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Abstract   
The fact that the weld geometry is vital in the cooling rate and determining the weld metal quality is obvious to all. So, 
the Taguchi technique was used to determine the process parameters of gas metal arc welding to access optimal weld bead 
geometry. In addition, this study investigated the effect of siliconized Zn-graphene oxide complex nanoparticles as one of 
the input parameters on the weld bead geometry, including the penetration depth, bead height, and bead width of the weld. 
Hence, the S/N and ANOVA statistical analyses were done to establish the relationship between the gas metal arc welding 
process's input parameters and output variables to achieve the weld bead with the highest penetration depth and the lowest 
bead height and width. The results showed that in the L00 sample compared to the L0 sample (sample without nanoparti-
cles), in addition to having a very high penetration depth, the ultimate tensile strength, and yield strength have increased by 
58.84% and 28.24%, respectively.
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1  Introduction

Welding is one of the methods of joining metal materi-
als used in various industries, ranging from shipbuilding 
and automobile manufacturing to nuclear and construction 
industries [1–3]. Welding is done with different methods, but 
in the meantime, shielded gas metal arc welding (GMAW) 
is widely used compared to other welding methods due to 
its features, such as high deposition rate, no need to clean 
slag, and high speed [4–9]. One of the cases of GMAW is 
in the shipbuilding industry, where aluminum alloy 5083 
(AA5083) is widely used due to its properties, such as low 

density, good mechanical properties, and corrosion resist-
ance [10–18]. On the other hand, during the welding pro-
cess, the goal is always to create weld metal with suitable 
mechanical properties, good corrosion resistance, and suit-
able microstructures. Therefore, careful examination of the 
welding process, determination of appropriate parameters, 
research, and investigation of new ideas to achieve this goal 
have always been considered. Meanwhile, the use of nano-
particles and the effects that can sometimes have in improv-
ing the mechanical and microstructural properties of weld 
metal, as a new idea, can be a suitable option to create a 
more suitable weld metal. A study in this field examined 
the effect of siliconized zinc oxide-graphene complex nano-
particles on the microstructure and mechanical properties 
of AA5083 in welded metal. The results showed that the 
presence of graphene oxide and oxygen nanoparticles in 
the welding metal changed the direction of the Marangoni 
flow, which caused the nanoparticle-welded samples to have 
a much greater penetration depth than those welded with-
out using nanoparticles. The distribution of nanoparticles 
throughout the welding metal and the activation of grain 
growth mechanisms also improved the resulting microstruc-
tures and the welding metal's mechanical properties [19]. In 
addition, in another study, Fatahi et al. investigated the effect 
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of graphene/aluminum composite nanoparticles in welding 
Al6061 sheets [20]. In 2020, Khosravi et al. investigated the 
effect of graphene oxide and reduced graphene oxide nano 
sheets on the microstructure and mechanical properties of 
weld metal [21]. In 2016, in welding Al6061 by friction stir 
process, Moriya et al. investigated the mechanical properties 
of the weld metal by adding Graphite, Graphene, and Carbon 
nanotubes to the weld metal [22]. In other studies, Agakhani 
et al. studied the effect of Cr2O3 and TiO2 nanoparticles in 
submerged arc welding [23, 24]. Although research on the 
use of nanoparticles sometimes proves the usefulness of this 
idea, it is essential to examine all the different aspects of 
a welding process. Therefore, investigating the effects of 
individual parameters and the interaction between param-
eters and using statistical analysis can be helpful for a more 
detailed analysis of test results, predicting the welding situ-
ation, and a correct understanding of the process. This study 
investigated the effects of siliconized zinc oxide-graphene 
complex nanoparticles as one of the input parameters, along 
with the two main parameters of the GMAW process, current 
intensity and welding speed, in joining AA5083 alloy sheets. 
In addition, using the Taguchi method, the optimal level for 
each parameter was determined. Using the obtained results, 
the geometry of the weld bead was predicted.

2 � Taguchi method

Taguchi's technique is an efficient tool for designing high-
quality manufacturing systems, and it offers a simple and 
systematic method for optimizing the design for different 
characteristics such as mechanical properties, performance, 
quality, and cost. To evaluate optimal parameter settings, the 
Taguchi method uses a statistical measure of performance 
called signal-to-noise ratio. The S/N ratio is the ratio of the 
mean (signal) to the standard deviation (noise). The ratio 
depends on the quality characteristics of the process to be 
optimized. Further, Taguchi's technique determines the most 
influential parameters in the overall performance. Taguchi 
defines three categories in only a few experiments' signal/
noise ratio analyses: the lower-the-better, the larger-the-bet-
ter, and the nominal-the-better. The number of experiments 
increases with the increase of process parameters. To solve 
this complexity, the Taguchi method uses a unique design 

of an orthogonal array to study the entire process parameter 
space with only a few experiments [25]. The orthogonal 
array provides a set of well-balanced (minimum experimen-
tal runs) experiments and Taguchi's signal-to-noise ratios, 
which are logarithmic functions of the desired output; and 
serve as objective functions for optimization. This technique 
helps in data analysis and prediction of optimum results 
[26–30]. In the design of Taguchi experiments, compared 
to the Full Factorial Design method, although the interac-
tion between parameters is not considered, it can obtain a 
detailed view of the entire process with a minimum number 
of experiments and reduce costs [31, 32]. This article used 
the Taguchi technique to determine the effect of parameters 
to achieve a weld with the most increased penetration depth 
and the lowest amount of weld height and width. In this 
regard, the parameters of current intensity, welding speed, 
and the amount of siliconized Zn-graphene oxide complex 
nanoparticles were investigated, and S/N and ANOVA analy-
ses were also used to investigate the effects of these param-
eters on the weld bead geometry.

3 � Experimental    

AA5083 samples were welded under pure argon gas pro-
tection at 20 L per minute flow rate with AWS/SFA 5.10 
ERS183 filler in this research. The composition of the base 
metal and electrode used is shown in Table 1. Current inten-
sity, welding speed, and the amount of siliconized Zn-gra-
phene oxide complex nanoparticles as Taguchi's technique 
determined process input parameters in three levels. Table 2 
shows the values of the coded input parameters. On the side 
edge of the samples, a longitudinal groove was created at 
a distance of 1 mm from the upper edge of the sheet by a 
universal milling machine to exploit nanoparticle powder. 
The samples were prepared by placing different amounts 

Table 1   Chemical compounds 
of base metal and filler wire Chemical composition of AA5083 (wt%) weld plate

Si Ti Ni Zn Cr Mg Mn Cu Fe Al
0.145 0.0106 0.005 0.0861 0.0573 4.21 0.426 0.0561 0.285 Balance
Chemical composition of filler wire—AWS 5.10 ERS 183 (wt%)
Si Fe Cu Mn Mg Cr Ti Al
0.4 0.40 0.1 0.5–1 4.3–5.2 0.057 0.15 Balance

Table 2   Input parameters at different levels

Parameter units Level 1 Level 2 Level 3

current intensity amp 240 260 280
welding speed cm/min 32 34 36
Nanoparticle g 0.25 0.50 0.75
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of nanoparticles inside the created groove, and the welding 
operation was performed.

4 � Results and discussion

4.1 � Investigation of input parameters

In this study, using the Taguchi technique, the parameters 
of current intensity, welding speed, and the amount of sili-
conized Zn-graphene oxide complex nanoparticles in three 
levels were coded as input parameters, and the variables 
geometrical of weld bead, including penetration depth, 
bead height, and bead width were considered as output 
process parameters were measured. The S/N and analy-
sis of variance (ANOVA) analyses were done to estab-
lish the relationship between input parameters and output 
variables. ANOVA aims to evaluate the impact of input 
parameters on penetration depth, bead height, and bead 
width. It gives a clear image of how far the input param-
eter affects the output characteristics and the impact rate 
of each factor. Furthermore, ANOVA can be performed to 
see which process parameter is statistically significant for 
each quality characteristic. In addition, the S/N approach 
is utilized by the Taguchi technique to measure the devia-
tions of quality characteristics from the desired value. The 
S/N ratio is the ratio of “Signal,” representing the desir-
able value and the mean of output characteristics, and the 
“noise,” representing the undesirable value and squared 
deviation of the output characteristics [33–36]. The pen-
etration depth values measured based on the test design 
matrix are shown in Table 3. Figure 1 also shows the 
effect of the three parameters of current intensity, weld-
ing speed, and the nanoparticle amount on the penetration 
depth. According to the results shown in the graphs of 
Fig. 1, if the current intensity was in level one with the 
value of 240 amps, the welding speed should be in level 

three with a value of 36 cm.min−1, and the nanoparticle 
amount in level one with the value of 0.25 g, it will be 
possible to obtain a weld bead with the highest penetra-
tion depth. On the one hand, as shown in the analysis of 
variance table (Table 4), the current intensity parameter 
had the slightest effect, and the nanoparticle amount had 
the most significant impact on the penetration depth. In 
such a way that level 1 of the nanoparticle's parameter, 
with the amount of 0.25 g, will have the highest penetra-
tion depth, and in the second level, with the amount of 
0.5 g, the penetration depth will be reduced, and finally, 
in level 3, with the amount of 0.75 g of nanoparticles, the 
penetration depth will be the lowest. Also, regarding the 
welding speed parameter in terms of cm.min-1, it can be 
stated that with the increase in the welding speed of the 
electrode, the penetration depth first decreased and then 
increased. Finally, at a rate of 36 cm/min, the maximum 
value of the penetration depth was reached. The degree of 
influence this parameter was about 17% on the penetration 
depth in the welding samples.

Table 5 shows the measured values of the bead height in 
the welded samples based on Taguchi's design and the mean 
value and S/N ratio. Figure 2 shows the effects of current 
intensity, welding speed, and nanoparticle amount on the 
bead height. According to the results, if the current intensity 
and the nanoparticle amount are at level one and the welding 
speed is equal to 36 cm.min−1, we will have a weld with the 
lowest bead height value. According to the variance analysis 
table (Table 6), the nanoparticle amount was the most influ-
ential factor on the bead height, in such a way that the bead 
height decreased by changing the nanoparticle amount from 
0.25 g to 0.75 g. The nanoparticle amount in level one with 
0.25 g will have the lowest bead height; in level three, with 
0.75 g of nanoparticles, it will be the highest. On the other 
hand, by electing higher values of current intensity, the bead 
height increases, while increasing the welding speed has the 
opposite result, and increasing the welding speed decreases 
the bead height.

Table 7 shows the mean value and S/N ratio measured 
for the weld bead in the samples. Figure 3 also shows the 
graphs related to the effects of input parameters on the 
bead width as an output variable. The results show that 
increasing the current intensity from 240 amps at level one 
to 280 amps at level three has reduced the bead width. 
However, the results obtained regarding the welding speed 
were the opposite. Regarding the parameter of the nano-
particle amount, it can be concluded that level three with 
0.75 g has a smaller bead width than 0.25 g and 0.5 g, so 
to have a weld bead with the smallest width, the current 
intensity on level three with a value of 280 amp, the value 
of welding speed should be placed at level one with a value 
of 32 cm.min−1 and the nanoparticle amount at level three 
with 0.75 g.

Table 3   Orthogonal array for L9 with response for penetration depth 
(mean value and S/N ratio)

Array 
type: 
L-9

Current 
intensity 
(amp)

Welding 
speed (cm/
min)

Nano-
particle 
(g)

Penetration dept

Mean value S/N ratio

L1 1 1 1 8.9 S/N ratio
L2 1 2 2 7.8 18.987
L3 1 3 3 8.2 17.841
L4 2 1 2 7.8 18.276
L5 2 2 3 7.4 17.841
L6 2 3 1 8.9 17.384
L7 3 1 3 7.4 18.987
L8 3 2 1 8.3 17.384
L9 3 3 2 8 18.381
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Fig. 1   Graphs related to the effect of process input parameters on the Penetration depth (mm)
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4.2 � Prediction of weld geometry

The S/N characteristics can be divided into three stages: 
nominal-the-better, smaller-the-better, and higher-the-better 
when the quality characteristics are continuous for engineer-
ing analysis. The higher-the-better and the smaller-the-better 
quality characteristics are employed in the welding process 
since this study aims to maximize the penetration depth and 
minimize the bead height and width through optimum pro-
cess parameters. Therefore, in this research, the ideal weld 
was considered a weld with high penetration depth, low 
bead height, and width. Thus, according to the test results 
of the samples based on the test design matrix and the results 
obtained from the ANOVA and S/N statistical analyses, the 
objective function Bigger is better was considered. There-
fore, to achieve the highest penetration depth, the input 
parameters of current intensity are set at level 1 with 240 

amps, welding speed at level 3 with 36 cm.min−1, and the 
amount of nanoparticles at level 1 with 0.25 g (Fig. 1). For 
the penetration depth, we can write:

where T is the overall mean of penetration depth, 8.077 mm 
(Table 3); C S 1 is the average penetration depth at first level 
of current intensity, 240 amp; T S 3 is the average penetra-
tion depth at third level of welding speed, 36 cm.min−1; N S 
1 is the average penetration depth at first level of nanoparti-
cle, 0.25 g. By substituting these values in Eq. (1):

Also, considering the smaller is better function as the 
objective function to achieve the lowest bead height, the 
current intensity should be at level 1, the welding speed 
at level 3, and the nanoparticle amount at level 1 (Fig. 2), 
so we have:

where T is the overall mean of bead height, 1.961 mm 
(Table 5); C S 1 is the average bead height at first level of 
current welding, 240 amp; T S 3 is the average bead height 
at third level of welding speed, 36 cm.min−1; N S 1 is the 
average bead height at first level of nanoparticle amount, 
0.25 g. By substituting these values in Eq. (2):

On the other hand, considering the smaller is better func-
tion as the objective function to achieve the smallest bead 
width, the current intensity in level 3 is 280 amps, the weld-
ing speed in level 1 is 32 cm.min−1, and the nanoparticle 

(1)Penetration depth = CS
1
+ TS

3
+ NS

1
− 2T

Penetration depth = 8.30 + 8.366 + 8.699 − (2 × 8.077)

= 9.211 mm

(2)Bead height = CS
1
+ TS

3
+ NS

1
− 2T

Bead height = 1.733 + 1.816 + 1.633 − (2 × 1.961) = 1.26 mm

Table 5   Orthogonal array for L9 with response for bead height (mean 
value and S/N ratio)

Array 
type: 
L-99

Current 
intensity 
(amp)

Welding speed 
(cm/min)

Nanoparticle 
(g)

Bead height

Mean 
value

S/N ratio

L1 1 1 1 1.6 4.082
L2 1 2 2 1.5 3.521
L3 1 3 3 2.1 6.444
L4 2 1 2 1.9 5.575
L5 2 2 3 2.4 7.604
L6 2 3 1 1.5 3.521
L7 3 1 3 3 9.542
L8 3 2 1 1.8 5.105
L9 3 3 2 1.85 5.343

Table 4   Analysis of Variance 
table for penetration depth ANOVA for penetration depth (means)

Factors Degrees of 
freedom

Sums of squares Adjusted 
mean 
square

Fisher ratio Pure 
sum of 
squares

Percentage of 
Contribution

Current intensity 2 0.248 0.124 28.075 0.240 9.619
Welding speed 2 0.435 0.217 49.123 0.426 17.097
Nanoparticle 2 1.802 0.901 203.265 1.793 71.861
Other/Error 2 0.008 0.004 - - 1.423
Total: 8 2.495 100%
ANOVA for penetration depth (S/N ratio)
Current intensity 2 0.286 0.143 18.705 0.271 9.553
Welding speed 2 0.505 0.252 33.017 0.490 17.276
Nanoparticle 2 2.030 1.015 132.600 2.015 71.011
Other/Error 2 0.015 0.007 - - 2.160
Total: 8 2.838 100%
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Fig. 2   Graphs related to the effect of process input parameters on the bead height
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amount in level 3 with a value of 0.75 g should be placed 
(Fig. 3), so we have:

where T is the overall mean of bead width, 10.755 mm 
(Table 7); C S 1 is the average bead width at third level of 
current intensity, 280 amp; T S 3 is the average bead width at 
first level of welding speed, 32 cm.min−1; N S 1 is the aver-
age bead width at third level of nanoparticle amount, 0.75 
g. By substituting these values in Eq. (3):

So, to achieve the highest penetration depth and have 
a weld with the lowest bead height, the current intensity 
should be at level 1 with a value of 240 amps, the welding 
speed should be at level 3 with a value of 36 cm.min−1 and 

(3)Bead width = CS
1
+ TS

3
+ NS

1
− 2T

Bead width = 10.033 + 10.40 + 9.966 − (2 × 10.755) = 8.889 mm

nanoparticle amount should also be put in level 1 with the 
amount of 0.25 g (Table 8).

On the other hand, considering the importance of 
achieving a higher penetration depth in addition to having 
a low bead height, in the investigation of the bead width 
variable, the current intensity at level 1, the speed Welding 
was used in level 3, and the nanoparticle amount was also 
used in level 1. The predicted sample (L00) was welded 
by setting the parameters of the current intensity, weld-
ing speed, and the nanoparticle amount. After the initial 
confirmation of the correctness of the weld in terms of 
possible defects, the variables of penetration depth, bead 
height, and bead width of the weld were measured. The 
investigations conducted on the weld sample L00 showed 
that this sample had a weld with a high penetration depth 
and a wide and low bead height in terms of weld bead 
appearance. Figures 4 and 5 show the cut sections of the 
weld metal's surface and the weld metal's surface. The 
results show that the bead height and width in the L00 
sample had 1.30 mm and 12 mm values, respectively. In 
comparison, the predicted values for these variables were 
1.260 mm and 8.889 mm, respectively. Also, according to 
the predicted penetration depth value, which was equal to 
9.211 mm, the weld penetration depth in the L00 sample 
was 9.22 mm. Therefore, the measured penetration depth 
and bead height were very clearly similar to the predicted 
values. Further examination shows that the weld geometry 
in the L00 sample, which has 0.25 g of nanoparticles, com-
pared to the welded sample without nanoparticles shown 
in Figs. 6 and 7, has a broader width but a lower bead 
height. In addition, in L00, the penetration depth increased 
significantly. Also, the shape of the arc during the weld-
ing operation in the L0 sample (Reference sample) was 
almost similar to a circle. In contrast, the L00 sample has 

Table 6   Analysis of Variance 
table for bead height ANOVA for bead height (means)

Factors Degrees of 
freedom

Sums of squares Adjusted 
mean 
square

Fisher ratio Pure 
sum of 
squares

Percentage of 
Contribution

Current intensity 2 0.353 0.176 48.994 0.346 18.352
Welding speed 2 0.200 0.100 27.765 0.193 10.235
Nanoparticle 2 1.327 0.663 183.747 1.319 69.882
Other/Error 2 0.006 0.003 - - 1.531
Total: 8 1.888 100%
ANOVA for bead height (S/N ratio)
Current intensity 2 5.908 2.954 107.172 5.853 18.575
Welding speed 2 2.755 1.377 49.971 2.699 8.567
Nanoparticle 2 22.792 11.396 413.427 22.737 72.156
Other/Error 2 0.054 0.027 - - 0.702
Total: 8 31.511 100%

Table 7   Orthogonal array for L9 with response for bead width (mean 
value and S/N ratio)

Array 
type: 
L-9

Current 
intensity 
(amp)

Welding 
speed (cm/
min)

Nano-
particle 
(g)

Bead width

Mean value S/N ratio

L1 1 1 1 11.2 20.984
L2 1 2 2 11.6 21.289
L3 1 3 3 11.1 20.906
L4 2 1 2 11 20.827
L5 2 2 3 9.8 19.824
L6 2 3 1 12 21.583
L7 3 1 3 9 19.084
L8 3 2 1 10.2 20.172
L9 3 3 2 10.9 20.748
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a concentrated and compressed arc. According to previous 
studies, the two factors of electric arc concentration and 
reversal of the Marangoni flow inside the molten pool due 

to the presence of surface-active elements such as oxygen 
[37, 38] can be among the main reasons for the increase in 
the penetration depth in the L00 sample.
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Fig. 3   Graphs related to the effect of process input parameters on the bead width
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4.3 � Mechanical properties

The tensile test is a method to check the mechanical prop-
erties and determine the behavior of materials when axial 
tensile force is applied. The results determine the elastic and 
plastic range, elongation, ultimate tensile strength, and yield 
strength in different materials [39]. In this research, the 

Table 8   Analysis of Variance 
table for bead width ANOVA for bead width (means)

Factors Degrees of 
freedom

Sums of squares Adjusted 
mean 
square

Fisher ratio Pure 
sum of 
squares

Percentage of 
Contribution

Current intensity 2 2.548 1.274 31.068 2.466 35.432
Welding speed 2 1.528 0.764 18.635 1.446 20.781
Nanoparticle 2 2.802 1.401 34.157 2.720 39.072
Other/Error 2 0.081 0.040 - - 4.715
Total: 8 6.962 100%
ANOVA for bead width (S/N ratio)
Current intensity 2 1.771 0.885 54.814 1.739 35.944
Welding speed 2 1.049 0.524 32.476 1.017 21.024
Nanoparticle 2 1.985 0.992 61.424 1.952 40.359
Other/Error 2 0.032 0.016 - - 2.673
Total: 8 4.838 100%

Marangoni Flow

Base metal
(AA5083)

Weld bead

Bead height

Penetration depth

Fig. 4   Weld geometry and Marangoni flow of the welded sample with 
0.25 g nanoparticles (L00)

Bead width = 12 mm

Fig. 5   Bead width of the welded sample with 0.25  g nanoparticles 
(L00)

Marangoni Flow

Bead height

Penetration depth Weld bead

Base metal
(AA5083)

Fig. 6   Weld geometry and Marangoni flow of the welded sample with 
0.00 g nanoparticles (L0)

Bead width = 10 mm

Fig. 7   Bead width of the welded sample with 0.00  g nanoparticles 
(L0)

tensile test was used to compare the mechanical properties 
of the welded parts. Therefore, from each of the L00 sam-
ples (welded with 0.25 g of nanoparticles) and L0 (welded 
sample without nanoparticles), three samples were extracted 
according to the ASTM-E8-sub size standard and tested by 
the SANTAM STM-600 traction machine. Figure 8 shows 
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5 � Conclusions

This study studied the effect of parameters of current inten-
sity, welding speed, and the amount of siliconized Zn-gra-
phene oxide complex nanoparticles on the welding geom-
etry, including the variables of penetration depth, height, and 
bead width by the gas metal arc welding. Using the Taguchi 
method, the levels of the input parameters were determined, 
and the results obtained were checked by ANOVA and S/N 
analysis. The appropriate base of each parameter was deter-
mined to achieve welding with the highest penetration depth 
and low bead height. The results showed that:

•	 Conducting experiments and statistical analysis deter-
mined the optimal levels for each parameter, and the 
Taguchi technique predicted the welding geometry 
dimensions very well.

Fig. 8   The value of ultimate 
strength and yield strength 
in L00 samples (welded with 
0.25 g of nanoparticles) and 
L0 (welded sample without 
nanoparticles)

Base Metal Welded sample with 0.25 gr of
nanoparticles

Welded sample without
nanoparticles

Average Ultimate tension (Mpa)

Average yield stress (Mpa)

295.61

241.74

116.63

218.94

155.37

110.63

Fig. 9   The value of relative 
elongation in L00 samples 
(welded with 0.25 g of nanopar-
ticles) and L0 (welded sample 
without nanoparticles)

Base Metal Welded sample with 0.25
gr of nanoparticles

Welded sample without
nanoparticles

32.66

14.5

5.33

Average relative elongation (%)

the measured yield and ultimate strength values in two sam-
ples and compares them with base metal (AA5083). The 
results showed that in the L00 sample, the average ultimate 
tensile strength is 58.84%, and the yield stress is 28.24% 
higher than in the L0 sample. On the other hand, since the 
amount of tensile strength and yield strength represent the 
strength of the desired material, it can be concluded that the 
strength of the weld created in the L00 sample is generally 
higher than the weld sample without nanoparticles (L0). In 
addition, according to the comparison results of the relative 
length increase in the samples (Fig. 9), in the L00 sample, 
the relative length increase is 36.75% higher than in the 
L0 sample. Considering that the parameters of percentage 
increase in length and decrease in cross-sectional area indi-
cate ductility, it can be concluded that the ductility of the 
L00 sample is also higher.



The International Journal of Advanced Manufacturing Technology	

•	 The L00 sample had a smooth surface and no surface 
porosity or cavity. In addition, it had a weld with broad 
pollen, and its bead height was 1.3 mm, while the weld 
height in sample L0 equals 3 mm.

•	 The L00 sample has a weld with a high penetration 
depth, equal to 9.22 mm, while the maximum penetra-
tion depth in the L0 sample was 4.5 mm.

•	 In the L00 sample, the shape of the arc created due to 
the change in the direction of the Marangoni current due 
to the presence of the oxygen element was compact and 
almost bell-shaped. Still, in the welded sample without 
nanoparticles (L0), the arc created was circular.

•	 In the L00 sample, the average ultimate stress increased 
by 58.84%, the average yield stress increased by 
28.24%, and the relative length increased by 36.75% 
compared to the L0 sample.
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