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Abstract
The numerical modeling of the land surface can make up for the insufficient station data in terms of number, dispersion, 
and temporal continuity. In this research, to evaluate the Noah-MP land surface model, the water balance components were 
estimated in the Neyshaboor watershed in the monthly time step during 2000–2009. Model input data were obtained from the 
global land data assimilation system version 1 (GLDAS-1), and the SWAT (soil and water assessment tool, a semi-distributed 
for small watershed to river basin-scale model) model output was used for the evaluation of the Noah-MP model. In this 
study, the ability of the Noah-MP model in simulating vegetation dynamically was studied. The precipitation was corrected 
before running the model for a more reliable evaluation. The time between 2000 and 2001 was considered a spin-up period 
and 2002–2009 for calibration and validation. The model has the best simulation in the mountainous areas; the runoff simu-
lated by the Noah-MP model is in good agreement with the modeled runoff by SWAT in these areas. (R2 = 0.78, NSE = 0.62, 
RMSE = 1.98  m3/s). The  R2 for simulated soil moisture for soil layers (0–10, 10–40 cm) was 0.62 and 0.57, and RMSE was 
0.059  (m3/m3) and 0.052  (m3/m3), respectively, in Motamedieh field. The annual amount of evapotranspiration estimated 
by the two models is comparable to the average annual evapotranspiration in the watershed (about 300 mm). Based on the 
results from the research, the model has well simulated: the runoff in the mountainous areas, the moisture in the upper layer 
of the soil, and the average annual evapotranspiration in the study area.
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Introduction

Land surface exchanges energy and mass with the atmos-
pheric boundary layer; therefore, it affects the weather; in 
return, climate alters the land surface through variations in 
moisture and heat generated by precipitation, radiation, and 
other factors (Wood et al. 1992; Betts et al. 1996; Dan et al. 
2015; Ekwueme and Agunwamba 2021). Studies have shown 
that 64.73% of annual variation in runoff is due to climatic 
variables (Ekwueme and Agunwamba 2020). Therefore, 
models that can simulate these interactions are important 
for hydrologists, meteorologists, and related scientists. Land 
surface models (LSM) simulate bottom boundary conditions 
to be used in weather and climate models by solving the 
energy, water, and carbon balance. Due to population pres-
sure and climate change, estimation of water resources avail-
ability is one of the most important aspects to be considered 
by water managers and land surface models can represent it 
(Overgaard et al. 2006).

 * Hossein Ansari 
 ansary@um.ac.ir; h.ansari.paper@gmail.com

 Samira Mirshafee 
 s_mirshafee83@yahoo.com

 Kamran Davary 
 K.Davary@ferdowsi.um.ac.ir

 Ali-Naghi Ziaei 
 an-ziaei@um.ac.ir

 Alireza Faridhosseini 
 farid-h@ferdowsi.um.ac.ir

 Yong-Sang Choi 
 ysc@g.ewha.ac.kr

1 Water Science and Engineering Department, College 
of Agriculture, Ferdowsi University of Mashhad (FUM), P. 
O. Box 91775-1163, Mashhad, Iran

2 Department of Environmental Science and Engineering, 
Ewha Womans University, Seoul, South Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s13201-023-02076-0&domain=pdf


 Applied Water Science           (2024) 14:22    22  Page 2 of 13

The sketch of Noah LSM presented by Oregon State 
University (OSU) was developed in the 1980s at OSU 
(Mahrt and Pan 1984) and upgraded by the National Cent-
ers for Environmental Prediction (NCEP) (Chen et  al. 
1996). The multiparameterization options were added to 
the Noah model, and Noah-MP was produced (Niu et al. 
2011). This model has different parameterization schemes, 
which are called “options,” for each physical process; 
therefore, it makes it possible to carry out different experi-
ments by combining these schemes (Li et al. 2022). Noah-
MP allows the user to form multi models produced by a 
grouping of parameterization schemes with new and more 
realistic options to simulate biophysical and hydrological 
events. This is the unique ability of the Noah-MP model 
(Niu et al. 2011; Hong et al. 2014; Zhang et al. 2016; 
Gan et al. 2019; Zhuo et al. 2019) compared to the other 
land surface models that help researchers to experiment 
with the different schemes for phenomena and simulate 
land surface more realistically (Chang et al. 2022). On a 
global scale, the results of the model can be compared to 
satellite data and observations (Yang et al. 2011; Pilotto 
et al. 2015; Ma et al. 2017). Noah-MP has shown signifi-
cant progress in modeling hydrological parameters includ-
ing soil moisture, runoff, groundwater, and ET (Cai et al. 
2014a; Barlage et al. 2015; Zheng et al. 2017; Yang et al. 
2019); in addition, the results indicate that the simulation 
of Noah-MP model can be greatly improved by assimilat-
ing input observations data such as leaf area index, snow 
cover fraction within hybrid methods (Zhao and Yang 
2018; He et al. 2022).

In other studies of water management in watersheds, 
the hydrologic models were applied. The different data to 
develop these models have been collected for the small units 
of area (e.g., the hydrologic response unit in the SWAT 
model). Providing these distributed models for large water-
sheds or regional scales is expensive, time-consuming, and 
sometimes impossible (Saadatpour et al. 2019; Nasiri et al. 
2020; Izady et al. 2022); therefore, the findings from an 
advanced land surface model with large pixel have inspired 
us to investigate for the first time whether this model could 
simulate the three important hydrological variables (runoff, 
soil moisture, and evapotranspiration) in the arid and semi-
arid watersheds in Iran with lack of measurements. Although 
the model outputs are usually reported for a large-scale area, 
the data to evaluate the results of the model were only avail-
able in the Neyshaboor watershed, and for ten years, it can 
be representative of most of Iran watersheds. Therefore, 
Neyshaboor watershed was selected. After assessing the 
Noah-MP model, if the model simulates the water balance 
components with acceptable accuracy, it can be used for 
estimating major hydrological parameters on a larger scale 
in Iran with a lack of observations. The model performed 
with its own assumptions.

GLDAS applies a set of land surface observations and 
satellite data, assimilation techniques, and land surface 
models to present land surface state (e.g., soil moisture and 
surface temperature) and flux (e.g., evaporation and sensible 
heat flux) parameters. GLDAS supplies land surface data at 
2.5° to 1 km resolutions, and the temporal resolution is 3 h 
(Rodell et al. 2004; Fang et al. 2009; Chen et al. 2013; Yang 
et al. 2019). These products are presented for a variety of 
purposes, perhaps their most important application is to be 
the land model benchmarking (Van Den Hurk et al. 2011; 
Park and Park 2016). Although GLDAS drives four land 
surface models, the Noah model with multiparameterization 
options does not exist in this system. Examining Noah-MP’s 
output in a different region of the world and comparing it 
with observations is an effort to join the Global Benchmark-
ing Project.

Zhang et al (2016) showed that the uncertainty in precipi-
tation data exerts a greater impact on the Noah-MP simu-
lations relative to the vegetation parameter (i.e., LAI) thus 
the precipitation data were corrected after comparing with 
observational data by their nonlinear method to evaluate the 
model more accurately. Additionally, to indicate the ability 
of the dynamic vegetation scheme in the Noah-MP model, 
evapotranspiration is divided into evaporation and transpira-
tion components for the first time in this model.

In general, the ability of the model to provide accept-
able results in the arid and semiarid regions was investi-
gated. Sect. ”Materials and methods” describes the model 
and study area, introduces the observation and model input 
data, presents sensitivity analysis, calibration, spin up, and 
the evaluationn methods; Sect. ”Results and discussion” pre-
sents the evaluations of soil moisture, runoff, and ET and 
Sect. ”Conclusions” summarizes the model results and pre-
sents suggestions for future research.

Materials and methods

The Noah‑MP model

Noah-MP is a progressive version of Noah LSM using multi-
physics options to simulate flux exchange between the land 
surface and the atmosphere. Noah-MP has a separate vegeta-
tion canopy layer in comparison with Noah LSM; therefore, 
the upgraded model has a separate calculation for tempera-
ture, energy, and water component (Niu et al. 2011). Three 
layers of snow (Niu and Yang 2003) are added to the top 
of the soil column in Noah-MP which helps estimate cor-
rect albedo and available energy at every time step and also 
simulate the time of snowmelt correctly. The recent snow 
structure makes it possible to calculate phenomena in layers 
of snow, for example infiltration, conservation, and freezing 
water (Niu and Yang 2006).
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The Noah model has free drainage at the lowest depth 
of 2  m soil column, which ignores the mechanism of 
soil–water interaction with groundwater. Noah-MP model 
includes a simple groundwater model (Niu and Yang 2007), 
which allows users to add drained water from soil column 
to groundwater or to apply groundwater for evaporative 
requirement in the warm seasons. There is a new scheme 
for frozen soil in Noah-MP that prevents low infiltration 
resulting in the production of large amounts of runoff on 
the surface compared to the existing scheme in Noah (Niu 
and Yang 2006). The Noah-MP model has other extensions: 
(1) the Ball–Berry scheme (Ball et al. 1987) is a type of 
stomatal resistance added to the model to simulate photo-
synthesis of the leaves growing in the shadow and the sun 
and (2) a dynamic vegetation model (Dickinson et al. 1998) 
that considers produced carbon in vegetation and soil sepa-
rately. A semitile subgrid scheme and two-stream radiative 
transfer treatment (Yang and Friedl 2003; Niu and Yang 
2004) are used in the model to omit excess shadows and 
to consider space between-canopy gaps. Noah-MP model 
has multi-physics options for each physical process which 
allows the modeler to do the experiment with a different set 
of schemes and evaluate the results (Yang et al. 2011). Soil 
water movement(θ) is modeled with the diffusivity form of 
Richards’ equation (Koren et al. 1999; Balsamo et al. 2009):

where hydraulic conductivity (K (m/s)) and water diffusiv-
ity (D  (m2/s)) are functions of soil texture and soil moisture 
content and S indicates water sources or sinks, increases soil 
moisture by infiltration, or decreases it by evaporation. SIM-
TOP is a simplified TOPMODEL and a proposed option by 
Noah-MP for the simulation of surface and subsurface runoff 
(Niu et al. 2011). Surface runoff (Rs) is produced when a 
grid cell is saturated as presented in the Eq. (2):

Qwat is the incident water on the soil surface. The satu-
rated fraction (Fsat) is expressed as follows:

where Ffrz is a fractional impermeable area that is a func-
tion of the ice content in the surface soil layer and Fmax–the 
potential or maximum saturated fraction of a model grid 
cell–is the portion of the accumulative area of subgrid cells 
that have a topographic index being equal to or larger than 
the grid cell mean topographic index. The topographic 
index in every grid cell can be obtained from high‐resolu-
tion subgrid topography (Niu and Yang 2006). f is the decay 
factor and can be determined through sensitivity analysis 
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or calibration against the hydrograph recession curve and 
globally f = 6.0.  z∇ is water table. Z′

bot = 2 m is the depth 
of the model bottom. The base flow or subsurface runoff is 
represented as shown in Eq. (4):

When the grid cell mean water table depth is zero, the 
maximum subsurface runoff (Rsb,max) has occurred and glob-
ally Rsb,max = 5.0 ×  10−4 m/s obtained from sensitivity tests 
and calibration against global runoff data (Niu and Yang 
2007). Plus, Λ is the grid cell mean topographic index, with 
a global mean value of Λ = 10.46 derived from HYDRO1K 
1 km WI data. Total evapotranspiration is a sum of canopy 
evaporation, soil evaporation, and transpiration. Potential 
evapotranspiration is calculated using the Penman–Monteith 
equation (Zeppel 2011). Transpiration is achieved according 
to the state of the canopy. The transpiration conductance 
determines the state of the canopy and leaf to canopy air 
(ctw (m/s)), and this coefficient entered into the formula. The 
transpiration conductance (ctw) is determined based on sunlit 
and shaded leaf area index, leaf boundary layer resistance, 
sunlit, and shaded stomatal resistance. The values of  ctw are 
strongly dependent on the period of plant growth. Therefore, 
the actual transpiration in the Noah-MP model varies with 
time by Eq. (5):

where Tr is transpiration heat flux (w/m2), Fveg is greenness 
vegetation fraction (–), ρair is the air density (kg/m3), Cp 
(= 1004.64) is the heat capacity of the dry air at constant 
pressure (j/kg/K), Ctw is the transpiration conductance, leaf 
to canopy air (m/s), Es(Tv) is the saturation vapor pressure 
at Tv (pa), Eah is the canopy air vapor pressure (pa) and γ is 
the psychrometric constant (pa/K).

Study area

The study area is Neyshaboor watershed in the north-
east of Iran that is located between 35°40′–36°39′ N and 
58°17′–59°30′ E, with semiarid to arid climate (Fig. 1). The 
total geographical area is 9158  km2 which consists of 4917 
 km2 plain and 4241  km2 mountainous terrains. 29% of the 
total area is irrigated. The highest elevation of Neyshaboor 
changes from 3300 m in the mountains to 1050 m in the 
plain. The mean annual temperature of the watershed ranges 
between 13 and 13.8 °C. The average annual precipitation 
is 265 mm. The watershed was divided into three regions: 
mountain (grids: 1, 4, 8, 12), foothills (grids: 2, 3, 5, 9, 13, 
14, 15), and lowland (grids: 6, 7, 10, 11) for two reasons: 
first, the importance of cell uniformity in terms of vegeta-
tion and soil texture and topography in calculating runoff 
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using the SIMTOP method and, second, inaccessibility of 
the information of the smaller cells for this model.

Observation data and model input data

In this study, 0.25-degree spatial resolution used, 3‐hourly 
meteorological data provided by GLDAS-1 to run the Noah-
MP model version 1.1 at hourly time step from 24 Febru-
ary 2000 to the end of 2009. GLDAS drives multiple land 
surface models uncoupled to an atmospheric model. In this 
research, the Noah LSM outputs were used. The data were 
(1) surface pressure, (2) near-surface air temperature, (3) 
near-surface wind speed, (4) near-surface specific humid-
ity, (5) precipitation (snow and rainfall), (6) surface inci-
dent shortwave radiation, and (7) surface incident longwave 
radiation. There are many studies that the spatial and tem-
poral variability of climatic parameters has investigated by 
statistical tools (Ekwueme and Agunwamba 2021). The 
precipitation data have been corrected by matching the 
mean and the coefficient of variation of GLDAS data with 
Meteorological Organization data. The bias-corrected pre-
cipitation data were done by the method proposed by Terink 
et al (2009). The difference in average daily precipitation 
between GLDAS1 data and observational data was in the 
range of 0.3–0.048 mm after this method effectively reached 
to 0.048 mm. The R-squared value between the coefficient of 
variation of GLDAS data with observational data improved 
from − 5.14 to 0.99 on the daily scale. The irrigation water 
has been added at the rate of 15–25 mm per month to the 
Noah-MP model precipitation. The initial conditions include 
soil moisture, soil temperature, skin temperature, canopy 

water, snow water equivalent, and deep soil temperature at 
the start of the simulation. They were provided by the output 
of the GLDAS-1/Noah data. Other initial conditions were 
selected from arbitrary values that are globally constant 
(Yang et al. 2011).

U.S. Geological Survey (USGS) 30-s global 24-cat-
egory vegetation map and hybrid State Soil Geographic 
(STATSGO)/Food and Agriculture Organization (FAO) 
Five-minute 16-category soil texture map was the sources 
to acquire vegetation and soil type. There were local land use 
map and soil map at a scale of 1:100,000 in Khorasan Razavi 
Regional Water Authority that allocate various vegetation 
types to a grid; in accordance with the model structure, the 
dominant land use was considered as a representative of the 
whole of the grid which is not reality and probably reduces 
the accuracy of the simulation. As can be seen from Table 1, 
the global vegetation map predicts shrubland for the whole 
watershed, while the local map adds two other types of 

Fig. 1  Location of Neyshaboor watershed in Iran and grid cells

Table 1  Land use and soil type of grid cells accordance with global 
map and local map

Global map Local map

Land use Shrubland Shrubland (grids: 2, 5, 9)
Mixed dryland/irrigated (grids: 

3, 6, 7, 11, 15)
Mixed shrubland/grassland 

(grids: 1, 4, 8, 10, 12, 13, 14)
Soil type Clay loam

Loamy sand
Clay Loam (grids: 1, 2)
Loamy Sand (grids: 3, 5, 10, 13)
Sandy Loam (grids: 14, 15)
Loam (grids: 4, 6, 7, 8, 9, 11, 12)
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vegetation: mixed dryland/irrigated and mixed shrubland/
grassland. Also, the global soil map represents clay loam 
and loamy sand for the grids but the local maps include two 
other texture: sandy loam and loam. Generally, local maps 
exhibit more varied vegetation and textures.

Soil moisture has been measured volumetrically on 
several days from May 2008 to June 2009 using a humid-
ity meter (type TRIME-FM, Germany) in another local 
research. They have been performed in three replicates and 
days without irrigation. The measurement in two fields and 
two depths were pickup for model evaluation.

Sensitivity analysis, calibration, and spin up

Since the values of the initial parameters were selected from 
GLDAS, which are not far from reality, the first two years 
of implementation 2000–2001 were considered as the spin-
up time. The model was run daily by the default options 
except for the vegetation model in which dynamic option 
was selected. Sensitivity analysis methods are carried out 
for a variety of reasons (Hamby 1994), but the main reason 
here is to determine the most critical parameters in the final 
runoff value in the watershed and to calibrate the model 
accordingly (Bastidas et al. 1999). The most popular and 
simple method of sensitivity analysis is to change a param-
eter, while the others are constant. The extent and sensitivity 
of the parameter can be captured by changing (for exam-
ple, increasing) each parameter gradually and measuring its 
effect on the model output. This method has been known as 
a “local” analysis (Hamby 1994) and has been applied exten-
sively for sensitivity analysis in other models (Pitman 1994; 
Wen-Yih Sun and Bosilovich 1996). Twenty-eight model 
parameters were examined that seemed to be more effective 
in the runoff and represented similar parameters. They were 
eleven soil and three vegetation parameters along with eight 
parameters extracted from the dynamic vegetation model 
and six parameters in the groundwater module. Table 2 dis-
plays the descriptions, units, and ranges of the parameters. 
The range of parameters was obtained from the default value 
in the manual, literature review (Rosero et al. 2010), and 
software of the soil science, and was then modified by the 
local information regarding the watershed.

Calibration was performed based on sensitive parame-
ters in the sensitivity analysis. The fifteen rain gauges were 
located in seven grid cells, and nine hydrometric gauges 
were located in four grid cells. The impassable heights could 
be a reason for the few gauges. The measurements were not 
captured, in some years. The human activities in this water-
shed (e.g., artificial groundwater recharge sites and the dam 
construction close to gauges) may reduce the accuracy of 
hydrologic data; therefore, simulated runoff from the SWAT 
model was used for sensitivity analysis and calibration. The 
SWAT model has been already calibrated (the  R2 and NSE 

for simulated runoff were obtained 0.77 and 0.74, respec-
tively) using a combination of hydrometric gages and his-
torical crop yield data to improvement the uncertainty of 
outputs (Izady et al. 2015). The runoff of each grid cell was 
calculated by the area-weighted average of runoff among 
sub-basins of the SWAT model placed in the same grid and 
was then compared to the equivalent value in the Noah-MP 
model, and the parameters were optimized. The samples 
of model parameter sets were obtained by Latin hypercube 
sampling (LHS). LHS is a stratified random method with 
only one sample in each row and each column in a multi 
square grid (Minasny and McBratney 2006).

Evaluation statistics

In order to evaluate the model results, runoff and evapo-
transpiration values were extracted from the model and 
then compared with SWAT outputs by three indexes: root-
mean-square error (RMSE), the square of the correlation 
coefficient (R2) (Santhi et al. 2001; Liew et al. 2003), and 
Nash–Sutcliffe efficiency coefficient (NSE) (Niu and Yang 
2006; Moriasi et al. 2007). Lower RMSE values and R2 and 
NSE values greater than 0.5 show encouraging performance.

Results and discussion

Sensitive parameters

RMSE between the reference and modeled runoff was esti-
mated for the sample range in order to discover runoff sen-
sitivity to Noah-MP model parameters (Jhorar et al. 2002). 
The Clapp–Hornberger “b” parameter (b (–)), saturated soil 
hydraulic diffusivity (satdw (–)), porosity (maxsmc  (m3/
m3)), maximum saturated fraction (fsatmx (–)), specific 
leaf area (sla  (m2/m2)), micropore content (cmic (–)), runoff 
decay factor (f (1/m)) were identified as the most sensitive 
to the least sensitive, respectively. The climatic conditions 
of the watershed affect the initial value of parameters and the 
determination of sensitive parameters (Rosero et al. 2010). 
In some regions, runoff simulation is extremely sensitive to 
three parameters: the surface dryness factor (α), the satu-
rated hydraulic conductivity (satdk), and the saturated soil 
moisture (θmax) (Cai et al. 2014a).

The results of the sensitivity of runoff to Noah-MP model 
parameters are shown in Fig. 2. In Fig. 2, the greater slope 
of RMSE indicates the greater sensitivity of the runoff to 
the parameter. This method visibly shows the runoff error 
created by parameter changes and, moreover, indicates the 
appropriate parameter range for calibration. The calibration 
of the model started with this seven parameters. The final 
range of sensitive parameters after calibration is given in 
Table 3. The runoff had the most sensitivity to the saturated 



 Applied Water Science           (2024) 14:22    22  Page 6 of 13

soil hydraulic diffusivity and Clapp–Hornberger “b” param-
eter and the least sensitivity to the runoff decay factor “f.”

Runoff

Figure  3 shows Noah-MP simulated monthly runoff, 
SWAT simulated monthly runoff, and precipitation in three 
regions from January 2002 to December 2009. Figure 3 
shows the monthly modeled Noah-MP runoff generally 
follows the variability of the precipitation. According 
to Table 4, the best simulations belong to the mountain, 
lowland, and foothills, respectively. The Noah-MP model 
cannot simulate agriculture and irrigation in lowlands, 
and this is one of the reasons that the Nash coefficient of 
runoff is lower than in the mountain. Since the hydraulic 

characteristics of the plain have been affected by human 
activity and these changes cannot completely be consid-
ered in the large grids of the Noah-MP model, values of 
NSE and RMSE reduce. The minimum value of this coef-
ficient belongs to the foothills because each cell in this 
region is a combination of elevations and lowlands, and 
considering one type of vegetation and soil texture for the 
whole cell has created this issue. In another research, the 
Noah-MP presented a better runoff simulation but a worse 
ability in simulating evapotranspiration over most regions 
in comparison with FLUXNET tower observations. This 
research suggested improving the dynamic vegetation 
model, lake water storage dynamics, and human activities 
including irrigation (Ma et al. 2017)

Table 2  Descriptions of 
parameters used in the 
Noah-MP model, units, and 
ranges for calibration

Parameters Description Units Range

Soil parameters
Maxsmc Porosity (m3/m3) 0.373–0.52
Satdk Saturated hydraulic conductivity (m/s) 4.94 ×  10−4–1.73 ×  10−2

Wltsmc Wilting point soil moisture (m3/m3) 0.059–0.224
Refsmc Reference soil moisture (field capacity) (m3/m3) 0.225–0.35
drysmc Dry soil moisture threshold where direct evaporation 

from top layer ends
(m3/m3) 0.02–0.2

f11 Soil thermal diffusivity/conductivity coefficient (m2/s) 0.29–0.76
satpsi Saturated soil matric potential (m/m) 0.04–0.62
satdw Saturated soil hydraulic diffusivity (m/s) 6.08 ×  10−7–2.39 ×  10−5

b Clapp-Hornberger “b” parameter (–) 3.5–7.2
qtz Quartz content (–) 0.1–0.82
czil Zilintikevich parameter (–) 0.2–0.4
Groundwater parameters
cmic Micropore content (–) 0–1
f Runoff decay factor (1/m) 2–6
fsatmx Maximum saturated fraction (%) 0.2–0.6(20–60)
rous Specific yield (–) 0.05–0.15
rsbmx Base flow coefficient (mm/s) 2.5–7.5
watmin Minimum soil moisture (volumetric) (m3/m3) 0.005–0.015
Dynamic vegetation model parameters
bp Minimum leaf conductance (umol/m2/s) 2000–4000
laimin Minimum leaf area index (m2/m2) 0.025–0.075
miu Average inverse optical depth for longwave radiation (–) 0.5–1.5
rsdryc Degree of drying that reduces soil respiration (–) 20–60
rswoodc Wood respiration coefficient (1/s) 1.50 ×  10−10–4.50 ×  10−10

rtovrc Root turnover coefficient (1/s) 1.0 ×  10−8–3.0 ×  10−8

sla Specific leaf area (m2/m2) 50–80
wstrc Water stress parameter (–) 50–150
Vegetation parameters
hs Parameter used in vapor pressure deficit function (–) 36.25–42
nroot Rooting depth (as the number of layers) (–) 1–4
rs Leaf stomatal resistance (s/m) 40–300
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Evapotranspiration

The simulated monthly mean evapotranspiration of Noah-
MP and SWAT models is shown in Fig. 4. As can be seen, 
the models show less evapotranspiration in autumn and win-
ter and more evapotranspiration in spring and summer due to 
warmer climate with different temporal patterns. For better 

comparison, the simulated monthly mean evapotranspira-
tion and its components over the last ten years are plotted 
in Fig. 5. The soil evaporation, transpiration, and canopy 
evaporation were calculated to be 156, 117, and 33 mm, 
respectively.

Figure 5 shows that the mean evapotranspiration of the 
Noah-MP model is higher than in the SWAT model in May, 
June, and July, and it is lower in November, January, Febru-
ary, and March. SWAT model shows the peak of evapotran-
spiration in April, whereas the highest evapotranspiration 
in the Noah-MP model is observed in May. As shown in 
Fig. 5, the evaporation pattern in the Noah-MP model is 
similar to the SWAT model, but the transpiration is differ-
ent. As the weather warms up and the radiation increases, 
transpiration increases and reaches its maximum in June 
and decreases in colder months. This seems to be due to 
plant activity throughout the year, and the dynamic veg-
etation model has created this pattern by simulating plant 
growth. The amount of transpiration is added to the amount 
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Fig. 2  The RMSE of the simulated runoff as a function of the Noah-MP model parameters

Table 3  Final parameter ranges (minimum and maximum) and units

Parameters Units Range

maxsmc (m3/m3) 0.4121–0.48
satdw ( m/s) 6.08 ×  10−7–2.39 ×  10−5

b (–) 3.6–6.55
cmic (–) 0.175–0.9
f (1/m) 2.9–4.9
fsatmx (%) 0.2–0.3(20–30)
sla (m2/m2) 50–75
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of evaporation from the soil, which increases its value and 
changes the evapotranspiration pattern. As can be seen in 
Fig. 5, evapotranspiration during cold months of the year, 
especially in December and January, is lower than the SWAT 
model. Apart from the dependence of evaporation on model 
parameterization, due to the dependence of evaporation on 
meteorological variables, we should look for the reasons of 
this underestimation in the deviation of input data. As noted 
in this study, precipitation data have been corrected, but no 
corrective data have been available for other meteorologi-
cal data, although attempts have been made to increase the 
GLDAS input data, which were estimated to be low in the 

watershed. Another reason for under is related to the lack of 
human activities in the Noah-MP model. Accordingly, after 
the warm months, the vegetation model considers the end 
of the growing season and the lowest leaf area index for the 
plant; thus, it calculates the transpiration at zero or near zero 
in the cold months while winter cultivation and transpiration 
of plants continue in Neyshaboor watershed. Also, cultiva-
tion in the plain and regular irrigation throughout the year, 
which is not simulated by the Noah-MP model, can change 
the pattern.

The annual evapotranspiration of the two models is also 
shown in Fig. 6. The estimated annual evapotranspiration 
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Fig. 3  Simulated monthly runoff by Noah-MP and SWAT model and sum of irrigation and precipitation in a mountain, b lowland, and c foothills

Table 4  Model evaluation after 
calibration

Region Before calibration After calibration

R2 NSE RMSE R2 NSE RMSE

Mountain 0.78 0.47 2.34 0.78 0.62 1.98
Foothills 0.52 0.19 4.48 0.52 0.27 4.27
Lowland 0.69 0.41 2.70 0.71 0.44 2.80
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value of the model is close to the estimated value of the 
SWAT model. The two models are close to the average 
annual evapotranspiration rate of the Neyshaboor water-
shed approximately 300 mm (Mianabadi et al. 2016), and 
the Noah-MP model has an acceptable annual value.

Soil moisture

The simulated soil moisture in grid cells 6 and 7 have been 
compared to observational data in Motamedieh and Faroob 
fields in the same cells in plain region. As shown in Fig. 7, 
the model was able to predict the pattern of observations.

In both grid cells, the coefficient of determination of 
the first layer (0–10 cm) is larger than the second layer 
(10–40 cm). This is probably due to the fact that in Noah-
MP model only the specifications of the first layer of soil are 
determined according to the land surface, and same specifi-
cations are considered for other layers, which is one of the 
weaknesses of this model.

The highest matching at both depths was observed in both 
fields during rainiest seasons, namely autumn, winter, and 
early spring. As shown in these graphs, the model generally 
underestimated soil moisture in the warm months of April, 

May, July, and August due to evapotranspiration values. Dur-
ing these months, the evapotranspiration is overestimated 
according to the results obtained in the evapotranspiration 
section. In fact, due to high values of simulated evapotran-
spiration, the soil loses more water, which results in less 
moisture in the simulated soil compared to the observations. 
In similar research, Noah-MP has moderate improvements 
in modeling evapotranspiration and soil moisture and the 
Noah-MP has the best performance among other land sur-
face models (Cai et al. 2014b).

The limitations of this study are as follows: There were 
not sufficient data about the watershed. Thus, the model was 
executed with large grid cells (in comparison with the water-
shed area) caused a reduction in model efficiency, probably. 
As mentioned earlier (2.4), the shortage of observational 
data in the whole of the watershed, induced simulated run-
off and evapotranspiration to be compared with the SWAT 
outputs, and the simulated soil moisture evaluate with meas-
ured data in only two cells. The model could not simulate 
human activities on farms. The strength of this study was 
the correction of precipitation before using it for the model. 
The Noah-MP model evaluation criteria after calibration did 
not have improvement; therefore, this watershed does not 
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require calibration because this model has a physical basis. 
The simulation of Noah-MP could be improved with inclu-
sion or modification of additional processes such as lateral 
terrestrial water flow, evapotranspiration, and crop models 
(Yu et al. 2022; Meng et al. 2023; Sofokleous et al. 2023;).

Conclusions

In order to evaluate Noah-MP model, this model was exe-
cuted in the Neyshaboor watershed with an arid and semiarid 
climate with the available water balance information. First, 
the model spin-up and sensitivity analysis were done, and 
then the model calibration and evaluation with SWAT model 
outputs were done simultaneously. Several conclusions from 
this study are as follows:

Based on the results of sensitivity analysis, runoff has 
the highest sensitivity to these parameters: the Clapp-Horn-
berger “b” parameter, saturated soil hydraulic diffusivity, 
porosity, maximum saturated fraction, specific leaf area, 
micropore content, and runoff decay factor.

Noah-MP-simulated runoff fits well with the SWAT 
model runoff. The best simulation belonged to mountain-
ous areas because of its natural and intact essence with no 
human intervention (R2 = 0.78, NSE = 0.62, RMSE = 1.98 
 m3/s). Lowland ranked second in this simulation because 
Noah model lacks an option to simulate agriculture and irri-
gation. The third was the foothills because of the variations 
in topography and land use in each grid.

The Noah-MP estimated annual evapotranspiration 
close to the long-term average annual one (approximately 
300 mm). The monthly evapotranspiration estimated by the 
Noah-MP model is different from the SWAT model, due to 
the fact that it does not modify all the forcing data and also 
Noah-MP does not take agriculture into account. Moreover, 
there is a dynamic vegetation model in Noah-MP that causes 
variations of evapotranspiration dynamically.

Noah-MP model could simulate soil moisture in the first 
and second layers in two grid cells in the plain (grid cells 6 
and 7). The simulated soil moisture in the first layer (e.g., 
R2 = 0.62, RMSE = 0.059  m3/m3 in the Motamedieh field) is 
better than the second one (e.g., R2 = 0.57, RMSE = 0.052 
 m3/m3 in the Motamedieh field). The simulated soil moisture 
in rainy seasons is closer to observation because, in warm 
months, the evapotranspiration was overestimated; thus, soil 
moisture was underestimated. Since the model is provided 
with several options for runoff simulation, it is suggested 
that other model options be considered separately or a com-
bination of them to calculate runoff in the arid and semiarid 
watersheds.

In this study, a specific configuration of options (referred 
to in Sect. ”Sensitivity Analysis, Calibration, and Spin up”) 
was selected. Although the results were acceptable, it is 

recommended that the model’s performance be evaluated 
with other configuration, and the role of irrigation in large 
agricultural regions added to the model. In future studies, 
the schemes for modeling the runoff can be compared to find 
the best scheme in every region.
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