
 

1 

 

Enhancing Accuracy and Efficiency: A Novel Implicit-Explicit Approach for Fluid 

Dynamics Simulation 

 
Mahdi Moghadas Khorasani, Mohammad Hassan Djavareshkian1 

 
Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Iran 

 

Abstract: 

This study presents an innovative implicit-explicit time-stepping algorithm based on a first-order 

temporal accuracy method, addressing challenges in simulating all-regimes of fliud flows. The 

algorithm's primary focus is on mitigating stiffness inherent in the density-based "Roe" method, 

pivotal in finite volume approaches employing unstructured meshes. The objective is to 

comprehensively evaluate the method's efficiency and robustness, contrasting it with the explicit 

fourth-order Runge-Kutta method. This evaluation encompasses simulations across a broad 

spectrum of Mach numbers, including scenarios of incompressible and compressible flow. The 

scenarios investigated include the Sod Riemann problem to simulate compressible Euler equations, 

revealing the algorithm's versatility, and the low Mach number Riemann problem to analyze 

system stiffness in incompressible flow. Additionally, Navier-Stokes equations are employed to 

study viscous and unsteady flow patterns around stationary cylinders. The study scrutinizes two 

time-stepping algorithms, emphasizing accuracy, stability, and computational efficiency. Results 

demonstrate the implicit-explicit Runge-Kutta algorithm's superior accuracy in predicting flow 

discontinuities in compressible flow. This advantage arises from the semi-implicit nature of the 

equations, reducing numerical errors. The algorithm significantly enhances accuracy and stability 

for low Mach number Riemann problems, addressing increasing stiffness as Mach numbers 

decrease. Notably, the algorithm optimizes computational efficiency for both low Mach number 

Riemann problems and viscous flows around cylinders, reducing computational costs by 38% to 

68%. The investigation extends to a two dimensional (2D) viscous flow over a circular cylinder, 

showcasing the method's proficiency in capturing complex flow behavior. Overall, this research 

advances the understanding of time discretization techniques in computational fluid dynamics, 

offering an effective approach for handling a wide range of Mach numbers while improving 

accuracy and efficiency. 
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1. Introduction 

 

The unsteady compressible Navier-Stokes equations provide a fundamental mathematical 

framework for simulating a wide range of fluid mechanics applications in the fields of aerospace 

and mechanical engineering [1, 2]. The Navier-Stokes model provides a robust framework for 

describing the intricate dynamics of atmospheric and geophysical flows within the environment. 

Furthermore, this model holds substantial practical utility across diverse industrial sectors. It 

contributes to the optimization of wind and water turbines, the advancement of high-performance 

aircraft engines, and the design of cutting-edge automobiles. The governing equations, serving as 

the cornerstone for mathematical models across diverse scientific disciplines, are formulated based 

on the fundamental physical principle of conservation. These equations can be derived by applying 

the principles of mass conservation, which ensures the preservation of mass within a system; 

momentum conservation, accounting for the transfer and transformation of momentum in the 

presence of external forces; and total energy conservation, which encompasses the interplay 

between kinetic, potential, and internal energies within the system. The compressible Navier-

Stokes equations can be decomposed into more elementary forms. For instance, the compressible 

Euler equations govern inviscid flows, while the incompressible Navier-Stokes equations emerge 

as the Mach number approaches zero under extreme conditions. The Mach number, signifying the 

connection between fluid velocity and the speed of sound, offers a comprehensive characterization 

of the fluid regime under consideration. The Mach number acts as a fundamental factor in 

discerning the properties of a fluid flow. In situations where the Mach number is less than 0.3 or 

the alterations in density are minimal, the flow is considered to be incompressible. Conversely, if 
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there are substantial variations in density and the Mach number exceeds 0.3, the flow is identified 

as compressible. Numerical techniques formulated for addressing problems associated with both 

high and low Mach numbers manifest distinct disparities due to the intrinsic characteristics of the 

governing equations. Put simply, when considering mathematical methods applied to resolving 

issues pertaining to high and low Mach numbers, noteworthy variations arise in the employed 

approaches. This is attributed to the governing equations, which delineate fluid flow behavior 

across different velocities, possessing distinct properties and necessitating specialized techniques 

for precise solutions. In high Mach number scenarios, the explicit upwind finite difference and 

Godunov-type finite volume methods are frequently employed. These techniques hold significant 

popularity in computational fluid dynamics (CFD) for scenarios involving high Mach numbers. 

Both the explicit upwind finite difference method and the Godunov-type finite volume method are 

specifically engineered to accurately simulate and resolve fluid flow issues under such conditions. 

[3, 4]. In the incompressible regime, the elliptic nature of the pressure field imposes a stringent 

limitation on the maximum allowable time step for low Mach number flows. The stability 

condition of explicit methods, represented by the CFL (Courant-Friedrichs-Lewy) criterion, 

intricately ties to the influence of sound speed. This influence assumes a prominent role as the 

Mach number approaches zero and governs the overall system behavior. Moreover, the study in 

[5]  presents evidence of the detrimental impact of numerical viscosity on the accuracy of 

simulations involving slow waves generated by upwind-type schemes. It highlights the 

degradation in precision caused by such effects.The development of specialized methodologies 

aimed at addressing the challenges of the low Mach-number regime has yielded a rich and 

extensive body of research, exploring diverse paths of investigation. The primary strategy involves 

implementing preconditioning techniques. These approaches have been pioneered through 
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Chorin's utilization of the artificial compressibility technique [6]. The core concept involves 

multiplying time derivatives with an appropriate matrix. The primary objective is to manipulate 

the eigenvalues of the compressible system, mitigating the discrepancy between acoustic and fluid 

wave velocities, while also enhancing stability and the rate of convergence [7-11]. However, it is 

crucial to tackle issues stemming from computational instabilities caused by the eigenvector 

structure [12], along with occasional violations of the divergence-free velocity constraint. 

Addressing these concerns effectively is of paramount importance. In most cases, these techniques 

are confined to steady-state computations due to their involvement in modifying the time 

derivatives. When dealing with unsteady flows, the implementation of a dual time-stepping 

scheme [13, 14] can effectively restore temporal accuracy. As a result, an alternative pathway 

utilizing implicit methods for time discretization has been suggested to circumvent the acoustic 

CFL constraint and enhance the time step. Nevertheless, employing fully implicit methods requires 

solving large-scale nonlinear systems that impose a significant computational burden, and 

effectively managing numerical convergence becomes highly intricate. Furthermore, in numerous 

engineering applications, the coexistence of both high and low Mach regimes prevails, and their 

emergence during simulations cannot be predicted in advance. Thus, the development of numerical 

methodologies capable of effectively handling the entire spectrum of Mach numbers becomes 

imperative. Generally, fully implicit time-marching techniques entail higher computational costs 

compared to traditional explicit methods. However, fully implicit methods are preferred when the 

time-step restriction enforced by the CFL condition [15] is considerably smaller than the time-step 

required for achieving accurate simulations. Stiff systems exhibit significant discrepancies in time 

scales between their stiff and non-stiff components. Ensuring a stable and accurate solution 

demands meticulous handling and dedicated attention to the stiff part within the governing system. 
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Consequently, employing implicit discretization for the stiff component and explicit discretization 

for the non-stiff part effectively alleviates the time-step limitation imposed by the stiff element. 

Moreover, this approach offers the advantage of reduced computational expenses and 

implementation complexity when compared to fully implicit time-marching methods. Implicit-

explicit (IMEX) methods have undergone extensive investigation in various research studies as 

promising substitutes for fully implicit techniques in simulating stiff problems. Ascher et al. [16] 

presented a comprehensive derivation of IMEX methods, grounded in linear multistep approaches, 

specifically designed to effectively simulate convection-diffusion equations. Furthermore, the 

authors developed third and fourth-order semi-implicit backward differentiation techniques that 

require only one computation of the non-stiff component for each time-step.  Researchers in [17] 

proposed Implicit-Explicit (IMEX) techniques as a promising approach for modeling stiff 

equations, offering advantages over entirely implicit methods, as previously discussed in research. 

Additionally, these researchers developed third and fourth-order semi-implicit backward 

differentiation methods that require only one computation of the non-stiff component per time-

step. These IMEX methods involve the combination of explicit Runge-Kutta (RK) and L-stable 

diagonally implicit RK methods for simulating convection-diffusion equations, necessitating the 

evaluation of four non-stiff terms at each time-step. Calvo et al. [18] formulated third and fourth-

order IMEX methods by utilizing the Runge-Kutta (RK) technique, specifically tailored for 

convection-diffusion-reaction systems. Kupka et al. [19] extensively explored the mathematical 

properties and practical applicability of total-variation-diminishing IMEX Runge-Kutta methods 

for temporally integrating advection-diffusion equations commonly encountered in the simulation 

of double-diffusive convection. Boscarino et al. [20, 21] explored the practical application of 

IMEX methods for solving isentropic and full Euler equations using finite difference schemes. 
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Their discretization approach demonstrated excellent asymptotic preserving properties, making it 

suitable for a wide range of compressible and incompressible flow problems. They drew 

inspiration for the IMEX discretization concept from a previous work [22] and effectively derived 

an elliptic equation to handle pressure terms. The resulting system of nonlinear equations was 

efficiently solved using the Newton iteration method. Boscheri et al. conducted a research study 

in which they utilized a novel approach to partition segments with different stiffness properties of 

the Euler [23] and Navier-Stokes [24, 25] equations. They introduced an implicitly formulated 

elliptic equation to handle pressure computation. Moreover, to address time step constraints [26] 

arising from significant viscosity coefficients, they adeptly utilized implicit methods for solving 

the viscosity terms within the Navier-Stokes equations, ensuring simulation accuracy and 

efficiency. In an alternative study, the researchers examined the hydrodynamic [27-29] and stabili

ty [30] characteristics of low Reynolds number flow over cylinders, specifically focusing on the i

ncompressible formulation of the governing equations. The authors employed the Implicit-Explic

it (Imex) scheme for time integration, wherein the pressure and diffusion terms were treated impl

icitly. Through an exhaustive review of the existing literature on IMEX methods, we have revealed 

that despite their advantageous lower computational costs compared to fully implicit systems, at 

least one non-linear equation persists within the IMEX system. Yadav et al. [31] conducted a study 

in 2022 to simulate the compressible Navier-Stokes equations. In their study, a novel Implicit-

Explicit (IMEX) Runge-Kutta method named 'Computationally Explicit Runge-Kutta (CERK)' 

was proposed to discretize the stiff terms. Remarkably, despite its implicit nature, this method 

effectively eliminates the need for computing coefficient matrix inversions. The efficacy of the 

proposed method was assessed across a spectrum of aeroacoustic viscous problems, in comparison 

with various Runge-Kutta methods. The findings demonstrated a significant reduction in the 
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stiffness of the system equations and a notable expansion of the stability domain. However, their 

study did not extend to consider inviscid flow and scenarios involving very low Mach numbers.  

While the development of numerical methodologies for simulating unsteady flows in 

compressible fluid dynamics has witnessed significant progress, a critical gap remains in 

effectively addressing the entire spectrum of Mach numbers encountered in practical engineering 

scenarios. Current approaches often focus on either high Mach number regimes or low Mach 

number regimes, with limited attention given to seamlessly transitioning between these regimes 

within a single computational framework. This limitation stems from the inherent challenges posed 

by the varying stiffness properties and temporal characteristics of compressible flows under 

different Mach numbers. In response to this pressing research gap, our study proposes a novel 

advancement in Implicit-Explicit (IMEX) methods that transcend the confines of traditional 

approaches. Our innovation capitalizes on the intrinsic strengths of IMEX methods while 

circumventing their inherent limitation of retaining at least one non-linear equation within the 

system. Building upon the pioneering work by Yadav et al. [31], we introduce a computationally 

explicit Runge-Kutta (CERK) approach that not only reduces system stiffness but also eliminates 

the need for computationally intensive coefficient matrix inversions, thus enhancing efficiency 

without compromising accuracy. The distinguishing feature of our research lies in its multifaceted 

approach to seamlessly bridge the gap between high and low Mach number regimes. Firstly, while 

previous studies predominantly employed finite difference methods due to their simplicity, we 

expand the applicability of IMEX techniques by incorporating them within a finite volume 

framework. This enhancement enables us to tackle complex geometries and boundary conditions 

more effectively, leading to broader practical relevance. Furthermore, extending the CERK method 

to unstructured grids represents a pivotal departure from prior works primarily confined to 
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structured grids. By doing so, we unlock the potential for simulating real-world scenarios that 

demand refined spatial discretization strategies. A pivotal innovation lies in our endeavor to create 

an all-speed algorithm that excels across the entire spectrum of Mach numbers. By introducing a 

density-based upwind Roe scheme coupled with our new temporal discretization method, we 

enhance performance at low Mach numbers. Unlike traditional density-based algorithms that often 

require intricate preconditioning techniques, our implicit-explicit approach offers a 

straightforward yet effective alternative, potentially revolutionizing the treatment of low Mach 

number flows. By unifying the strengths of implicit and explicit methods through our IMEX 

formulation, our research positions itself as a significant departure from the conventional 

dichotomy between high and low Mach number simulations. Through an extensive numerical 

investigation encompassing both viscous and inviscid flows, we aim to substantiate the efficacy of 

our proposed method in terms of accuracy, stability, computational cost, and versatility across 

Mach number regimes. In doing so, our study strives to offer a holistic solution that not only 

addresses the current research gap but also propels the field of computational fluid dynamics 

toward a more unified and robust computational framework. In summary, our research stands out 

by presenting a comprehensive and innovative approach that transcends the limitations of existing 

methods. By harnessing the advantages of IMEX techniques, introducing novel adaptations for 

spatial discretization, and unifying all-speed capabilities, we contribute to a transformative shift in 

unsteady compressible flow simulations, promising increased accuracy and efficiency for a wide 

range of engineering applications. 

In this research, we begin by presenting the governing equations for both viscous and inviscid 

flows in Section 2 and proceed to derive their non-dimensional forms. For spatial discretization, 

we employ the density-based "Roe" algorithm based on the finite volume method and introduce 
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higher-order spatial discretization schemes to address unstructured grids. Moving on to Section 3, 

we develop the comprehensive mathematical formulation of the computationally explicit Runge-

Kutta algorithm, as utilized in the studies conducted by Yadav et al. [31]. Additionally, we extend 

this formulation to the fourth-order Runge-Kutta method for the Navier-Stokes and Euler 

equations. In Section 4, we thoroughly investigate the effectiveness of the newly developed 

computationally explicit Runge-Kutta method in comparison with the explicit fourth-order Runge-

Kutta method. Numerical experiments are conducted for both viscous and inviscid flows, 

evaluating the performance of the implicit-explicit time discretization method in terms of 

robustness, stability, computational cost, and accuracy, compared to the explicit fourth-order 

Runge-Kutta method and findings from other references. 

2. Governing equation 

 

Hoffman and Chiang [32] presented the conservative form of the governing equations for two-

dimensional Navier-Stokes flow as follows: 

0C c v c vQ ( F F ) ( F F )

t x y

  −  −
+ + =

  
 (1) 

Within the given equation, QC is the conservative vector, Fc is inviscid flux vectors, and Fv is 

viscous flux vector. However, in the context of the Euler equation, the contribution of the viscous 

fluxes is disregarded and set to zero. To elaborate further, the definitions of both the viscous and 

inviscid fluxes in the Navier-Stokes equation are provided as follows: 
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In Eq. (1), the variables are defined as follows: ρ represents the fluid density, u and v   are the 

components of fluid velocity, p denotes the pressure, T is the absolute temperature, R represents 

the universal gas constant, μ is the dynamic viscosity of the fluid, et  corresponds to the total energy 

of the fluid per unit mass, and Kt represents the thermal conductivity of the fluid. The expressions 

for the viscous stresses, τxx, τxy and τyy, are provided as follows: 

1 1
2 2

3 3
  

xx xy yx yy

u u u u u v u v

x x y x y x x y
, ,      

       
= − + = = + = − +

       

        
      

        
 (3) 

The system of Navier-Stokes equations is non-dimensionalized using reference values (ρ, L, C∞, 

P∞, μ∞, T∞), and the resulting non-dimensional quantities are obtained as follows: 
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Upon substituting these values into the governing system of equations and omitting the 

superscripts, we obtain the following non-dimensional form: 
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2.1. Spatial discretization of governing equation 

 

In the spatial discretization of the system of equations, the Upwind "Roe" algorithm is employed 

specifically for unstructured mesh configurations [7]. The integral form of the Eq. (1) can be 

rewritten as follows: 

( )
3 3

1 1

0
K K

C C k V k

k k

d
Q F d F d

dt = =

+ + =   (6) 

In the above equation, 𝐹𝐶𝑘
 is computed based on the "Roe" method using the following approach: 

( ) ( )
1

2
  

K

C C C C

C C L C R i C C R L
F F Q F Q A Q Q Q Q,= + −   = −    (7) 

In Eq. (7), the matrix "|𝐴𝑖|" represents the Jacobian matrix, and the values of the conservative 

variables 𝑄𝐿 and 𝑄𝑅 for the left and right states are determined using upwind interpolation. 

Subsequently, these values are employed to calculate the convective flux.  The application of the 

limiter introduced in reference [33] enables the achievement of higher-order accuracy on 

unstructured grids through the careful reconstruction of flow variables. This advanced technique 

holds great significance in numerical simulations, as it allows for more precise representations of 

complex flow phenomena, leading to improved overall accuracy and reliability in computational 

fluid dynamics studies. 
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3. Temporal discretization schemes 

3.1. Implicit-explicit Numerical scheme 

The formulation of the implicit-explicit numerical scheme is based on the consideration of a 

stiff system of equations [34, 35], presented as follows: 

1 2

u
F ( u ) F ( u )

t



= +


 (8) 

where, 𝑢 ∈ 𝑅𝑚, 𝐹𝑖: 𝑅𝑚 → 𝑅𝑚, i = 1 , 2 and 𝜁 >  0 represents the stiffness parameter and it may 

vary with time or space. In the current study, we have considered ζ as a constant stiffness parameter. 

The subsequent section focuses on the derivation and discussion of the implicit-explicit (CERK) 

methods specifically designed to address stiff systems. at first step, the value 𝑢∗ is determined 

implicitly: 

1 1

1 1

1 1

 2 3
i i

* ( j ) ( j ) *

ij ij ij

j j
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− −
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In Eq. (9), the stiffness term is handled implicitly, effectively mitigating the stiffness exhibited 

by the system described in Eq. (8). Furthermore, in contrast to conventional IMEX methods, the 

variable 𝑢∗ as defined in Eq. (9), obviates the need for coefficient matrix inversion, resulting in 

improved computational efficiency and reduced computational overhead. Eq. (9) can be restated 

in the following form: 
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1 11
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− −
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where, ∆𝑡 is the time-step and (∆𝑡)𝑒𝑞 =
∆𝑡

1+𝜁𝑏𝑖𝑗
 represents the equivalent time-step utilized in 

Eq. (10). Due to (∆𝑡)𝑒𝑞 being smaller than the actual time-step ∆𝑡  employed in the computations, 

it aids in mitigating the stiffness observed in Eq. (8). Other stages of the semi-implicit method are 

assessed as follows: 
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In this case, unlike conventional IMEX Runge-Kutta (RK) methods [17], the absence of a final 

explicit stage is evident, and the last equation in Eq. (11) solely denotes the updated values of 

unknowns at the (𝑛 +  1) time step. In addition, the coefficients 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are derived from the 

Butcher tableau [36] corresponding to the p-stage pth-order explicit RK method. The first-order 

IMEX Runge-Kutta type (Computationally explicit Runge-Kutta) method specifically tailored for 

stiff systems in Eq. (8) is derived as follows: 
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3.2. Fourth-order Explicit Runge-Kutta Method 

The explicit fourth-order Runge-Kutta method is defined as follows [37]: 
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3.3. The implicit-explicit algorithm for the governing system of equations 

The formulation of the first-order implicit-explicit (CERK) temporal discretization method for 
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the system of equations provided in Eq. (5) is outlined below: 
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    In Eq. (14), the free parameter "𝛼 = 1" is chosen. the superscript (𝑛) designates the time-level, 

while the subscripts (𝑥 𝑎𝑛𝑑 𝑦) are used to represent spatial derivatives with respect to the x and y 

directions, respectively. in this context, Yadav et al [31] established a sequential arrangement of 

the governing equations, optimizing the numerical solution process for the stiff problem. The 

momentum equations are prioritized and solved as the initial step, and the resulting updated flux 

values are utilized in the computation of the continuity equation. Subsequently, the energy equation 

is solved as the next step in the numerical solution process. After non-dimensionalizing the 

governing equation parameters with the reference speed of sound, it is observed that the convective 

terms in the momentum equation are of order 𝑂(𝑀2), while the convective terms in the energy 

equation are of order 𝑂(𝑀). As a result, we select stiffness parameters for each equation that match 

the respective order of the convective terms. This research employs two numerical methods, 

namely the fourth-order Runge-Kutta method and the first-order implicit-explicit (CERK) scheme, 

to address a variety of benchmark numerical problems. The validity of the results is established by 

comparing them with either numerical simulations or experimental data. Additionally, we conduct 
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a comprehensive evaluation of the accuracy and computational efficiency of these two-time 

discretization approaches to gain valuable insights into their performance. 

4. results 

The primary objective of this section is a thorough and comprehensive analysis and evaluation of 

the performance of two distinct time discretization techniques: the fourth-order explicit Runge-

Kutta method and the implicit-explicit algorithm. The specific aims encompass an investigation 

into their capabilities concerning stability domain considerations and computational efficiency. 

Through this rigorous examination, valuable insights into the advantages and limitations of each 

method are sought. To achieve these goals, a wide range of numerical simulations tailored for 

investigating incompressible flows in both one dimensional (1D) and two dimensional (2D) 

domains has been developed. Encompassing both viscous and inviscid flow regimes, these 

simulations include an examination of two Riemann problems aimed at simulating the Euler 

equations governing inviscid flow. The first Riemann problem scrutinizes a Mach number range 

from zero to one, involving compressible flow with multiple flow discontinuities. This scenario 

presents considerable challenges in terms of precision and robustness when implementing 

temporal discretization schemes. The focus of the second Riemann problem shifts to the formation 

of acoustic waves at extremely low Mach numbers. Here, the equation system's stiffness becomes 

critical, with particular attention directed towards the performance of implicit-explicit methods in 

such conditions. Additionally, the third scenario accounts for the impact of viscosity by solving 

the Navier-Stokes equations. The objective is to examine the steady and incompressible flow 

around a two-dimensional cylinder. This analysis is conducted by applying the mentioned time 

discretization schemes. Furthermore, an in-depth evaluation of essential factors significantly 

contributes to the comprehensive understanding of the system's behavior. By meticulously 
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scrutinizing these scenarios and their respective results, this research aims to advance the field's 

knowledge regarding the strengths and limitations of the studied time discretization techniques. 

This knowledge is essential for achieving accurate and efficient simulations in computational fluid 

dynamics applications. 

 

4.1. Riemann 1D problems 

This section employs the time integration methods introduced in the governing equations section 

to solve a sequence of classical Riemann problems. The initial conditions for these problems are 

graphically depicted in Fig. 1. Notably, the Sod Riemann problem is investigated using two distinct 

spatial discretization strategies. In the first scenario, a first-order spatial discretization approach is 

implemented, involving 499 elements along the horizontal direction. Conversely, the second case 

adopts a second-order spatial discretization scheme, utilizing 200 elements horizontally within the 

computational domain. Initiating with Dirichlet boundary conditions at both the initial and final 

points of the computational domain, reliant on provided initial values. The Sod Riemann problem 

emerges as a pivotal benchmark in gas dynamics [38], extensively employed to assess numerical 

methods' precision and efficiency in simulating shock waves and discontinuities. In this one-

dimensional scenario, the issue encompasses a Mach number spectrum spanning from 0 to 1, 

involving the propagation of a shock wave, expansion fan, and contact discontinuity under the 

ideal gas assumption. The obtained numerical results for both the explicit Runge-Kutta method 

and the implicit-explicit numerical scheme, employing first-order and second-order spatial 

discretization, have undergone validation and comparison against reference data and the findings 

of other researchers. The numerical results of density, pressure, and velocity for both methods are 

showcased in Fig. 2 up to Fig. 7. Thorough validation and comparison have been conducted against 

reference data [24] as well as findings from other researchers to ensure the accuracy and reliability 
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of the presented results. The regions of expansion waves, contact discontinuity, and shock waves 

are distinctly delineated and visually emphasized using orange, blue, and red frames, respectively. 

This graphical representation enhances the clarity and prominence of each region for 

comprehensive analysis and interpretation. The primary errors identified in this study can be 

categorized into spatial and temporal domains. Regarding numerical dissipation in temporal 

discretization, the main focus of this study, the implicit-explicit Runge-Kutta method (CERK) 

demonstrates reduced numerical dissipation compared to the fully explicit Runge-Kutta method. 

This advantage arises from CERK's implicit treatment of the continuity equation during the 

solution process. Conversely, due to the use of first-order spatial discretization, the density-based 

Roe algorithm introduces significant numerical dissipation into the solution, resulting in smearing 

effects at numerical discontinuities. However, through the application of the semi-implicit 

approach, numerical dissipation is notably diminished, particularly in regions marked by 

expansion and compression waves (indicated by the red-framed region). This reduction leads to 

enhanced accuracy in computational results and alignment with reference solutions. Nonetheless, 

within the contact discontinuity region, outlined by the blue-framed area, the fourth-order Runge-

Kutta method exhibits slightly superior accuracy to CERK. This discrepancy can be attributed to 

the temporal discretization order of the continuity equation. In the fourth-order Runge-Kutta 

method, the continuity equation is discretized using a fourth-order scheme, whereas the implicit-

explicit Runge-Kutta method employs a first-order scheme for the same equation. In the 

subsequent phase of the investigation, the objective is to conduct a comprehensive examination 

and introduce more rigorous challenges for the temporal discretization algorithms. To achieve this, 

the computational grid resolution is deliberately reduced, and the spatial discretization order is 

simultaneously elevated to the second order. This enhancement contributes to a clearer and more 
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accurate research environment for a more effective comparison. As evident from Fig. 5 to Fig. 7, 

the increased spatial discretization order has notably improved computational accuracy for both 

examined temporal discretization algorithms. Consequently, the results from the temporal 

algorithms converge closely to each other, a direct outcome of the reduced numerical dissipation 

error. In the context of second-order spatial discretization, the most prominent numerical error is 

the dispersion error, leading to spurious oscillations in regions of shock and expansion 

discontinuities (highlighted by the orange and red-framed areas). The semi-implicit nature of the 

implicit-explicit method results in reduced numerical dissipation compared to the fourth-order 

Runge-Kutta method. Consequently, the oscillations arising from dispersion in the discontinuity 

regions are slightly amplified. Aligning with the first-order spatial discretization, the fourth-order 

Runge-Kutta method demonstrates superior accuracy in capturing the contact discontinuity region 

(highlighted by the blue-framed area), even with an increase in spatial accuracy compared to the 

implicit-explicit method. The numerical results from the simulation conducted by Boscheri et al. 

[23] are also depicted in  Fig. 2 and Fig. 5. In their study, they utilized a computational grid 

consisting of 200 cells and employed a pressure-based implicit-explicit algorithm along with first 

and second-order temporal and spatial discretization. The outcomes demonstrate that the CERK 

method outperforms Boscheri's implicit-explicit algorithm in effectively capturing discontinuities 

and achieving higher computational accuracy. Table 2, presents a comprehensive comparison of 

the mentioned temporal discretization methods, with a particular focus on their stability and CPU 

time performance. This thorough analysis was conducted using a system equipped with the 

specified characteristics as outlined in Table 2. Notably, the Sod Riemann problem falls into the 

category of high Mach number problems and does not exhibit stiffness in its system of equations. 

Consequently, the stability domain of the fourth-order Runge-Kutta method surpasses that of the 
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first-order implicit-explicit method for this specific problem. Furthermore, the fourth-order Runge-

Kutta method attains the final solution significantly faster, approximately 2 to 2.5 times quicker in 

terms of CPU time. The results presented effectively showcase substantial enhancements in both 

accuracy and performance when computing flow field properties such as density, velocity, and 

pressure. A logical correlation is evident between the extent of computational cost escalation and 

the corresponding enhancements in accuracy compared to the previous methods (Runge-Kutta). 

Notably, the incremental increase in computational cost proves to be relatively minor in 

comparison to the significant gains achieved in accuracy. 

  

Fig. 1. Schematic of Riemann problems and the initial conditions for (a) Sod shock tube. (b) low Mach shock tube. 

  
Fig. 2. Density variations in the Sod Riemann problem 

for first-order spatial discretization. 

Fig. 3. Velocity variations in the Sod Riemann problem 

for first-order spatial discretization. 
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Fig. 4. Pressure variations in the Sod Riemann problem 

for first-order spatial discretization. 

Fig. 5. density variations in the Sod Riemann problem 

for second-order spatial discretization. 

  
Fig. 6. velocity variations in the Sod Riemann problem 

for second-order spatial discretization. 

Fig. 7. pressure variations in the Sod Riemann problem 

for second-order spatial discretization. 

To assess the implicit-explicit method's performance across various Mach numbers, our focus 

shifts to the acoustic wave problem, characterized by a low Mach number regime. Specifically, 

when 𝜀 = 10−2 is employed in Fig. 1, the flow behavior becomes entirely incompressible. Fig. 8 

through Fig. 12 present a comparison of pressure and momentum distribution results for the two 

temporal discretization methods in this problem. The presented figures illustrate outcomes from 

two scenarios of spatial discretization: first-order with 500 cells and second-order with 250 and 

100 cells. These numerical results were validated and compared with the reference [38]. Notably, 
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density-based algorithms like the Roe method exhibit significant numerical dissipation errors at 

low Mach numbers due to dissipative terms (numerical dissipation Eq. (7)) leading to increased 

numerical diffusion and substantial computational errors [39]. However, in this context, the 

explicit-implicit method, with reduced numerical diffusion compared to the explicit fourth-order 

Runge-Kutta method, demonstrates enhanced accuracy. The explicit-implicit method ensures 

better alignment of the acoustic wave and contact interface propagation with the reference results. 

The pressure-velocity decoupling, stemming from the continuity equation, introduces stiffness in 

the equations. By employing implicit methods, the stability domain is extended, resulting in 

improved accuracy and reduced stiffness of the system of equations. With an increase in the spatial 

discretization order of the system of equations to second order, and consequently a reduction in 

numerical dissipation errors and dominance of dispersion errors, the implicit-explicit method is 

accompanied by wiggles in the vicinity of discontinuities. To address the issue of instability, there 

are two potential strategies to consider. The first approach involves reducing the time step, which 

effectively decreases the oscillations observed in the results, as demonstrated in Fig. 10. On the 

other hand, the second strategy involves reducing the grid density, leading to accurate solutions 

without oscillations, as illustrated in Fig. 11. Aligned with the Sod shock tube problem, the 

numerical outcomes derived from the investigation conducted by [16] for both first and second-

order temporal and spatial discretization schemes, in the context of the low Mach number Riemann 

problem, are showcased in Fig. 8 and Fig. 12, respectively. These simulations entailed a 

computational grid comprising 500 elements, with results obtained utilizing the implicit-explicit 

method featuring a pressure-based formulation. The findings highlight that the approach employed 

in [23] for both first and second-order discretization gives rise to numerical dissipation and 

dispersion errors. Consequently, the accuracy and stability of the outcomes are compromised 
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compared to the results derived from the current study. Moreover, the presence of minor 

oscillations in the second-order spatial discretization of the present investigation, as depicted in F

ig. 12, suggests the effective application of a suitable limiter in this research. Table 2 presents a 

comprehensive overview of the performance of two algorithms concerning their stability and CPU 

time. In this specific problem characterized by an extremely low Mach number and dominant 

system stiffness, the focus is on the performance of implicit-explicit methods, particularly in the 

incompressible regime. The stiffness of the equation system significantly impacts the maximum 

allowable time step of the fourth-order Runge-Kutta method in comparison to the semi-implicit 

approach. Conversely, the implicit-explicit method, even with first-order temporal discretization, 

offers advantages due to its semi-implicit formulation. As indicated in Eq. (3), the equivalent time 

step is smaller than the actual time step, resulting in reduced equation stiffness. This reduction 

permits the use of larger time steps within this method, leading to a significant decrease in CPU 

time consumption. Consequently, the time step increases by 66%, and CPU time decreases by 68% 

for first-order spatial discretization. For second-order spatial discretization, there is a noteworthy 

72% reduction in computational cost. 

  
Fig. 8. pressure distribution in the low Mach Riemann 

problem for first-order spatial discretization. 

Fig. 9. momentum distribution in the low Mach 

Riemann problem for first-order spatial discretization. 
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Fig. 10. pressure distribution in the low Mach Riemann 

problem for second-order spatial discretization. 

Fig. 11. momentum distribution in the low Mach 

Riemann problem for second-order spatial 

discretization. 

 
Fig. 12. momentum distribution in the low Mach Riemann problem for second-order spatial discretization with 

100 cells. 
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computational domain of a uniform flow encircling a cylinder with a diameter of one unit. For 

conducting this numerical simulation, an unstructured grid and domain with dimensions of 31.5 

by 11.5 have been employed, comprising a total of 24,659 cells. Inoue and Hatakeyama [40] 

performed direct numerical simulations (DNS) to investigate the flow passing over a cylinder at 

Reynolds number 150 and Mach number 0.2. The outcomes of their simulation serve as a valuable 

resource for validation and comparative analysis within the scope of this present study. In this 

specific test case, the focus is on accurately capturing the wake regions. Therefore, only a spatial 

discretization method of second-order accuracy is considered. The cylinder wall is subjected to 

adiabatic and no-slip wall boundary conditions, while non-reflecting characteristic-based 

boundary conditions are applied at the far-field boundary. Fig. 14 displays the contour of 

instantaneous vorticity obtained from a numerical simulation using the fourth-order Runge- kutta 

and implicit-explicit method. It also illustrates the occurrence of vortex shedding in the wake zone 

of the cylinder. Accurate prediction of vortex shedding frequencies is of great importance in 

computational engineering analyses. Thus, the demonstrated precision of the recently developed 

method in forecasting these frequencies confirms its capacity to solve unsteady problems. In Fig. 

15, a comparative analysis is conducted on the variations in the lift coefficient over time using 

different temporal schemes, along with the reference [40]. The results indicate a significant 

agreement between the numerical findings and the reference data. Additionally, in the analysis of 

vortex shedding, Table 1 presents the time-averaged mean values of the lift coefficient (CL0) and 

drag coefficient (CD0), as well as the amplitude of the lift coefficient (CL) and the Strouhal number. 

These values are computed using the temporal discretization methods mentioned previously and 

are compared to the findings of Inoue and Hatakeyama [40]. The explicit-implicit method shows 

a maximum lift coefficient that closely approximated the reference values, as indicated by Fig. 15. 
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Table 1  provides a comparison of computational costs, including the maximum allowable time 

step and the corresponding physical time required to complete a unit of non-dimensional time. 

When comparing the fourth-order Runge-Kutta method to the explicit-implicit approach, the latter 

allows for a larger maximum time step (1.5 times larger); however, the explicit-implicit method 

significantly improves CPU time efficiency by reducing the required physical time by 38% to 

complete a unit of non-dimensional time. 

 

Fig. 13. A depiction of the flow around an immobile circular cylinder is displayed herein, characterized by a free-

stream Reynolds number Re = 150 and a Mach number M = 0.2. 
 

  
Fig. 14. Time development of a vorticity field. M = 0.2, Re = 150. The contour levels are from 𝜔𝑚𝑖𝑛 = −1  to 

𝜔𝑚𝑎𝑥 = 1 with an increment of 0.04: , 𝜔 > 0; – – –, 𝜔 < 0. (a) CERK scheme, (b) RK4 scheme. 
 

Table 1. comparison of aerodynamic coefficient and Strouhal number for differente temporal discretization. 

Temporal discritization CL0 CD0 CL St number 

Inoue and Hatakeyama[40] 0 1.32 0.52 0.183 

RK4 0 1.307 0.508 0.1814 

CERK 0 1.3067 0.51 0.1814 
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Fig. 15. Comparison of time-varying lift coefficient obtained from the proposed semi-implicit method with the 

DNS results of Inoue and Hatakeyama [40] along with the results of Runge-Kutta scheme. 

 

Table 2. Comparing Computational Time and Maximum Allowable Time Step for Simulating Different Types of 

Problems 

The Computational PC 

Information 
Asus laptop with Core™ Intel® i7-4720HQ CPU @ 2.60 GHz & 8 GB RAM 

Test Case SOD Riemann shock tube Low Mach shock tube 
flow over 

cylinder 

Scheme CERK RK4 CERK RK4 CERK RK4 CERK RK4 CERK RK4 

Order in space 1 1 2 2 1 1 2 2 2 2 

CPU time (s) 1 0.6 9 5 0.75 2.375 2.73 9.75 70 113 

Maximum allowable time step 0.005 0.005 0.005 0.005 0.005 0.0003 0.001 0.001 0.0002 0.0003 
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approach, commonly referred to as CERK. To achieve this, a series of benchmark problems were 

analyzed in one and two dimensions, with a specific focus on solving the Euler and Navier-Stokes 

equation systems in both compressible and incompressible regimes. These benchmark problems 

were compared to the fourth-order explicit Runge-Kutta technique to assess accuracy, stability, 

robustness, and computational cost. The one-dimensional Riemann Sod problem was utilized as a 

simulation benchmark for replicating the compressible flow regime. Conversely, the low Mach 

number Riemann problem was employed to simulate the incompressible flow regime and to 

investigate the effect of stiffness within the Euler equation system. Subsequently, the two-

dimensional Navier-Stokes equations were employed to model the viscous flow around an 

incompressible cylinder. This was conducted while considering scenarios where the system's 

stiffness played a significant role in the governing equations. The subsequent analysis of the 

outcomes derived from these simulations has been systematically categorized as outlined below: 

• In the context of the Riemann Sod problem, which falls under the category of high Mach 

number cases and features multiple numerical discontinuities, the implicit-explicit 

method demonstrated superior computational accuracy compared to the explicit Runge-

Kutta method, particularly on coarse grids. This superiority can be attributed to the 

reduced numerical dissipation associated with the implicit-explicit method. However, 

when considering factors such as robustness and computational cost, the explicit Runge-

Kutta method proved to be more advantageous 

 

• In the case of the low Mach number Riemann problem, where factors such as an 

incompressible flow regime and the stiffness of the equation system are in focus, the 

efficacy of the Implicit-Explicit Runge-Kutta method has been observed with 
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considerable interest. Remarkably, enhancements are not confined to the precision of 

the method, but also extend to an extended stability domain. Moreover, the 

computational expense has significantly decreased, reaching up to 72%. These findings 

highlight the potential of the implicit-explicit method as a promising approach for 

efficiently and accurately simulating low Mach number problems 

 

• By improving spatial accuracy, computational precision was enhanced for both temporal 

discretization methods. However, it was observed that the implicit-explicit method 

experienced numerical instabilities in regions with discontinuities, which resulted in a 

narrower stability domain for this numerical approach 

 

• In the final examination, we focused on a pivotal test case that involves the simulation 

of the Navier-Stokes equations and the numerical solution for two-dimensional flow 

encircling a cylinder, with a Mach number of 0.2 and Reynolds number 150. Our inquiry 

extended beyond validation and involved a comprehensive comparison of numerical 

outcomes using the implicit-explicit method against the findings of other researchers. 

Significantly, this algorithm yielded a reduction of 38% in computational costs by 

effectively mitigating the equation system's stiffness. 
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