstructed images leads to
improve the face recognition rates in different lighting
classes for all three classifiers.

4 Conclusions

In this paper, an ALM method as a preprocessing technique
for illumination compensation in logarithm DCT domain
was proposed. Most of the existing methods use the same
way to all the face images, and the low-frequency
coefficients are usually discarded in order to compensate
the illumination variations.

An adaptive normalisation for each image was applied
based on its lighting attribute estimated by LS-TSVM . The
low-frequency components of the image were mapped into
the normal lighting condition by LMM. In this way, the
low-frequency details of a face image were preserved as far
as possible and visual quality (PSNR) of face images in
different lighting conditions was improved.

The approach had some remarkable advantages: (i) the
ability to perform preprocessing on each image based on its
lighting condition, (ii) preserving the low-frequency facial
features by normalisation instead of discarding them and
finally (iii) improving the quality of reconstructed images.
Experimental results show the efficiency of the proposed
method in face recognition under different lighting
conditions on Yale B and extended Yale B face databases.
In our future work, we will focus on spatial shadow effects
as the lighting attribute to improve the performance.
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