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Abstract—Conventional imaging systems demonstrate a clear
trade-off between resolution and field-of-view in acquired images.
This review discusses a new method called Fourier Ptychography
(FP), which leverages super-resolution to overcome this trade-
off in image generation. Specifically, FP sequentially captures
low-resolution images under different illumination angles and
stitches them in the frequency domain. The variety of angles
enables access to multiple frequency regions. This method can be
implemented on simple microscopes with an exchange of optical
design complexity for computational complexity to achieve high-
quality imaging. This paper demonstrates how to use FP in a fast,
robust, and low-cost manner. An experimental model using an
embedded system, namely Raspberry Pi 4, a low-cost microscope,
is proposed to achieve super-resolution enhancement and wide-
field imaging with sub-micron resolution. This microscopy can
be assembled using a collection of readily available parts.

Index Terms—Fourier Ptychography, embedded system,
super-resolution enhancement, sub-micron resolution

I. INTRODUCTION

The optical microscope has been a valuable tool for biolog-
ical and biomedical imaging applications and often requires
high-resolution images to observe cellular structures or large
tissue areas. Achieving high-resolution imaging and visual-
izing subcellular structures, that indicate the cell condition
requires the use of a high-magnification lens. However, high-
resolution imaging is an expensive method and may not always
be available due to lens limitations. Zoom-in features limit the
accessibility of observation specimen area and overall tissue,
and often it creates limitations for what we were looking for.
Ideally, an imaging system should desire to provide high-
resolution and a broad Field Of View (FOV) concurrently.
Conventional cameras and microscopes can either achieve
high-resolution image zoom-in or zoom out a larger area with
lower resolution, but these rarely happen at the same time.

In customary imaging, the number of pixels in the detector
array is an important limitation [1], so increased FOV can
become only at the expense of reduced spatial resolution.

The spatial bandwidth product (SBP) can be interpreted as
the efficient information channel bandwidth for collecting data
from images in the physical system. The purpose is to achieve
high SBP in microscopy. An approach for increasing the SBP
of microscopy is to use larger detector arrays accompanied
by higher performance optics, which unfortunately leads to
increased aberrations and complexity [2].

Recently, a new method called Fourier Ptychography Mi-
croscopy (FPM) has been developed to improve the resolution
of imaging systems. It is a computational imaging technique
that achieves high-resolution throughout the entire image using
a low numerical aperture (NA) lens and a large FOV, as a
result, to obtain gigapixel images [3]. The key to understanding
FP lies in Fourier Transform (FT). By describing the optical
properties of a sample, high-frequency components of FT can
be considered as fine details of the sample, and low-frequency
components as large-scale spatial features.

When an object is illuminated by parallel beams of light, a
lens placed at a focal distance will form certain light patterns
at the back focal plane. In the Fourier plane, the spatial
allocation of the light corresponds to the FT of the desired
sample, usually known as its Fourier spectrum. One of the
key purposes of designing high-resolution microscopes is to
create an ample Fourier space that passes a widespread scope
of spatial frequency spectra.

In FP, spectrum scanning is performed in the Fourier
domain, and the acquired image is in the spatial domain.
This is achieved using a programmable LED array and angle-
shifting of the illumination wavefront. According to studies,
this technique has been able to computationally: I) improve
SBP, II) eliminate optical aberrations or distortions, III) re-
trieve pupil functions throughout the sample, and IV) retrieve
phase information solely from intensity images. In addition
to providing all the advantages of Real-space ptychography,
the FP imaging system can be constructed using low-cost
components [4]. Unlike Real-space ptychography, FP does not
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require a high-coherence light source or a detector with a high
dynamic range and moving parts. This makes it an ideal choice
for applications where cost is a major concern.

FP can be implemented in moveable and turnkey systems.
So far, various attempts have been made to use embedded
systems and adapt them to a simple optical configuration.
Several ptychography-based microscopes have been reported:
a portable high-resolution FPM using a smartphone lens [5],
a low-cost FPM-based on Raspberry Pi hardware with sub-
micron resolution [6], a low-cost platform for creating high-
quality moldless lenses [7], and finally, a microscope that can
be installed on a smartphone and use its display screen as a
programmable illumination [8]. It should be noted that most
of the above processing is still carried out on the server.

In terms of experimental implementation, FP is a simple
and widely used technique that can achieve gigapixel images
in both amplitude and phase domains. It also has the capability
of quantitative phase reconstruction and removal of optical
aberrations at a low cost. The main limitation of the FPM
technique is convergence to a local optimum solution and its
sensitivity to noise. Noise can distort high-frequency informa-
tion in the image and affect the quality of the reconstructed
image. In this paper, we report the implementation of a low-
cost and high-resolution FPM using a Raspberry Pi computer
for data acquisition and improving image quality.

The structure of the manuscript is organized as follows. In
part II, we acquaint the general principle of FP and propose
an algorithm for improvement. Part III discusses the proposed
method’s implementation and the introduction of hardware
and its software components. In part IV, we compare the
experimental setup and experimental results for the proposed
system. Eventually, in part V, discussions and conclusions are
summarized.

II. PRINCIPLES AND METHODS

A. Principle Of FPM

The basic operation of FP imaging is represented in Figure
1. When a sample is illuminated by a moving point-like
source of light waves, spatial patterns of light are formed at
different angles of illumination on a specific plane behind a
lens. These point-like sources of light are illuminated time-
sequentially, capturing an image at per angle. Only a tiny
portion of this Fourier spectrum may pass through the imaging
system and reach the sensor image due to the size limitation
of the objective lens. Therefore, the effect of the lens on
the diffraction spectrum can be considered a low-pass filter,
allowing a narrow aperture of frequencies to pass through in
the Fourier domain (pupil function) and filtering out higher
frequencies. When an object is illuminated with a plane wave
at higher angles, scattered light from the sample is represented
as a Fourier spectrum. In some cases, this scattered light does
not pass through the NA of the lens, creating a limitation for
the imaging system’s resolution. Illuminating the sample with
different angles enables access to more spectra and aids in the
appearance of the image. In other words, the basic principle of

FP is to take a number of low-resolution images using lenses
with a low-NA objective at different illumination angles and
then try to combine the different information in those images
and improve the final image resolution.

In the overall framework of FPM, the sample image is
captured under different illumination angles using an array
of LEDs. Each image is divided into multiple sub-regions
for processing as illumination angles vary for different sub-
regions. Nine unique windows of the specimen’s Fourier spec-
trum have been shown here. By acquiring unique images at
different angles, FP captures many regions of FT components
covering a wide spectrum. Achieving this wide range is done
by acquiring low-resolution images in the Fourier domain
and stitching them together. Thus, when the final image is
reconstructed, it will fix features with higher resolution.

What happens is that, by scanning the angle of illumi-
nation, we essentially get to scan the angular spectrum of
the transmitted light through the sample around the imaging
system. That is equivalent to rotating the lens around to
collect multiple images over the very vast angular range of the
imaging equipment. So, combining that information effectively
works by increasing the effective NA of the imaging system,
and that’s why the final resolution is getting better.

Fig. 1: Basic operation of FP.

B. Reconstruction Method

The Fourier ptychographic reconstruction process involves
integrating several low-resolution measurements to recover the
wavefront phase at full-field high-resolution. This results in
increased resolution compared to a conventional microscope.
Such synthesis relies on phase information that may be lost
during the data acquisition process. Therefore, in order to
recover the frequency spectrum of the image with high-
resolution, we need to know its phase. Inverse mathematical
operations cannot be carried out without knowing the phase
information. In other words, a light wave’s propagation
through a sample delays it by a certain amount, which is
described by phase information. Applying phase recovery
concepts, FP leverages the Gerchberg-Saxton-Fienup (GSF)
algorithm’s iterative reconstruction technique to recover
the sample’s lost phase information [9]. The constraint of



what is known in both the real and mutual space domains
is fulfilled by the iteration between the object and Fourier
domains. In order to obtain the correct diffraction patterns
in the mutual space, the object is laterally translated in a
probe beam that is constrained in the real space. Two distinct
sets of constraints are imposed on the reconstruction process
iteratively. The limited probe’s beam acts as a compact
support constraint in real space, limiting the object’s physical
extent for each measurement. The estimated solution in the
mutual space is based on the diffraction data, which also
function as limitations on the Fourier magnitude. The iterative
reconstruction process effectively seeks an estimation of the
object that satisfies both constraints [10]. The GSF algorithm
is designed to reconstruct complex wave field in a general
situation. The phase is obtained from intensity measurements
taken at different levels, and the amplitudes are assumed to
be known in both the object and Fourier domains.

Various studies have been conducted to improve FPM image
reconstruction and minimize the impact of noise. These studies
can be categorized into two sections: Section 1 offers a pre-
processing of the FP’s raw dataset. In the FP imaging process,
the input low-resolution images have a relatively low signal-
to-noise ratio; Hence, applying methods to reduce noise in the
raw FPM dataset is essential. Image pre-processing enables the
automatic selection of affected images from the raw dataset
and then removes their adverse effects in the reconstruction
process. Noise reduction methods based on pre-processing
have been explored in [11] and [12].

Section 2 comprises algorithms that have been proposed
to converge to a local optimum. The main goal of these
algorithms is first to identify different types of noise and
then search for an optimal solution to minimize it. This
approach optimizes the phase-retrieved solution based on
a gradient descent scheme. Subsequently, optimized results
are searched using a weighted item and, at each step,
the suppression of noise is pursued using these measures.
This process leads to an improvement in the quality of
high-resolution reconstructed images. The proposed methods
based on improving convergence are mentioned in [13], [14],
and [15]. The method presented in this paper is based on
a reconstruction algorithm to improve convergence, which
is implemented on FPM; We will discuss it in detail in the
following section.

III. FPM SYSTEM IMPLEMENTATION

FPM still requires considerable time to achieve a high-
resolution image with a broad FOV while working with
volume data of low-resolution images. An optimization strat-
egy that uses incremental gradient descent is the Adaptive
Step-size (AS) algorithm [15]. In this method, all FT is not
processed. Incremental methods are based on the alternating
projection of the probe and object functions on the mea-
surement plane and iteratively update the probe and object
functions until convergence. Using the AS algorithm on FP

significantly reduces the time and effectually improves the
quality of the reconstructed image and the robustness to noise.

The image foundation process in FP is defined as equation
1, which describes the problem of diffracted wave propagation.
The FT operation is applied to the product of the pupil transfer
function (A(k)) in the frequency spectrum of a given object
shifted S(k) by the illumination angles in the spatial domain.

Ii (r) = FT [A (K)× S (K −Ki)] (r) (1)

Initially, the reconstruction process in FP is that an estimate
of the spatial frequencies of the S(K) object is made with
high-resolution. Then, using the supplied shift variable illumi-
nation angle i and the filtered pupil function A, we generate
Si(K −Ki). In the next step, the generated Si(K −Ki) is
propagated to the detector plane to produce an approximate
representation of the image formed on the detector. The re-
ported intensity image Ii(r) is used to calculate the amplitude
of this approximation. Finally, Si−Update(K −Ki) is updated
in accordance with equation 2 on the foundation of a gradient
descent method, based on the updating of this amplitude
and propagating the new image approximation to the object’s
frequency plane:

SUpdate (K −Ki) = S (K −Ki) +
Ā

|Amax|2

× (Si−Update (K −Ki)− Si (K −Ki))

(2)

To generate a new approximation S(K), we need to go back
to SUpdate(K −Ki) once. So, this is applied to the following
illumination angle, and so on, until all illumination angles have
been used. The estimated image error, which is the difference
between the original and the estimated image, is computed
after each iteration. The whole process is repeated if this error
exceeds the acceptable limit. Otherwise, the reconstruction
process will be aborted. Once the process is complete, an
inverse FT is performed on the final S(K) estimate to recover
the high-resolution object.

Phase retrieval can be propounded as a regularized opti-
mization problem. So the update function above is optimized
as follows:

SUpdate (K −Ki) = S (K −Ki) + α
|A|

|Amax|
Ā(

|A|2 + ε
)

× (Si−Update (K −Ki)− Si (K −Ki))
(3)

In the above Equation, ε is considered as a regularization
parameter, and step size α is defined to the update function.
Convergence cannot be guaranteed when α is equal to the
constant value 1. Therefore, defining it adaptively helps access
convergence faster. The step size is reduced whenever there is
sufficient progress in image quality is not made. Only a pint-
size patch of the object function is updated in each iteration.

Accurate illumination angle estimate and recovery of the
spatially variable pupil aberration are prerequisites for a suc-
cessful FP reconstruction. The estimate of the object and the



Fig. 2: FPM reconstruction and optimization process algo-
rithm.

pupil function are initialized for reconstruction at the begin-
ning. Raw intensity measurements can give a decent initial
estimation of the object being reconstructed in experimentally
acquired images since they contain low-frequency information.
The estimated initial frequency spectrum is generated by the
FT of the spatial domain with high-resolution as a result
of doing the reconstruction in the Fourier domain. Through
the coherent transfer function, the pupil function A(K) is
initialized. For each Ki illumination, the sampling vectors
are computed in 2D coordinates. The purpose of this recon-
struction is the synthesis of the measurements in the Fourier
domain to recover the frequency spectrum S(K). Through
propagation from the Fourier domain to the spatial domain, the
high-resolution object S(r) = IFT {S(K)} can be obtained
(spatial domain coordinates are what the r parameter denotes).
Figure 2’s algorithm shows how to combine measurements and
constraints. An iterative approach is used to update the object
and the pupil until it finally converges to a solution. Updates
to S(K) and A(K) are made using all illumination angles, or
a subset of them, in each iteration. The updating is done in
two spatial and Fourier domains.

Figure 3 shows an arrangement. The microscope uses a
Raspberry-Pi 4 single-board as an embedded system for data
acquisition, controlling the camera, and the illumination of
LEDs, enabling imaging and data transfer without the need
for a peripheral system. Other required hardware for this is an
LED array, camera, and lens in addition to the Raspberry-Pi
board.

The main hardware and software control parts of the mi-
croscope are shown in Figure 4. Firstly, the LED array is
lit according to the program given to it, then to perform the
imaging the camera is accessed and controlled by Python 3.8
programming language. Images with a Python script using the
NumPy library are pre-processed with a raw data format on
Raspberry-Pi. Finally, the pre-processed raw images are stored

Fig. 3: a) Proposed Kit model and (b) A setup of the assembled
microscope.

in the SD card memory.

Fig. 4: Hardware system and control of software of FPM.

The stored images are split into 512×512 pixel sub-images
with 8 pixel overlap to aid high-resolution reconstruction
stitching. In the next step, the sub-images are transferred
to the Jupyter Notebook processing package in the Python
programming language for further pre-processing and are
processed by the SciPy, OpenCV, and Pillow libraries.

IV. EXPERIMENT

A. Experimental Setup

The dimensions of the microscope are 7cm × 11cm × 8cm
and it weighs only 160 grams. The Raspberry-Pi 4 enables
data transfer and wireless image acquisition. The light source
used in this implementation is an off-the-shelf LED array
with a matrix of 8×8 and a pitch of 4mm, which is lit up
sequentially. The LED illumination patterns are controlled by
the Raspberry-Pi. The distance between the LED array and
the specimen is 55 mm, and the pixel size of the camera
is 1.4 µm with a magnification of 8.15. The coordinates
for the first LED are set to X = 0, Y = 0. Images were
acquired using a Raspberry-Pi camera module and saved in tiff



format. After capture, the images were converted to grayscale.
The Raspberry-Pi is used to control the LED illumination
patterns. The camera has a 1.4 µm pixel size and an 8.15x
magnification, and the distance between the LED array and
the specimen is 55 mm. The coordinates for the first LED
are set to X = 0, Y = 0. A Raspberry-Pi camera module was
used to acquire the images and save them in tiff format. The
images were converted to grayscale after they were captured.
All materials and their values are detailed in Table I.

TABLE I. FPM design parameters

Mass-produced components Name Values
Single board Model Raspberry-Pi 4

Camera
Model

Pixel size

Raspberry-Pi camera module v1.3

1.4 µm × 1.4 µm

Objective Lens

Numerical aperture

Sensor resolution

Optical size

0.55

2592 × 1944 pixels

1/4”
Tube Lens Focal length 120 mm

LED

Model

Size module

Pitch

Wavelength

MAX7219 LED Dot Matrix

32 mm × 32 mm × 13 mm

4mm

625 ∼ 630 nm

B. Experimental Results

In this experiment, 64 low-resolution images were taken
to restore one high-resolution snapshot. The recovery process
changes between the spatial (captured intensity images) and
frequency domains. In the spatial domain, low-resolution im-
ages are used to limit the amplitude of the solution, and in the
Fourier domain, a pupil function is applied to the solution as
a constraint. This constraint is shifted in the Fourier domain
to reflect different illumination angles.

At the moment the probe modulus reaches its maximum
value, we modify the object through a new approximation;
Other points are modified by the incident probe module. If an
update is done at one position of the probe, then the positions
of the other probes with the required FOV should also be
updated, updating the function of the object sequentially.
The entire process of the above part may be repeated 20
times, so for example, 1280 updates for an 8×8 array of the
probe positions improve the object estimation. This algorithm
is called PIE (Ptychographic Iterative Engine). The ePIE
(extend PIE) and rPIE (regularized PIE) algorithms are among
the algorithms inspired by PIE. These algorithms have been
extended to dissolve probe.

The results of reconstruction using the incremental gradient
descent searching algorithm are shown in Figure 5. After each
algorithm iteration, we calculated the total difference between
the evolving object reconstructions and the original raw image.
We also stopped the algorithm at various time points to obtain
snapshots of the phase reconstruction. Iterating the algorithm

corrects for errors caused by component misalignment and
spatial aberration that depend on image quality.

Fig. 5: Progress of reconstructions (a-d) using the recovery
algorithm in the proposed method. Image reconstruction using
(Top) GSF algorithm, (Middle) ePIE algorithm, and (Bottom)
rPIE algorithm.

As shown in Figure 5, the image quality of FP recon-
struction using the incremental gradient descent algorithm is
superior to the GSF algorithm. Using these algorithms, the
central parts are obtained very quickly, whereas the edge
reconstruction takes a long time. With ePIE, the outer part
takes longer to appear more accurately, but the center of
regeneration evolves very quickly. Also, rPIE converges much
faster than ePIE at the center and edges.

TABLE II. Parameters obtained from the ePIE’s algorithm.

Parameter a b c d
PSNR(dB) 104.7128 102.92 102.4138 102.0809

SSIM 0.999 0.998 0.998 0.998
Running time 26.9s 45.1s 55.9s 1m17s

iteration 1 3 5 8

TABLE III. Parameters obtained from the rPIE’s algorithm.

Parameter a b c d
Alpha 0.25 0.125 0.0625 0.0039

PSNR(dB) 102.0764 101.3394 100.7246 100.2988
SSIM 0.997 0.997 0.997 0.996

Running time 1m51s 2m8s 2m22s 2m38s
iteration 5 7 10 15

Tables II and III indicate the parameters associated with the
recovery algorithms. The obtained values in the peak SNR,
considering that the image is in grayscale and consists of 8
bits, indicate an acceptable reconstruction between the initial
raw image and the final reconstructed image. Criterion SSIM
(Structural Similarity Index Method) examines two param-
eters: luminance masking and contrast masking. The SSIM
numbers obtained in this experiment indicate an acceptable
level of distortion at the edges of the reconstructed images.
Moreover, the use of convergence algorithms significantly
reduces the time.



In FPM, significant improvements have been made. Imaging
noise is nevertheless a constant issue that can taint the FPM-
retrieved data. Without pre-processing the image, the quality
of the rebuilt image cannot be improved. With the use of a
two-dimensional Gaussian filter, we were able to lower the
noise to manageable levels. Figure 6 shows the results of the
reconstruction image enhancement.

Fig. 6: Improvement results using 2D filtering. (a) The image
was captured using an objective lens with 4× magnification and
0.1 NA. (a1) Displays an enlarged image of a specific area
within the larger image (a). (b1)-(b4) Results of improving
image quality by Gaussian filters.

V. CONCLUSION

This paper proposes a portable and low-cost microscope
using the Fourier ptychography technique implemented on an
embedded system. Making high-performance microscopes at
a very low-cost is one of the appealing features of FPM.
Compared to previous reports on systems equipped with
expensive cameras, the microscope offers a 100-fold larger
FOV without loss of resolution. In this implementation, data
acquisition is done independently and, the data is processed
through Jupyter Notebook. We have shown that FPM can
be built with accessible mass-produced components. Also,
the AS optimization strategy is suggested for utilization in
large datasets because of its faster convergence, computational
efficiency, and low memory cost. This method eliminates noise
more effectively while preserving useful information. Since
the quality of the acquired images is outstandingly improved,
this proposed microscope can be used for applications such as
cell studies. All processing in our work is carried out on the
Raspberry-Pi board and does not need a server.
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