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A B S T R A C T

In the present work, closed-form solutions for the linear and nonlinear stability of the magnetoelectric
nanoplate strips consisting of piezo-flexoelectric and piezo-flexomagnetic layers are presented. In the frame-
work of the nonlocal strain gradient and first-order shear deformation theories, magneto-electro-mechanical
responses are obtained for simply supported and clamped end conditions. Excellent agreements are observed
between the obtained results and the existing literature. The effect of several parameters on critical buckling
load and post-buckling path is investigated. Our outcomes reveal that the post-buckling load-carrying
capacity increases considerably in the case of a double-layer ME nano-plate strip compared to a single-layer
(piezo-flexoelectric and piezo-flexomagnetic) with the same thickness and length. Further, the post-buckling
deformation decreases with a decrease in initial electric voltage and an increase in initial magnetic potential.
The closed-form solutions and numerical results of this work are useful for future analyses and the design of
such nanostructures.
1. Introduction

Micro- and nano-electromechanical systems (MEMs/NEMs) have
been considered for various applications including sensors, actuators,
and energy harvesters on very small scales in the last decade. Cur-
rently, these systems are generally used in various industries such as
aerospace, information technology, telecommunications, and robotics.
Therefore, electromechanical coupling plays a key role in the appli-
cation of MEMs and NEMs (Zubko et al., 2013; Zhang et al., 2019;
Moradi-Dastjerdi et al., 2019).

One of the most famous electromechanical couplings is the piezo-
electric property, which reflects the response of an electric field to a
uniform strain. Similar to piezoelectrics, piezomagnetic materials can
release strain energy in the form of a magnetic field due to mechanical
strain (Eliseev et al., 2009; Kabychenkov and Lisovskii, 2019; Ebrahimi
and Karimiasl, 2018).

Many studies have shown that the presence of non-uniform strain,
or in other words strain gradient, can induce an electric field in the
dielectric material. Such a coupling is called the flexoelectric effect.
Unlike piezoelectricity, the flexoelectric effect exists in all materials
even with centrosymmetric crystal structures (Kundalwal et al., 2020;
Gupta et al., 2022). The flexoelectric effect is responsible for the
size-dependent electroelastic responses of piezoelectric nanomaterials,
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therefore, it should be considered to describe the electromechanical
coupling in these materials. Similar to flexoelectricity, the bending of
some materials due to the presence of flexomagnetic creates a magnetic
field. The magnetic polarization produced by the non-uniform strain
distribution is called the flexomagnetic effect (Majdoub et al., 2008;
Yang and Li, 2019; Zhang et al., 2019). The flexo-electric/magnetic ef-
fect has a great effect on the performance of structures at the micro and
nano scales, and ignoring this effect can cause numerous inaccuracies
in the calculations and evaluation of these structures (Kundalwal and
Gupta, 2022).

Among the various methods of supplying electrical energy from
various environmental energy sources, the use of magnetic energy and
its conversion into electricity has been given much attention (Ryu
et al., 2015). Magnetic energy can be absorbed through electromagnetic
devices made of coils and permanent magnets (Yuan et al., 2015) as
well as magnetoelectric (ME) composites (Kambale et al., 2014; Li et al.,
2007; Zhang et al., 2009). ME composite materials are an important
class of smart materials that combine piezoelectric and piezomagnetic
phases.

Most of the articles on ME composites are related to multilayers
and particles due to the potential applications of these structures in
transducers (Zhang et al., 2020), magnetic field sensors, actuators,
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Nomenclature

(𝑁𝑥𝑥,𝑀𝑥𝑥, 𝑄𝑥, 𝑁𝑥𝑥𝑧) Stress resultants
(𝑢0, 𝑤0) Displacements of a point on the mid-plane
𝜂𝑖𝑗𝑘 Strain gradient components
𝑙 Strain gradient parameter
 Enthalpy density
𝜇 = (𝑒0𝑎)2 Nonlocal parameter
𝜇3113 Coefficient of flexoeffect
𝜈 Poisson’s ratio
𝛷 Electric potential
𝜙 Rotation of a transverse normal about the

𝑦-axis
𝜓 Scalar magnetic potential
𝛹1 External magnetic potential
𝜎𝑖𝑗 Stress components
𝜏𝑥𝑥𝑧 Higher-order stress
𝜀0 Permittivity of vacuum
𝜀𝑖𝑗 Strain components
𝑎33 Components of magnetic permeability
𝐴55 Extensional stiffness coefficient
𝐵𝑧 Magnetic induction vector
𝐶55 Shear modulus
𝑑31 Coefficient of piezomagnetic
𝑒31 Coefficient of piezoelectric
𝐸𝑧 Electric field
𝑔113113 Component of the strain gradient elasticity

tensor
ℎ Thickness of a plate strip
𝐻𝑧 Component of magnetic field vector across

the thickness
𝐾𝑠 Shear correction factor
𝐿 Length of nano-plate strip along the 𝑥-axis
𝑃𝑧 Electric polarization
𝑄𝑖𝑗 Coefficients of plane stress reduced stiffness
𝑢 Axial component of the displacement field
𝑉1 External electric voltage
𝑉𝑧𝑧 Higher-order electric field
𝑤 Transverse component of displacement field

magnetic energy harvesters (Ge et al., 2018; Zhang et al., 2021),
high-speed memories (Bibes and Barthélémy, 2008), data storage de-
vices, miniature antennas (Cheng et al., 2018), and for powering de-
vices and stimulating cells, and tissues by applying external magnetic
fields (Ribeiro et al., 2016; Shi et al., 2021).

To the best of the authors’ knowledge, no research has yet been
reported on the buckling of magnetoelectric nanostructures by simul-
taneously considering the effects of flexoelectric and flexomagnetic
properties. Therefore, in this section, we will have an overview of some
of the related studies.

Using the finite element method, Kumaravel et al. (2007) investi-
gated the linear thermal buckling and free vibration behavior of the
layered and multiphase magneto-electro-elastic beam with clamped
boundary conditions. Li (2014) studied the buckling and free vibrations
of magneto-electro-elastic nanoplates based on the nonlocal Mindlin
theory. They ignored the in-plane electric and magnetic fields. Ansari
and Gholami (2016) used nonlinear nonlocal first-order shear defor-
mation theory (FSDT) to analyze the post-buckling of magneto-electro-
thermo-elastic nanobeams. Ebrahimi and Barati (2016b) studied the
buckling of functionally graded magneto-electro-elastic nanoplates lo-
cated in an elastic Pasternak medium based on the modified nonlocal
2

four-variable plate theory. They also evaluated the buckling behavior
of curved magneto-electro-elastic nanobeams based on the nonlocal
elasticity theory (Ebrahimi and Barati, 2016a).

Ansari and Gholami (2017) evaluated the buckling and post-
buckling of magneto-electro-elastic nanoplates under thermal load-
ing through the nonlocal form of the Mindlin plate theory. Buck-
ling analysis of piezo-magnetoelectric nanoplates in a hygrothermal
environment, electric voltage, and external magnetic potential was
investigated by Malikan and Nguyen (2018) and the effect of different
parameters on the critical buckling load was studied. Żur et al. (2020)
investigated the free vibrations and buckling of functionally graded
magneto-electro-elastic nanoplates based on the nonlocal modified si-
nusoidal higher-order shear deformation theory. The forced oscillation
equation of rectangular sandwich plates at the micro and nano-scale
using a modified dynamic version of Hamilton’s principle including
electric and magnetic parts was established and the closed-form so-
lution for simply supported boundary conditions was obtained using
Navier’s method.

Modeling of thermal post-buckling behavior of magneto-electro-
elastic multilayer beams with the Timoshenko theory and considering
von-Kármán nonlinear strains was done by Zhang et al. (2021). The
first research in the field of magnetoelectric nanostructures consisting
of a piezo-flexomagnetic (PFM) layer and a piezo-flexoelectric (PFE)
layer was done by Shi et al. (2021). They obtained the governing
equations and boundary conditions in tensorial form for a nanobeam
considering an Euler–Bernoulli beam theory. They investigated the
magnetoelectric response of double-layer nanobeams and presented a
closed-form expression for the magnetoelectric voltage, demonstrating
the necessity of considering the flexo-electric/magnetic effects in the
modeling of ME nanocomposites.

Liang et al. (2015) investigated the surface effects and flexoelec-
tricity on buckling and vibrations of piezoelectric nanowires based on
the Euler–Bernoulli theory. They showed that the effects of surface
piezoelectricity and flexoelectricity play an important role in determin-
ing the critical buckling voltage. Electromechanical and size-dependent
buckling behavior of PFE nanobeams based on nonlocal theories and
surface elasticity were studied by Ebrahimi and Barati (2018). They
assumed that these nanobeams are in contact with a two-parameter
elastic support (consisting of an infinite linear spring and a shear layer).
They investigated the effect of nonlocal parameter, surface effects,
geometrical parameters, elastic support, and boundary conditions on
the buckling of flexoelectric nanobeams.

Ebrahimi and Karimiasl (2018) studied surface and flexoelectric
effects on the buckling of piezoelectric sandwich nanobeam with the
Winkler–Pasternak elastic support. Their results showed that especially
in small thicknesses, the nonlocal parameter reduces the critical load
and flexoelectricity increases the buckling load. Ebnali Samani and
Tadi Beni (2018) investigated the mechanical and thermal buckling of
flexoelectric nanobeam based on the Timoshenko model and consider-
ing the geometric nonlinear effects. Their results showed that at the
nano-scale, the flexoelectric effect strongly affects the piezoelectricity,
and flexoelectric materials can be used as alternatives to make various
sensors and actuators.

Barati and Zenkour (2019) analyzed the thermal buckling of piezo-
electric nanobeams with geometrical imperfection by considering sur-
face and flexoelectric effects. They investigated the effects of sur-
face tension, flexoelectricity, applied electric voltage, geometrical im-
perfection, foundation parameters, and boundary conditions on the
post-buckling load of piezoelectric nanobeams. Their results showed
that both surface effects and flexoelectricity have a significant influ-
ence on the post-buckling behavior of the system, and only flexo-
electricity makes a major difference between their model and previ-
ous research on conventional piezoelectric nanobeams. Esmaeili and
Tadi Beni (2019) investigated the buckling and free vibrations of a func-

tionally graded flexoelectric nanobeam based on the Euler–Bernoulli
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Fig. 1. Schematic of a magnetoelectric nano-plate strip with PFE layer at the bottom and PFM layer at the top supported with SS and CC end conditions.
heory. They found that increasing the flexoelectric factor increases the
ritical buckling load and natural frequency.

Amir et al. (2020) performed the buckling analysis of nanocom-
osite sandwich plates with piezoelectric layers based on the FSDT
nd they solved the governing equations analytically. In this research,
he critical buckling voltage was calculated by considering the effect
f flexoelectric and it was shown that flexoelectric has a significant
ffect on the critical buckling voltage. In addition, it was found that the
hickness of the flexoelectric layers and the aspect ratio of the sandwich
late plays an important role in the changes in the critical buckling
oad. Increasing the thickness of flexoelectric face sheets and the aspect
atio reduces the critical buckling load and vice versa. Zhao et al.
2022) analyzed bending, free vibrations, and buckling of flexoelectric
anobeam based on the Euler–Bernoulli beam theory. The nanobeam
as functionally graded along the axis and the strain gradient the-
ry was used to apply the size effect. The governing equations were
btained based on Hamilton’s principle and solved with generalized
ifferential quadrature method, and the effect of flexoelectricity, strain
radient, and heterogeneous distribution of materials on mechanical
ehavior was investigated. Duc et al. (2022) investigated the influence
f geometric and material parameters on free vibrations and static
uckling of flexoelectric nanoplates with variable thickness. Their re-
ults showed a great effect of flexoelectric on the buckling behavior and
he shape of the vibration modes, also the working performance is in-
reased. By changing different models of thickness change, they showed
hat the effect of flexoelectric significantly changes the mechanical
esponse of the plate.

Malikan et al. (2020b) analyzed the post-buckling of PFM
anobeams with various boundary conditions using nonlocal strain
radient (NSG) theory. They used Euler–Bernoulli theory and non-
inear von-Kármán strains to obtain the mathematical model. One of
heir results was that the flexomagnetic effect is more pronounced in
anobeams whose boundary conditions have fewer degrees of freedom.
nvestigating the effect of different asymmetric and axially symmetric
orosity distributions on the stability of nanobeams under the effects of
iezomagnetic and converse flexomagnetic (CFM) through NSG theory
nd taking into account infinitesimal strains and Euler–Bernoulli theory
as done by Malikan et al. (2020a). They obtained a closed-form

elation for critical buckling load by the Navier method.
The biaxial buckling of the PFM nanoplates was investigated by

sing the classical plate theory, infinitesimally small strains, and NSG
heory in simply supported (SS) boundary conditions and clamped
upport by Malikan and Eremeyev (2021a). Effects of magnetic field,
spect ratio, flexomagnetic, and nonlocal parameter on critical load
ere discussed. They found that the flexomagnetic value can be af-
3

ected by the aspect ratio of the plate. Malikan and Eremeyev (2021b)
investigated the effect of shear deformations on the CFM response of
piezomagnetic nanobeams. They obtained the governing equations by
considering linear strains and using the Timoshenko and NSG theories
and used the Galerkin method to solve these equations and estimate
the critical buckling load in the case of SS boundary conditions.

Zhang et al. (2022a) investigated the static bending, free vibrations,
and buckling of bent flexomagnetic nanobeams with SS end conditions.
Based on the Hamilton principle, strain gradient theory, and Timo-
shenko beam model, they obtained the governing equations and bound-
ary conditions and then solved the governing differential equations
using the Navier method. They discussed the effects of opening angle,
aspect ratio, and length scale parameter on bending deformation, free
vibrations, and buckling. Also, Zhang et al. (2022b) investigated static
bending, free vibrations, and buckling of flexomagnetic nanoplates
with SS end conditions. They obtained the governing equations and
boundary conditions using Hamilton’s principle based on the strain gra-
dient theory and classical plate theory. Then the governing differential
equations were solved using the Navier method. They discussed the
effects of flexomagnetic, aspect ratio, and length scale parameter on
static bending deformation, free vibrations, and stability analysis of
nanoplates.

Using the FSD theory, Momeni-Khabisi and Tahani (2022) analyzed
the mechanical buckling and post-buckling behavior of nano-plate
strips considering the effect of flexomagnetic and investigated the effect
of important parameters on the stability of such nanostructures. They
used the NSG theory to model the size effects and derived the govern-
ing equations using the principle of minimum total potential energy
and solved them based on the weighted residual Galerkin method
for SS boundary conditions. In another study, Momeni-Khabisi and
Tahani (2023) investigated thermal buckling and post-buckling of shear
deformable nano-plate strips with piezomagnetic and flexomagnetic
effects. They obtained the closed-form solutions for thermal buckling
and thermal post-buckling path in the case of imperfect nano-plate
strips with SS end conditions in a hygrothermal environment. They
considered uniform, linear, and non-linear distributions across the
thickness for temperature rise and studied the effect of small-scale
parameters, slenderness ratio of the plate, initial rise of the mid-plane,
temperature distribution, and magnetic potential on thermal stability.

The literature review, which focuses on stability analysis, PFE,
PFM, and ME problems, shows that there is no published work on
the stability of magnetoelectric structures considering simultaneously
the PFE and PFM effects. Due to the importance and application of
the flexo-electric/magnetic effect in nanostructures, the necessity for
extensive mechanical analyses in magnetoelectric nanostructures to
predict their behavior or improve their performance is clear. To fa-

cilitate the design and manufacturing processes, the present study
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Fig. 2. Dimensionless amplitude versus non-dimensional post-buckling loads.
Fig. 3. The electric resultant versus the nonlocal parameter for different scalar magnetic potentials. (a) Simply-supported and (b) clamped end conditions.
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eals with the effect of flexo-electric/magnetic on the buckling and
ost-buckling loads of double-layer ME nano-plate strips consisting of
PFE layer (BaTiO3) at the bottom and a PFM layer (CoFe2O4) at

he top. The size-dependent governing equations are derived based
n the principle of minimum total potential energy and consider-
ng von-Kármán’s nonlinear strains, nonlocal strain gradient theory,
nd first-order shear deformation theory. Closed-form solutions are
btained for simply supported and clamped end conditions and the
umerical results are validated with existing literature. Then, the influ-
nce of scalar magnetic potential, electric voltage, nonlocal parameter,
train gradient parameter, length-to-thickness ratio, dimensionless am-
litude, and flexo-electric/magnetic effects on linear and nonlinear
uckling loads are investigated. The presented closed-form solutions
nd numerical results may be useful for future analyses and the design
f such nanostructures.

. Modeling of the problem

The ME coupling causes the piezomagnetic phase to deform due to
agnetostriction when a magnetic field is applied. The strain created

n the piezomagnetic phase passes through the piezoelectric phase due
4

l

to the mechanical contact between the two phases and leads to polar-
ization in the piezoelectric phase. Similarly, by applying an electric
field, strain is created in the piezoelectric phase and mechanically
transferred to the piezomagnetic phase, and its deformation leads to
magnetization in the piezomagnetic phase (Pandey et al., 2019). In
order to develop efficient ME structures at the nanoscale and fully
exploit these advanced nanostructures, it is essential to understand
their mechanical responses, which are expected to be different from
macroscopic mechanisms.

In this section, the buckling and post-buckling behavior of a nano-
plate strip consisting of piezo-flexoelectric and piezo-flexomagnetic
double-layer are modeled (Fig. 1). The lower layer (𝑧0 < 𝑧 < 𝑧1) is

ade of BaTiO3 and the upper layer (𝑧1 < 𝑧 < 𝑧2) is made of CoFe2O4.
ano-plate strip is located in the x-y plane and its total thickness
long the z-axis is equal to ℎ. Its length is equal to 𝐿 along the x-
xis and its width along the y-axis is equal to 𝑏 (𝑏 ≫ 𝐿). It should
e noted that the plate strip is a particular case of the rectangular
late that is longer in one direction than the other. In this case, the
isplacement components can only be assumed to be a function of
he smaller direction (i.e., 𝑥) and all derivatives with respect to the
arger dimension (i.e., 𝑦) are zero (Reddy, 2006). Simply supported and
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clamped–clamped (CC) boundary conditions on both sides along the
x-axis have been studied. Nano-plate strip is exposed to the electric
voltage 𝑉1 between surfaces 𝑧 = 𝑧0 and 𝑧 = 𝑧1 as well as the magnetic
potential 𝛹1 between surfaces 𝑧 = 𝑧1 and 𝑧 = 𝑧2. Note that 𝑧1 = 𝑧0
and 𝑧1 = 𝑧2 correspond to the single-layer PFM and single-layer PFE,
respectively.

To consider the effects of transverse shear deformation, the first-
order shear deformation theory is used. On the framework of the FSDT,
the components of the displacement field are expressed as:

𝑢 (𝑥, 𝑧) = 𝑢0 (𝑥) + 𝑧𝜙 (𝑥)

𝑤 (𝑥, 𝑧) = 𝑤0 (𝑥)
(1)

The nonlinear strain–displacement relations based on the von-
Kármán hypothesis can be written as:

𝜀𝑥𝑥 = 𝜀0𝑥𝑥 + 𝑧𝜀
1
𝑥𝑥

𝛾𝑥𝑧 = 𝛾0𝑥𝑧
𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0

𝜂𝑥𝑥𝑧 =
d𝜙
d𝑥

𝑦𝑦𝑧 = 𝜂𝑥𝑦𝑧 = 0

(2)

here

0
𝑥𝑥 =

d𝑢0
d𝑥

+ 1
2

(

d𝑤0
d𝑥

)2

𝛾0𝑥𝑧 = 𝜙 +
d𝑤0
d𝑥

𝜀1𝑥𝑥 =
d𝜙
d𝑥

(3)

The relationship between the component of magnetic field vector
across the thickness and the scalar magnetic potential is stated as
below:

𝐻𝑧 = −
𝜕𝜓
𝜕𝑧

(4)

The constitutive equations for the stress components (𝜎𝑖𝑗), higher-
rder stress components (𝜏𝑖𝑗𝑘), electric field (𝐸𝑖), higher-order electric
ield (𝑉𝑖𝑗), and magnetic induction vector (𝐵𝑖) can be written as (Zhao
t al., 2022; Shi et al., 2021):
n case of PFE layer

𝜎𝑥𝑥 = 𝑝𝑄11𝜀𝑥𝑥 + 𝑝𝑄12𝜀𝑦𝑦 + 𝑒31𝑃𝑧 − 𝑝𝜇3113
𝜕𝑃𝑧
𝜕𝑧

𝑝𝜎𝑥𝑧 = 𝑝𝐶55𝛾𝑥𝑧
𝑝𝜏𝑥𝑥𝑧 = 𝑝𝜇3113𝑃𝑧 + 2(𝑝𝛼2 + 𝑝𝛼4)𝜂𝑥𝑥𝑧
𝐸𝑧 = 𝑝𝑎33𝑃𝑧 + 𝑒31𝜀𝑥𝑥 + 𝑝𝜇3113𝜂𝑥𝑥𝑧

𝑉𝑧𝑧 = 𝑝𝑏33
𝜕𝑃𝑧
𝜕𝑧

− 𝑝𝜇3113𝜀𝑥𝑥

(5)

nd in case of PFM layer:

𝜎𝑥𝑥 = 𝑚𝑄11𝜀𝑥𝑥 + 𝑚𝑄12𝜀𝑦𝑦 − 𝑑31𝐻𝑧

𝜎𝑥𝑧 = 𝑚𝐶55𝛾𝑥𝑧
𝑚𝜏𝑥𝑥𝑧 = 𝑚𝑔113113𝜂𝑥𝑥𝑧 − 𝑚𝜇3113𝐻𝑧

𝐵𝑧 = 𝑚𝑎33𝐻𝑧 + 𝑑31𝜀𝑥𝑥 + 𝑚𝜇3113𝜂𝑥𝑥𝑧

(6)

where superscripts p and m are used for PFE and PFM layers, respec-
tively. The parameters 𝑝𝑏33, 𝑝𝛼2, and 𝑝𝛼4 are related to the material
length scale parameters (Zhao et al., 2022). 𝑄𝑖𝑗 are the plane stress
reduced stiffness coefficients and 𝑔113113 is the component of the strain
gradient elasticity tensor. The definition of 𝑄𝑖𝑗 and 𝑔113113 components
are given in Appendix A. The first variation of the enthalpy density can
be written as follows (Zhao et al., 2022; Shi et al., 2021; Sidhardh and
Ray, 2018):

𝛿 =
𝑧2

(

𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜏𝑥𝑥𝑧𝛿𝜂𝑥𝑥𝑧 + 𝐸𝑧𝛿𝑃𝑧 + 𝑉𝑧𝑧𝛿
𝜕𝑃𝑧
5

∫𝐴 ∫𝑧0 𝜕𝑧
−𝐵𝑧𝛿𝐻𝑧 +
𝜕𝛷
𝜕𝑧
𝛿𝑃𝑧 + 𝑃𝑧𝛿

𝜕𝛷
𝜕𝑧

− 𝜀0
𝜕𝛷
𝜕𝑧
𝛿 𝜕𝛷
𝜕𝑧

)

d𝑧d𝐴 (7)

By combining Eqs. (2)–(7) and using the divergence theorem, one
can obtain:

𝛿 = +
[

∫

𝑏

0

(

𝑁𝑥𝑥𝛿𝑢0 +𝑁𝑥𝑥
d𝑤0
d𝑥

𝛿𝑤0 +𝑀𝑥𝑥𝛿𝜙 +𝑄𝑥𝛿𝑤0

+𝑁𝑥𝑥𝑧𝛿𝜙
)

d𝑦
]𝑥=𝐿

𝑥=0

+
[

∫𝐴
𝐵𝑧𝛿𝜓d𝐴

]𝑧=𝑧2

𝑧=𝑧1
+
[

∫𝐴
𝑉𝑧𝑧𝛿𝑃𝑧d𝐴

]𝑧=𝑧1

𝑧=𝑧0

+
[

∫𝐴

(

𝑃𝑧 − 𝜀0
𝜕𝛷
𝜕𝑧

)

𝛿𝛷d𝐴
]𝑧=𝑧1

𝑧=𝑧0

∫𝐴

[

−
d𝑁𝑥𝑥
d𝑥

𝛿𝑢0 −
d
d𝑥

(

𝑁𝑥𝑥
d𝑤0
d𝑥

)

𝛿𝑤0 −
d𝑀𝑥𝑥
d𝑥

𝛿𝜙 +𝑄𝑥𝛿𝜙 −
d𝑄𝑥
d𝑥

𝛿𝑤0

−
d𝑁𝑥𝑥𝑧
d𝑥

𝛿𝜙
]

d𝐴

− ∫𝐴 ∫

𝑧2

𝑧1

𝜕𝐵𝑧
𝜕𝑧

𝛿𝜓d𝑧d𝐴 + ∫𝐴 ∫

𝑧1

𝑧0

(

𝐸𝑧 +
𝜕𝛷
𝜕𝑧

)

𝛿𝑃𝑧d𝑧d𝐴

− ∫𝐴 ∫

𝑧1

𝑧0

𝜕𝑉𝑧𝑧
𝜕𝑧

𝛿𝑃𝑧d𝑧d𝐴

− ∫𝐴 ∫

𝑧1

𝑧0

(

𝜕𝑃𝑧
𝜕𝑧

− 𝜀0
𝜕2𝛷
𝜕𝑧2

)

𝛿𝛷d𝑧d𝐴 (8)

here the stress resultants
(

𝑁𝑥𝑥,𝑀𝑥𝑥, 𝑄𝑥, 𝑁𝑥𝑥𝑧
)

are defined in Ap-
endix B.

The work done by the external force 𝑁0
𝑥𝑥 can be obtained as follows:

𝑊𝐸 = 𝛿

[

−1
2 ∫

𝑏

0 ∫

𝐿

0
𝑁0
𝑥𝑥

(

d𝑤0
d𝑥

)2
d𝑥d𝑦

]

= −∫

𝑏

0 ∫

𝐿

0
𝑁0
𝑥𝑥

d𝑤0
d𝑥

d𝛿𝑤0
d𝑥

d𝑥d𝑦

= −
[

∫

𝑏

0
𝑁0
𝑥𝑥

d𝑤0
d𝑥

𝛿𝑤0d𝑦
]𝑥=𝐿

𝑥=0
+ ∫

𝑏

0 ∫

𝐿

0

d
d𝑥

(

𝑁0
𝑥𝑥

d𝑤0
d𝑥

)

𝛿𝑤0d𝑥d𝑦

= −
[

∫

𝑏

0
𝑁0
𝑥𝑥

d𝑤0
d𝑥

𝛿𝑤0d𝑦
]𝑥=𝐿

𝑥=0
+ ∫𝐴

𝑁0
𝑥𝑥

d2𝑤0

d𝑥2
𝛿𝑤0d𝐴 (9)

By applying the principle of minimum total potential energy (𝛿 −
𝑊𝐸 = 0), the equilibrium, electrical, and magnetic equations are
btained as:

𝑢0 ∶
d𝑁𝑥𝑥
d𝑥

= 0 (10)

𝑤0 ∶
d
d𝑥

(

𝑁𝑥𝑥
d𝑤0
d𝑥

)

+
d𝑄𝑥
d𝑥

+𝑁0
𝑥𝑥

d2𝑤0

d𝑥2
= 0 (11)

𝜙 ∶
d𝑀𝑥𝑥
d𝑥

+
d𝑁𝑥𝑥𝑧
d𝑥

−𝑄𝑥 = 0 (12)

𝛿𝛷 ∶
𝜕𝑃𝑧
𝜕𝑧

− 𝜀0
𝜕2𝛷
𝜕𝑧2

= 0 (13)

𝛿𝑃𝑧 ∶ 𝐸𝑧 +
𝜕𝛷
𝜕𝑧

−
𝜕𝑉𝑧𝑧
𝜕𝑧

= 0 (14)

𝜓 ∶
𝜕𝐵𝑧
𝜕𝑧

= 0 (15)

The boundary conditions involve the specification of

𝑢0 = 0 or 𝑁𝑥𝑥 = 0 𝑎𝑡 𝑥 = 0, 𝐿

𝑤0 = 0 or 𝑁𝑥𝑥
d𝑤0
d𝑥

+𝑄𝑥 +𝑁0
𝑥𝑥

d𝑤0
d𝑥

= 0 𝑎𝑡 𝑥 = 0, 𝐿

𝜙 = 0 or 𝑀𝑥𝑥 +𝑁𝑥𝑥𝑧 = 0 𝑎𝑡 𝑥 = 0, 𝐿

𝛷 = 0 or 𝑃𝑧 − 𝜀0
𝜕𝛷
𝜕𝑧

= 0 𝑎𝑡 𝑧 = 𝑧0, 𝑧1

𝛿𝑃𝑧 = 0 or 𝑉𝑧𝑧 = 0 𝑎𝑡 𝑧 = 𝑧0, 𝑧1

(16)
𝛿𝜓 = 0 or 𝐵𝑧 = 0 𝑎𝑡 𝑧 = 𝑧1, 𝑧2
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By substituting Eqs. (2) and (3) into 𝐸𝑧 and 𝑉𝑧𝑧 of Eq. (5) and using
Eq. (13) we obtain:

𝐸𝑧 = 𝑝𝑎33
(

𝜀0
𝜕𝛷
𝜕𝑧

− 𝑐1
)

+ 𝑒31

[

d𝑢0
d𝑥

+ 𝑧
d𝜙
d𝑥

+ 1
2

(

d𝑤0
d𝑥

)2
]

+ 𝑝𝜇3113
d𝜙
d𝑥

(17)

𝑧𝑧 = 𝑝𝑏33𝜀0
𝜕2𝛷
𝜕𝑧2

− 𝑝𝜇3113

[

d𝑢0
d𝑥

+ 𝑧
d𝜙
d𝑥

+ 1
2

(

d𝑤0
d𝑥

)2
]

(18)

Using Eqs. (17), (18), and (14), we have:

𝑝𝑎33
(

𝜀0
𝜕𝛷
𝜕𝑧

− 𝑐1
)

+ 𝑒31

[

d𝑢0
d𝑥

+ 𝑧
d𝜙
d𝑥

+ 1
2

(

d𝑤0
d𝑥

)2
]

+ 𝑝𝜇3113
d𝜙
d𝑥

+ 𝜕𝛷
𝜕𝑧

− 𝑝𝑏33𝜀0
𝜕3𝛷
𝜕𝑧3

+ 𝑝𝜇3113
d𝜙
d𝑥

= 0 (19)

By integrating the above equation and solving the resulting second-
order equation, we obtain:

𝛷 = 𝑐3𝑒
𝑝𝜆𝑧 + 𝑐4𝑒−

𝑝𝜆𝑧 −
𝑒31

2
(

1 + 𝑝𝑎33𝜀0
)

d𝜙
d𝑥
𝑧2 −

𝑒31𝑝𝑏33𝜀0
(

1 + 𝑝𝑎33𝜀0
)2

d𝜙
d𝑥

+
𝑐2

(

1 + 𝑝𝑎33𝜀0
)

+

[

−2𝑝𝜇3113
d𝜙
d𝑥 − 1

2 𝑒31
(

d𝑤0
d𝑥

)2
− 𝑒31

d𝑢0
d𝑥 + 𝑐1𝑝𝑎33

]

𝑧
(

1 + 𝑝𝑎33𝜀0
) (20)

where 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are constants of integration. By substituting
Eq. (20) into Eq. (18) and using the boundary conditions of the higher-
order electric field (i.e., 𝑉𝑧𝑧 = 0 at 𝑧 = 𝑧0 and 𝑧1), the constants 𝑐3 and
4 are obtained. Then, by substituting them into Eq. (20) and using
he boundary conditions of the electric potential (i.e., 𝜙 = 0 at 𝑧 = 𝑧0
nd 𝜙 = 𝑉1 at 𝑧 = 𝑧1), the electric potential and, accordingly, using
q. (13), the electric polarization and the electric polarization gradient
re obtained as:

𝛷 = 𝑚1
d𝑢0
d𝑥

+
(

𝑚2𝑒
𝑝𝜆𝑧 + 𝑚3𝑒

−𝑝𝜆𝑧 + 𝑚4𝑧 + 𝑚5
𝑧2

2
+ 𝑚6

)

d𝜙
d𝑥

+ 1
2
𝑚1

(

d𝑤0
d𝑥

)2
+ 𝑉1

𝑧
(𝑧1 − 𝑧0)

−
𝑧0

(𝑧1 − 𝑧0)
𝑉1 (21)

𝑃𝑧 = 𝑚7
d𝑢0
d𝑥

+𝐾1
d𝜙
d𝑥

+ 1
2
𝑚7

(

d𝑤0
d𝑥

)2
−

𝑉1
𝑝𝑎33(𝑧1 − 𝑧0)

(22)

𝜕𝑃𝑧
𝜕𝑧

= 𝑚9
d𝑢0
d𝑥

+𝐾2
d𝜙
d𝑥

+ 1
2
𝑚9

(

d𝑤0
d𝑥

)2
(23)

here 𝑚1 to 𝑚9 and 𝐾1 and 𝐾2 are given in Appendix A. It is worth
entioning that similar relationships have been reported by Zhao et al.

2022).
The scalar magnetic potential 𝜓(𝑥, 𝑧) can be obtained using Eqs. (2)–

4), (6), and (15) with the corresponding magnetic boundary conditions
t 𝑧 = 𝑧1 and 𝑧 = 𝑧2 as follows:

(𝑥, 𝑧) =
𝑑31

2𝑚𝑎33

[

𝑧2 − 𝑧(𝑧2 + 𝑧1) + 𝑧1𝑧2
] d𝜙
d𝑥

+
𝛹1

𝑧2 − 𝑧1

(

𝑧 − 𝑧1
)

(24)

By combining Eqs. (2)–(4) and (21)–(23) with Eqs. (5) and (6) and
replacing the results into Eq. (B.1), the stress resultants are obtained in
terms of displacement components as given in Appendix B.

Substituting Eq. (B.2) into Eq. (10) and integrating leads to the
following equation:

𝐷1
d𝑢0
d𝑥

+𝐷2
d𝜙
d𝑥

+ 1
2
𝐷1

(

d𝑤0
d𝑥

)2
+𝐷3 = 𝑐 (25)

where 𝑐 is a constant related to the axial tensile force due to the
mid-plane stretching. To remove the axial displacement 𝑢0, integrating
Eq. (25) and then employing the classical and non-classical boundary
conditions of Eq. (16) the following equation is obtained (She et al.,
2017; Li and Hu, 2017):

𝐷1
d𝑢0 +𝐷2

d𝜙
+ 1𝐷1

(

d𝑤0
)2

=
𝐷1

𝐿 (

d𝑤0
)2

d𝑥 (26)
6

d𝑥 d𝑥 2 d𝑥 2𝐿 ∫0 d𝑥
By substituting Eq. (26) into Eqs. (B.2)–(B.5) and then applying the
NSG theory (Lim et al., 2015) one can obtain:

(

1 − 𝜇∇2)𝑁𝑥𝑥 =
(

1 − 𝑙2∇2)
[

𝐷1
2𝐿 ∫

𝐿

0

( d𝑤
d𝑥

)2
d𝑥 +𝐷3

]

(27)

(

1 − 𝜇∇2)𝑀𝑥𝑥 =
(

1 − 𝑙2∇2)
[

𝐷4
2𝐿 ∫

𝐿

0

( d𝑤
d𝑥

)2
d𝑥 +

𝐷1𝐷5 −𝐷2𝐷4
𝐷1

d𝜙
d𝑥

+𝐷6

]

(28)

(

1 − 𝜇∇2)𝑁𝑥𝑥𝑧 =
(

1 − 𝑙2∇2)
[

𝐷7
2𝐿 ∫

𝐿

0

( d𝑤
d𝑥

)2
d𝑥 +

𝐷1𝐷8 −𝐷2𝐷7
𝐷1

d𝜙
d𝑥

+𝐷9

]

(29)

(

1 − 𝜇∇2)𝑄𝑥 =
(

1 − 𝑙2∇2)
[

𝐾𝑠𝐴55

( d𝑤
d𝑥

+ 𝜙
)]

(30)

By differentiation with respect to 𝑥 from Eqs. (11) and (12) and
nserting the results into Eqs. (28)–(30), we obtain:

𝑥𝑥 +𝑁𝑥𝑥𝑧 − 𝜇
d𝑄𝑥

d𝑥
=
(

1 − 𝑙2∇2)
[

𝐷1 +𝐷4

2𝐿 ∫

𝐿

0

( d𝑤
d𝑥

)2
d𝑥 +𝐷

d𝜙
d𝑥

+𝐷9

]

(31)

𝑄𝑥 + 𝜇
(

𝑁𝑥𝑥 +𝑁0
𝑥𝑥

) d3𝑤
d𝑥3

=
(

1 − 𝑙2∇2)
[

𝐾𝑠𝐴55

( d𝑤
d𝑥

+ 𝜙
)]

(32)

ubstituting Eqs. (31) and (32) into Eqs. (11) and (12) the governing
ifferential equations are obtained as below:

𝑠𝐴55

[

d2𝑤
d𝑥2

+
d𝜙
d𝑥

− 𝑙2
(

d4𝑤
d𝑥4

+
d3𝜙
d𝑥3

)]

+
[

𝐷1
2𝐿 ∫

𝐿

0

( d𝑤
d𝑥

)2
d𝑥

+𝐷3 +𝑁0
𝑥𝑥

](

d2𝑤
d𝑥2

− 𝜇 d
4𝑤
d𝑥4

)

= 0 (33)

𝐷
(

d2𝜙
d𝑥2

− 𝑙2
d4𝜙
d𝑥4

)

−𝐾𝑠𝐴55

[

d𝑤
d𝑥

+ 𝜙 − 𝑙2
(

d3𝑤
d𝑥3

+
d2𝜙
d𝑥2

)]

= 0 (34)

here the nonlocal parameter (𝜇 = 𝑒0𝑎2) and the strain gradient param-
ter (𝑙) are used to capture the size-dependent behavior of small-scale
tructures in NSG theory, and

𝐷 =
𝐷1(𝐷5 +𝐷8) −𝐷2(𝐷4 +𝐷7)

𝐷1
(35)

3. Analytical solution

The closed-form solutions of the governing equations in the case of
SS and CC boundary conditions along the edges 𝑥 = 0, 𝐿 are obtained
n this section. To this aim, the following functions are considered:
n the case of SS boundary conditions:

(𝑥) =
∞
∑

𝑚=1
𝑊 sin

(𝑚𝜋𝑥
𝐿

)

, 𝜙 (𝑥) =
∞
∑

𝑚=1
�̃� cos

(𝑚𝜋𝑥
𝐿

)

(36)

and in the case of CC boundary conditions:

𝑤 (𝑥) =
∞
∑

𝑚=1
𝑊 sin2

(𝑚𝜋𝑥
𝐿

)

, 𝜙 (𝑥) =
∞
∑

𝑚=1
�̃� sin

( 2𝑚𝜋𝑥
𝐿

)

(37)

where 𝑊 and �̃� are the unknown coefficients of buckled configuration.
Upon substitution of Eqs. (36) and (37) into Eqs. (33) and (34) one can
obtain:
in the case of SS boundary conditions:

𝑁𝑀𝑒𝑐ℎ = −𝑁0
𝑥𝑥 =

𝐷𝛼2𝑚𝜆𝑙𝑚
𝐴1𝜆𝜇𝑚

+
𝐷1
4
𝛼2𝑚𝑊

2 +𝐷3 (38)

nd in the case of CC boundary conditions:

𝑀𝑒𝑐ℎ = −𝑁0
𝑥𝑥 =

4𝐷𝛼2𝑚𝜆
′
𝑙𝑚

′ ′ +
𝐷1 𝛼2𝑚𝑊

2 +𝐷3 (39)

𝐴1𝜆 𝜇𝑚 4
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Table 1
Magneto-electro-mechanical properties (Zhao et al., 2022; Malikan et al., 2021).

Properties CoFe2O4 BaTiO3

𝐸 (GPa) 286 131
𝜈 0.32 0.3
𝑑31 (N/A m) 580.3 0
𝑚𝑎33 (N/A2) 157 × 10−6 0
𝑚𝜇3113 (N/A) 10−9 0
𝑒31 (V/m) 0 1.87 × 108

𝑝𝑎33 (V m/C) 0 0.79 × 108

𝑝𝜇3113 (V) 0 5

Table 2
Comparison of dimensionless linear buckling load of Timoshenko beams with simply
supported and clamped boundary conditions.

Present Gunda (2014) Gupta et al. (2009)

𝛽 = 25 SS 9.4062 9.4073 9.4062
CC 32.9790 33.2314 32.9791

𝛽 = 50 SS 9.7495 9.7495 9.7495
CC 37.6247 37.6292 37.6248

𝛽 = 100 SS 9.8393 9.8393 9.8393
CC 38.9981 38.9981 38.9984

𝛽 → ∞ SS 9.8696 9.8696 9.8696
CC 39.4784 39.4784 39.4785

It should be noted that 𝑁𝑀𝑒𝑐ℎ is critical buckling load at 𝑊 = 0 and in
ase of 𝑊 ≠ 0, 𝑁𝑀𝑒𝑐ℎ presents the post-buckling load, where

1 = 1 +
𝐷𝛼2𝑚
𝐾𝑠𝐴55

, 𝛼𝑚 = 𝑚𝜋
𝐿
, 𝜆𝑙𝑚 = 1 + 𝑙2𝛼2𝑚, 𝜆𝜇𝑚 = 1 + 𝜇𝛼2𝑚,

′
1 = 1 +

4𝐷𝛼2𝑚
𝐾𝑠𝐴55

, 𝜆′𝑙𝑚 = 1 + 4𝑙2𝛼2𝑚, 𝜆
′
𝜇𝑚 = 1 + 4𝜇𝛼2𝑚 (40)

. Numerical results and discussion

In this section, numerical results are presented for the first buckling
ode (𝑚 = 1) of the magnetoelectric nano-plate strip which includes
piezo-flexoelectric layer at the bottom and a piezo-flexomagnetic

ayer on the top. The properties of PFE layer (BaTiO3) and PFM layer
CoFe2O4) are defined in Table 1. It should be noted that the total
hickness (ℎ) is 2 nm and the thickness of each layer is ℎ∕2.

As stated, no research was found in the field of analyzing the
echanical or thermal stability of magnetoelectric nanostructures by si-
ultaneously considering the piezo-flexoelectric and piezo-

lexomagnetic effects. Therefore, to ensure validation, some numerical
esults of special cases of the present study are compared with those
xisting in the literature. To this end, three cases are considered. A
ingle-layer nanostructure without PFM and PFE effects, a single-layer
anostructure with PFE effects, and a single-layer nanostructure with
FM effects.

First of all, the numerical results are compared with those ob-
ained by Gunda (2014) and Gupta et al. (2009), who employed the
ayleigh–Ritz method to express the closed-form solutions for the
uckling of Timoshenko beams without magnetoelectric effects. In
ables 2 and 3, the non-dimensional linear buckling load and the
atio of non-dimensional nonlinear buckling loads to non-dimensional
inear buckling loads without magnetoelectric effects are presented,
espectively. In these tables, 𝛽 is the slenderness ratio of the beam.

Moreover, some numerical results in the case of single-layer PFE
anobeams are compared with Zhao et al. (2022). Table 4 presents the
imensionless critical buckling loads of a Timoshenko piezo-
lexoelectric nanobeam.

Finally, in the case of the single-layer piezo-flexomagnetic nano-
late strip with SS end conditions and FSD theory and without thermal
ffect and geometrical imperfection, the buckling and post-buckling
oads in Eq. (38) can be simplified to that derived by Momeni-Khabisi
7

nd Tahani (2022).
Table 3
Comparison of dimensionless post-buckling load to dimensionless buckling load ratio
of simply supported and clamped Timoshenko beams.

Present Gunda (2014) Gupta et al. (2009)

𝛽 = 25 SS 1.2623 1.2623 1.2623
CC 1.0748 1.0742 1.0748

𝛽 = 50 SS 1.2531 1.2531 1.2531
CC 1.0656 1.0656 1.0656

𝛽 = 100 SS 1.2508 1.2508 1.2508
CC 1.0633 1.0633 1.0633

𝛽 → ∞ SS 1.2500 1.2500 1.2500
CC 1.0625 1.0625 1.0625

Table 4
Comparison of dimensionless linear buckling load of flexoelectric nanobeams with
clamped and simply supported boundary conditions.

ℎ∕𝑙 = 1 ℎ∕𝑙 = 2 ℎ∕𝑙 = 10

SS Without FEa Present 55.4216 21.2576 10.3251
Zhao et al. (2022) 55.5946 21.3009 10.3269

With FE Present 53.6188 19.4165 8.1780
Zhao et al. (2022) 53.7918 19.4598 8.1797

CC Without FE Present 221.6865 85.0304 41.3005
Zhao et al. (2022) 225.1437 86.2629 41.8211

With FE Present 214.4751 77.6661 32.7120
Zhao et al. (2022) 217.8427 78.8070 33.1258

a Flexoelectric effect.

As can be observed, there is excellent agreements between the
results of the present study and those obtained by other researchers.
In the following, the numerical results of buckling and post-buckling
of the magnetoelectric nano-plate strips are presented considering the
piezo-flexoelectric and piezo-flexomagnetic effects.

Dimensionless buckling load in terms of dimensionless amplitude is
presented in Fig. 2 (ℎ = 2 nm, 𝑉1 = −5 V, 𝛹1 = 2 mA, 𝐿∕ℎ = 20, 𝑙∕ℎ =
1, 𝑒0𝑎∕ℎ = 0.5). As shown in this figure, an increase in dimensionless
amplitude will increase dimensionless buckling loads. Furthermore,
the dimensionless buckling loads for single-layer piezo-flexoelectric
(PFE) and single-layer piezo-flexomagnetic (PFM) configurations are
observed to be lower than those of double-layer magnetoelectric nano-
plate strips with the same thickness. Therefore, the buckling stability
of double-layer ME nano-plate strips is more than the other two cases.

Fig. 3 shows the variation of the electric resultant 𝑁𝐸 = 𝑉1𝑒31∕𝑝𝑎33
in terms of the nonlocal parameter 𝑒0𝑎 for different scalar magnetic
potentials 𝛹1 in both simply supported and clamped nano-plate strips
(ℎ = 2 nm, 𝐿∕ℎ = 20,𝑊 ∕ℎ = 0). It is concluded that the electric resultant
decrease with increasing the nonlocal parameter due to decreasing
the nano-plate strip stiffness. Also, increasing the applied magnetic
potential leads to an increase in the electric resultant. Hence, increasing
the initial applied magnetic potential will increase the stiffness of the
system.

To further investigate the buckling behavior of ME nano-plate strips,
the effect of external magnetic potential and electric voltage is demon-
strated simultaneously in Figs. 4 and 5 (ℎ = 2 nm, 𝐿∕ℎ = 20, 𝑙∕ℎ =
0.5, 𝑒0𝑎∕ℎ = 0.1,𝑊 ∕ℎ = 0). The initial magnetic potential has a direct
effect on the critical buckling loads, while, the initial electric voltage
has an inverse effect. It means an increase in applied magnetic potential
and the electric voltage leads to an increase and decrease in the critical
buckling loads, respectively.

Fig. 6 demonstrates the effect of small-scale parameters on dimen-
sionless critical buckling loads (ℎ = 2 nm, 𝑉1 = 1 V, 𝛹1 = 2 mA, 𝐿∕ℎ =
20,𝑊 ∕ℎ = 0). As shown, an increase in the length scale parameter
leads to an increase in buckling loads while the nonlocal parameter
has an inverse effect. Also, the small-scale parameters increase or
decrease the stiffness depending on the relation between them. When

𝑒0𝑎 > 𝑙 and 𝑒0𝑎 < 𝑙, stiffness-softening and stiffness-hardening can be
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Fig. 4. Critical buckling load versus scalar magnetic potential for different electric voltages. (a) Simply-supported and (b) clamped end conditions.
Fig. 5. Critical buckling load versus initial electric voltage for different magnetic potentials. (a) Simply-supported and (b) clamped end conditions.
Fig. 6. Dimensionless buckling load versus (a) the ratio of length scale parameter to thickness and (b) the ratio of nonlocal parameter to thickness for different nonlocal and
length scale parameters, respectively.
observed, respectively. Note that classic means without considering the
small-scale parameters (𝑒0𝑎 = 𝑙 = 0).

The post-buckling path of magnetoelectric nano-plate strips sub-
jected to different initial electric voltages is depicted in Fig. 7 for
SS and CC boundary conditions (ℎ = 2 nm, 𝛹1 = 1 mA, 𝐿∕ℎ =
20, 𝑙∕ℎ = 2, 𝑒0𝑎∕ℎ = 0.1). The positive electric voltages lead to larger
post-buckling deformations and decrease the buckling loads while the
negative electric voltages have an inverse influence. Therefore, the
higher positive electric voltages decrease the stability of ME nano-
plate strips. From the physical standpoint, the reason is that the initial
negative (positive) electric voltages generate a tensile (compressive)
load and lead to a increase (decrease) in the stiffness of magnetoelectric
nano-plate strips.
8

Fig. 8 illustrates the effect of applied magnetic potential on the post-
buckling responses of ME nano-plate strips (ℎ = 2 nm, 𝑉1 = 1 V, 𝐿∕ℎ =
20, 𝑙∕ℎ = 2, 𝑒0𝑎∕ℎ = 0.1). As observed, the dimensionless amplitude
with applied negative magnetic potential increases and the buckling
load capacity decreases since negative magnetic potential induce a
compressive force and decrease the stiffness of ME nano-plate strips.
In other words, a positive initial magnetic potential improves the
stability of ME nano-plate strips by reducing dimensionless amplitude
and increasing stiffness.

The effect of the slenderness ratio on dimensionless buckling
(𝑊 ∕ℎ = 0) and post-buckling (𝑊 ∕ℎ = 0.5) loads for SS and CC
boundary conditions is plotted in Fig. 9 (ℎ = 2 nm, 𝑉1 = −1 V, 𝛹1 =
1 mA, 𝑙∕ℎ = 0.5, 𝑒0𝑎∕ℎ = 0.1). As expected, the stability of ME nano-plate
strips reduces with an increase in length. Improvement of the stability



European Journal of Mechanics / A Solids 104 (2024) 105218H. Momeni-Khabisi and M. Tahani
Fig. 7. Dimensionless amplitude versus dimensionless nonlinear buckling load in different electric voltages.
Fig. 8. Dimensionless amplitude versus dimensionless nonlinear buckling load in different applied external magnetic potentials.
due to an increase in dimensionless amplitude is more sensible in the
case of SS end conditions than CC. The difference between linear and
nonlinear buckling responses of ME nano-plate strips for both SS and
CC boundary conditions becomes more by decreasing the slenderness
ratio. Therefore, the effect of end conditions is not important at larger
slenderness ratios.

5. Conclusions

Buckling and post-buckling analysis of shear deformable magneto-
electric nano-plate strips considering the piezo-flexoelectric and piezo-
9

flexomagnetic effects was developed in this paper in the framework
of the NSG theory. The principle of minimum total potential energy
was used to derive the differential governing equations and boundary
conditions. Closed-form solutions for the nano-plate strip with simply
supported and clamped ends were obtained so that accurate linear
and nonlinear buckling loads were achieved. To show the accuracy of
the proposed solution, several validations were presented. Numerical
results were provided to show the effects of significant factors on
stability performance. The presented closed-form solutions and numer-
ical results are valuable for future analyses and the design of such
nanostructures to prevent instability. The main conclusions can be

expressed as follows:
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Fig. 9. Linear and nonlinear dimensionless buckling loads of the ME nano-plate strips with respect to the slenderness ratio for SS and CC end conditions.
𝑚

– The post-buckling load-carrying capacity increases considerably
in the case of a double-layer ME nano-plate strip compared to a
single-layer (PFM or PFE) with the same thickness and length.

– The increase of initial magnetic potential leads to an increase of
the electric resultant.

– The effect of applied electric voltage and magnetic potential on
the buckling loads indicates that the highest stability is related
to larger negative applied electric voltages and greater positive
initial magnetic potentials. Hence, an appropriate selection of the
external electric voltage and magnetic potential could improve
the anti-buckling behavior of magnetoelectric nano-plate strips.

– The post-buckling deformation decreases with a decrease in initial
electric voltage and an increase in initial magnetic potential.
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Appendix A

The coefficients appearing in Eqs. (5) and (6) are defined as (Reddy,
2006; Sidhardh and Ray, 2018):

𝑄11 =
𝐸

1 − 𝜈2
, 𝑄12 = 𝜈𝑄11, 𝐶55 =

𝑄11 (1 − 𝜈)
2

𝑔𝑖𝑗𝑘𝑙𝑚𝑛 = 𝑔1
[(

𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙
)

𝛿𝑚𝑛 +
(

𝛿𝑖𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑛𝛿𝑙𝑚
)

𝛿𝑗𝑘
]

+ 𝑔2
[(

𝛿𝑘𝑚𝛿𝑙𝑛 + 𝛿𝑘𝑛𝛿𝑙𝑚
)

𝛿𝑖𝑗 +
(

𝛿𝑗𝑚𝛿𝑙𝑛 + 𝛿𝑗𝑛𝛿𝑙𝑚
)

𝛿𝑖𝑘
]

+ 𝑔3𝛿𝑖𝑙𝛿𝑗𝑘𝛿𝑚𝑛 + 𝑔4
(

𝛿𝑗𝑚𝛿𝑘𝑛 + 𝛿𝑗𝑛𝛿𝑘𝑚
)

𝛿𝑖𝑙 (A.1)
+ 𝑔5

[(

𝛿𝑗𝑛𝛿𝑘𝑙 + 𝛿𝑗𝑙𝛿𝑘𝑛
)

𝛿𝑖𝑚 +
(

𝛿𝑗𝑚𝛿𝑘𝑙 + 𝛿𝑗𝑙𝛿𝑘𝑚
)

𝛿𝑖𝑛
]

with

𝑔1 = −2
3
(

𝑔2 + 𝑔5
)

, 𝑔2 =
𝐶55
30

(

27𝑙20 − 4𝑙21 − 15𝑙22
)

𝑔3 =
8
3
𝑔2 +

2
3
𝑔5, 𝑔4 =

𝐶55
3

(

𝑙21 + 6𝑙22
)

, 𝑔5 =
𝐶55
3

(

𝑙21 − 3𝑙22
)

where 𝛿𝑖𝑗 is the Kronecker delta and 𝑙0, 𝑙1, and 𝑙2 are material length
scales.

Furthermore, the coefficients appearing in Eqs. (21)–(23) are de-
fined as:

𝑝𝜆 =

√

1 + 𝑝𝑎33𝜀0
𝑝𝑏33𝜀0

, 𝑚1(𝑧) =
𝑝𝜇3113

(

1 + 𝑝𝑎33𝜀0
)

[

𝑒𝑝𝜆𝑧 + 𝑒𝑝𝜆(𝑧1+𝑧0−𝑧)

𝑒𝑝𝜆𝑧1 + 𝑒𝑝𝜆𝑧0
− 1

]

2 =
𝑝𝜇3113

(

𝑧1𝑒
𝑝𝜆𝑧1 − 𝑧0𝑒

𝑝𝜆𝑧0
)

(

1 + 𝑝𝑎33𝜀0
) (

𝑒2𝑝𝜆𝑧1 − 𝑒2𝑝𝜆𝑧0
) +

𝑒31𝑝𝑏33𝜀0
(

1 + 𝑝𝑎33𝜀0
)2 (𝑒𝑝𝜆𝑧1 + 𝑒𝑝𝜆𝑧0

)

𝑚3 = −
𝑝𝜇3113𝑒

𝑝𝜆(𝑧1+𝑧0)
(

1 + 𝑝𝑎33𝜀0
)

𝑧1𝑒
𝑝𝜆𝑧0 − 𝑧0𝑒

𝑝𝜆𝑧1

𝑒2𝑝𝜆𝑧1 − 𝑒2𝑝𝜆𝑧0
+

𝑒31𝑝𝑏33𝜀0𝑒
𝑝𝜆(𝑧1+𝑧0)

(

1 + 𝑝𝑎33𝜀0
)2 (𝑒𝑝𝜆𝑧1 + 𝑒𝑝𝜆𝑧0

)

𝑚4 = −
𝑝𝜇3113

(

1 + 𝑝𝑎33𝜀0
) , 𝑚5 = −

𝑒31
(

1 + 𝑝𝑎33𝜀0
)

𝑚6 = −
𝑒31𝑝𝑏33𝜀0

(

1 + 𝑝𝑎33𝜀0
)2

−
𝑒31𝑧0𝑧1

2
(

1 + 𝑝𝑎33𝜀0
) (A.2)

𝑚7(𝑧) =
𝜀0𝑝𝜇3113𝑝𝜆

(

𝑒𝑝𝜆𝑧 − 𝑒𝑝𝜆(𝑧1+𝑧0−𝑧)
)

(

1 + 𝑝𝑎33𝜀0
) (

𝑒𝑝𝜆𝑧1 + 𝑒𝑝𝜆𝑧0
) −

𝑒31
𝑝𝑎33

𝑚8 = −
2𝑝𝜇3113𝜀0𝑝𝑎33 + 𝑝𝜇3113

𝑝
(

𝑝
) − 𝑒31

𝑝

(

𝑧1 + 𝑧0
)

𝑎33 1 + 𝑎33𝜀0 2 𝑎33
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𝐾

𝐾

𝑁

𝑄

𝐷

𝑝

𝑝

𝑝

𝑚9(𝑧) =
𝜀0𝑝𝜇3113𝑝𝜆2

(

𝑒𝑝𝜆𝑧 + 𝑒𝑝𝜆(𝑧1+𝑧0−𝑧)
)

(

1 + 𝑝𝑎33𝜀0
) (

𝑒𝑝𝜆𝑧1 + 𝑒𝑝𝜆𝑧0
)

1(𝑧) = 𝜀0𝑚2
𝑝𝜆𝑒

𝑝𝜆𝑧 − 𝜀0𝑚3
𝑝𝜆𝑒−

𝑝𝜆𝑧 + 𝜀0𝑚5𝑧 + 𝑚8

2(𝑧) = 𝜀0𝑚2
𝑝𝜆2𝑒

𝑝𝜆𝑧 + 𝜀0𝑚3
𝑝𝜆2𝑒−

𝑝𝜆𝑧 + 𝜀0𝑚5

Appendix B

The stress resultants appearing in Eq. (8) are defined as:
(

𝑁𝑥𝑥,𝑀𝑥𝑥
)

= ∫

𝑧2

𝑧0
𝜎𝑥𝑥 (1, 𝑧) d𝑧

𝑄𝑥 = 𝐾𝑠 ∫

𝑧2

𝑧0
𝜎𝑥𝑧d𝑧, 𝑁𝑥𝑥𝑧 = ∫

𝑧2

𝑧0
𝜏𝑥𝑥𝑧d𝑧

(B.1)

The stress resultants in terms of displacement components are ob-
tained as:

𝑁𝑥𝑥 = 𝐷1
d𝑢0
d𝑥

+𝐷2
d𝜙
d𝑥

+ 1
2
𝐷1

(

d𝑤0
d𝑥

)2
+𝐷3 (B.2)

𝑀𝑥𝑥 = 𝐷4
d𝑢0
d𝑥

+𝐷5
d𝜙
d𝑥

+ 1
2
𝐷4

(

d𝑤0
d𝑥

)2
+𝐷6 (B.3)

𝑥𝑥𝑧 = 𝐷7
d𝑢0
d𝑥

+𝐷8
d𝜙
d𝑥

+ 1
2
𝐷7

(

d𝑤0
d𝑥

)2
+𝐷9 (B.4)

𝑥 = 𝐾𝑠𝐴55

(

d𝑤0
d𝑥

+ 𝜙
)

(B.5)

where 𝐷𝑖 and 𝐴55 are given as follows:

𝑖 = 𝑝𝐷𝑖 + 𝑚𝐷𝑖 for (𝑖 = 1 − 9)

𝐷1 = ∫

𝑧1

𝑧0

(𝑝𝑄11 + 𝑒31𝑚7 − 𝑝𝜇3113𝑚9
)

d𝑧, 𝑚𝐷1 = ∫

𝑧2

𝑧1

𝑚𝑄11d𝑧

𝑝𝐷2 = ∫

𝑧1

𝑧0

(𝑝𝑄11𝑧 + 𝑒31𝐾1 − 𝑝𝜇3113𝐾2
)

d𝑧

𝑚𝐷2 = ∫

𝑧2

𝑧1

[

𝑚𝑄11𝑧 +
𝑑231

2𝑚𝑎33

(

2𝑧 − 𝑧2 − 𝑧1
)

]

d𝑧

𝐷3 = −∫

𝑧1

𝑧0

𝑒31𝑉1
𝑝𝑎33

(

𝑧1 − 𝑧0
)d𝑧, 𝑚𝐷3 = ∫

𝑧2

𝑧1

𝑑31𝛹1
𝑧2 − 𝑧1

d𝑧

𝑝𝐷4 = ∫

𝑧1

𝑧0

(𝑝𝑄11 + 𝑒31𝑚7 − 𝑝𝜇3113𝑚9
)

𝑧d𝑧, 𝑚𝐷4 = ∫

𝑧2

𝑧1

𝑚𝑄11𝑧d𝑧

𝑝𝐷5 = ∫

𝑧1

𝑧0

(𝑝𝑄11𝑧 + 𝑒31𝐾1 − 𝑝𝜇3113𝐾2
)

𝑧d𝑧 (B.6)

𝑚𝐷5 = ∫

𝑧2

𝑧1

[

𝑚𝑄11𝑧 +
𝑑231

2𝑚𝑎33

(

2𝑧 − 𝑧2 − 𝑧1
)

]

𝑧d𝑧

𝐷6 = −∫

𝑧1

𝑧0

𝑒31𝑉1
𝑝𝑎33

(

𝑧1 − 𝑧0
) 𝑧d𝑧, 𝑚𝐷6 = ∫

𝑧2

𝑧1

𝑑31𝛹1
𝑧2 − 𝑧1

𝑧d𝑧

𝑝𝐷7 = ∫

𝑧1

𝑧0

𝑝𝜇3113𝑚7d𝑧, 𝑚𝐷7 = 0

𝑝𝐷8 = ∫

𝑧1

𝑧0

[𝑝𝜇3113𝐾1 + 2
(𝑝𝛼2 + 𝑝𝛼4

)]

d𝑧

𝑚𝐷8 = ∫

𝑧2

𝑧1

[

𝑚𝑔311311 +
𝑚𝜇3113𝑑31
2𝑚𝑎33

(

2𝑧 − 𝑧2 − 𝑧1
)

]

d𝑧

𝑝𝐷9 = −∫

𝑧1

𝑧0

𝑝𝜇3113𝑉1
𝑝𝑎33

(

𝑧1 − 𝑧0
)d𝑧, 𝑚𝐷9 = ∫

𝑧2

𝑧1

𝑚𝜇3113𝛹1
𝑧2 − 𝑧1

d𝑧

𝐴55 = 𝑝𝐴55 + 𝑚𝐴55,
𝑝𝐴55 = ∫

𝑧1

𝑧0

𝑝𝐶55d𝑧, 𝑚𝐴55 = ∫

𝑧2

𝑧1

𝑚𝐶55d𝑧
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