

IRANIAN ORGANIC CHEMISTRY CONFERENCE

1_3 NOV, 2023 UNIVERSITY OF QOM, IRAN

Synthesis and spectroscopic characterization of a new amidophosphoester, (CH₃CH₂O)₂P(O)NH(C₆H₁₀)NHP(O)(OCH₂CH₃)₂

Narjess Peyman, Mehrdad Pourayoubi*

Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, nargesspeyman@yahoo.com, pourayoubi@um.ac.ir

Keywords: Amidophosphoester, NMR spectroscopy, Phosphoramide

The phosphoramide compounds have been the focus of researchers for a long time, due to manifold applications, especially in medicine, agriculture, and preparation of flame retardants^[1]. According to the different applications of these compounds, synthesis methods have been developed, including the reaction of amines with phosphoryl halides^[2].

A new amidophosphoester, $(CH_3CH_2O)_2P(O)NH(C_6H_{10})NHP(O)(OCH_2CH_3)_2$, was prepared from the reaction of $(CH_3CH_2O)_2P(O)Cl$ reagent and trans1,4-diaminocyclohexane (2:1 mole ratio, in the presence of $N(C_2H_5)_3$) in dry chloroform (Scheme). The product was characterized by IR, 1H -NMR, ^{13}C -NMR, and ^{31}P -NMR spectroscopies.

In the IR spectrum, the bands centered at 3201 and 1211 cm⁻¹ are attributed to the NH and P=O stretching frequencies. The phosphorus signal appears at 8.84 ppm, which is in the range of analogous compound^[3]. The phosphorus-hydrogen and phosphorus-carbon coupling constants of the title compound are reported.

$$\begin{array}{c|c}
\bullet \\
\hline
P-O \\
\hline
CI
\end{array}$$

$$+ \\
H_2N$$

$$\begin{array}{c}
NH_2 \\
\hline
Chloroform \\
TEA
\end{array}$$

$$\begin{array}{c}
\bullet \\
HN
\end{array}$$

$$\begin{array}{c}
\bullet \\
O-P=O \\
\hline
O\end{array}$$

Scheme: Synthesis route of tetraethyl cyclohexane-1,4-diylbis(phosphoramidate).

References

- [1] Moghaddam, S. N.; Shabari, A. R.; Sabbaghi, F.; Pourayoubi, M. Synthesis, spectroscopic characterization, crystal structure and Hirshfeld surface analysis of (4-Cl-C₆H₄O)(OC₄H₈N)₂PO amidophosphoester. *Rev. Roum. Chim.* 2019, *64* (3), 209–215.
- [2] Bouchareb, F.; Berredjem, M. Recent progress in the synthesis of phosphoramidate and phosphonamide derivatives: A review. *Phosphorus, Sulfur, and Silicon and the Related Elements* 2022, 197 (7), 711–731.
- [3] Handoko.; Benslimane, Z.; Arora, P. S. Diselenide-mediated catalytic functionalization of hydrophosphoryl compounds. *Org. Lett.* 2020, *22* (15), 5811–5816.