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Abstract
Assessment of the spatial distribution of potential pathways of sediment transport 
and the degree of linkage between sediment sources and the channel network within a 
watershed represents a valuable analysis for informing management decisions on sedi-
ment yield and transfer. Given the limitations of conventional methods for determin-
ing index of sediment connectivity (IC), there is a need to provide a flexible and effi-
cient approach with the ability to apply different factors. In this regard, five decision 
tree-based machine learning models: M5 prime (M5P), random tree (RT), random for-
est (RF), alternating model tree (AMT), and reduced error pruning tree (REPT) were 
tested using geomorphic and climatic factors. Two databases were constructed with 
200 and 1600 classes at 50 watersheds in Queensland, Australia. In these models, IC 
was assessed as an output parameter and six attributes that affect IC were assigned as 
input parameters (i.e., elevation, slope, area, length of stream channel, normalized dif-
ference vegetation index, and rainfall). Statistical validation and comparison of model 
predictions with calculated IC values based on the approach of Borselli et  al. (Cat-
ena 75:268–277, 2008) were performed. Based on the statistical criteria, the RF model 
produced the most robust estimations of IC compared to other models and performed 
very well for IC modelling, especially in smaller subsections of watersheds. Accord-
ingly, these findings can play an effective role for implementing watershed manage-
ment and soil and water resources management measures.
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1 Introduction

Connectivity is commonly understood as the degree of linkage among component parts of 
geomorphic systems (e.g., Cavalli et al. 2013; Heckmann and Schwanghart 2013). Many 
researchers attempted to formulate connectivity definitions and developed various indices 
and models to assess connectivity and its spatial and temporal distribution (Cavalli et al. 
2013; Fryirs 2013; Bracken et al. 2015; Gay et al. 2016; Masselink et al. 2016). Sediment 
connectivity as a hydrological linkage includes two distinct concepts (structural/physical 
and functional/process-based), which assess the spatial distribution of potential pathways 
of sediment transport and dynamics of hydrogeomorphic processes in different sections 
of the watershed (between possible sediment sources and potential sinks) (Turnbull et al. 
2018; Najafi et al. 2021). Given the need for appropriate low-cost methods to assess sedi-
ment connectivity, various approaches have been applied in previous studies, including 
the digital elevation model (DEM) of difference (DoD) technique (Croke et  al. 2013; 
Heckmann and Vericat 2018), geographical information system (GIS) modelling based 
on morphometric characteristics (Borselli et al. 2008; Cavalli et al. 2016), spatial network 
analysis (Phillips et al. 2015; Fressard and Cossart 2019), and intelligent modelling based 
on physical characteristics of the watershed (Asadi et al. 2023a). The index of sediment 
connectivity (IC) is a hydrogeomorphic tool that practically assesses sediment connec-
tivity from hillslopes to downstream channels (Martini et  al. 2022). The application of 
IC in the study of hydrologic and geomorphic processes in different watersheds around 
the world has increased substantially in the past two decades (Fryirs 2013; Parsons et al. 
2015; Wohl et al. 2019; Koci et al. 2020). For example, it has been used in implementa-
tion of post-fire programs in burned watersheds (López-Vicente et  al. 2020), modelling 
and quantifying the probability of flooding at major road-stream junctions (Kalantari et al. 
2019), improving flood hazard assessment and management (Keesstra et  al. 2018), and 
providing practical guidelines for mitigation and restoration of abandoned lands (Marcha-
malo et al. 2016). In general, the IC can be used to distinguish homogeneous sections with 
similar potentials for sediment transport that helps to prioritize different parts of water-
shed for sediment control measures and to facilitate watershed management, especially 
in regions with high erosion and sediment delivery rates (Asadi et al. 2023a; González-
Romero et al. 2021).

In recent years, machine learning (ML) models have been increasingly used as a power-
ful tool to simulate complex phenomenon (Asadi et al. 2021; Aghamolaei and Hessami-
Kermani 2023; Chia et al. 2023; Gelete 2023; Zhao et al. 2023). Decision tree (DT) algo-
rithms are one of the main tools of ML that have been widely applied, including to study 
issues in water resources, hydrology, climatology, and hydraulics (Bui et al. 2020). Exam-
ple of uses include prediction of bedload transport rates in gravel-bed rivers (Khosravi 
et  al. 2020), suspended sediment loads (Al-Mukhtar 2019), dissolved oxygen concentra-
tions in rivers (Heddam and Kisi 2018), apparent shear stress (Khozani et al. 2019), water 
quality indices (Bui et al. 2020), land degradation (Yousefi et al. 2021), and daily river flow 
(Ghorbani et al. 2020). Most of these studies have compared different ML models with DT-
based models and confirmed the superiority of DT models compared with other methods 
for similar conditions. The better performance of DT-based models is related to the lack of 
hidden layers and model transparency, handling data from various scales, facilitating the 
construction of rules for prediction of complex relationships, and statistical analysis with-
out any assumptions of statistical distribution (Tehrany et al. 2013).
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Although advances have been achieved related to quantifying the degree of sediment 
connectivity throughout the world and the predictive power of various DT-based algorithms 
has been proven for different hydrological phenomena, the performance of these algorithms 
to predict IC has not been studied. Therefore, the main objectives of this study are: (1) inves-
tigating the efficiency of DT-based algorithms, namely M5 prime (M5P), random tree (RT), 
random forest (RF), alternating model tree (AMT), and reduced error pruning tree (REPT) 
in estimation of IC; (2) comparing the predictive power of these models; and (3) performing 
a sensitivity analysis of the effective variables used. On the other hand, there are no studies 
that have used climatic variables to develop an efficient ML-based approach for estimating 
IC. Therefore, investigating rainfall as a climatic input in estimation of IC in addition to the 
geomorphic characteristics of the watersheds is the fourth objective of this study. Finally, 
the fifth objective is to examine the effect of modelling scale on the model performance.

2  Study Area

To pursue these objectives, 50 watersheds in Queensland, Australia were evaluated (Fig. 1; 
Table 1) in two case studies: in the first case study, 50 watersheds were categorized into 
four classes (low, medium-low, medium-high, and high) (Tiranti et al. 2018; Najafi et al. 
2021) (e.g., Fig.  2). In the second case study, 50 watersheds were categorized into 32 
classes (Asadi et al. 2023a) (e.g., Fig. 3). Classification of watersheds was done based on 
values of IC and using a natural breaks classification algorithm that, overall, created 200 
and 1600 classes in case studies 1 and 2, respectively. It should be noted that the selected 
watersheds had minimal anthropogenic influences (i.e., without dams or the major abstrac-
tions in the upstream reaches). A basic flowchart of the methodology is shown in Fig. 4.

Fig. 1  Location of 50 studied watersheds in Queensland, Australia
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3  Methodology

3.1  Development and Application of DT‑Based Algorithms

3.1.1  Sample Size

Overall, 200 and 1600 classes were generated for case studies 1 and 2, respectively. The sta-
tistical parameters of input and output variables (elevation, slope, area, length of stream chan-
nel, normalized difference vegetation index (NDVI), rainfall, and IC) in these classes were cal-
culated (Table 2). To avoid over-fitting, K-fold cross-validation was used to train and test the 

Fig. 2  Map of 4 classes of Oyster Creek watershed in case study 1 as an example
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DT-based models (Asadi et al. 2023b). In this approach, all data were randomly partitioned 
into equal sized subsamples (i.e., 5 and 10 subsamples in case studies 1 and 2, respectively). Of 
the 5 subsamples in case study 1, 4 subsamples (160 classes) and of the 10 subsamples in case 
study 2, 9 subsamples (1440 classes) were selected for training; the one remaining subsample in 
each case study was used for testing. This process in case studies 1 and 2 was repeated 5 and 10 
times, respectively and each time one of the subsamples was used as the validation data.

3.1.2  Preparation of Modelling Dataset

IC Factor Among methods to calculate sediment connectivity, the topography-based structural IC 
introduced by Borselli et al. (2008) is widely used due to the lack of large data requirements and 

Fig. 3  Map of 32 classes of Oyster Creek watershed in case study 2 as an example
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availability of the required data. Borselli’s IC depicts the potential connectivity between different 
parts of watersheds and is computed in a GIS environment using dynamic (e.g., land use) and 
static (e.g., topography) attributes. This index is comprised of two components: (1) the upslope 
component is the downward routing potential of sediment generated from upslope and (2) the 
downslope component is the flow path length that a particle travels to reach a specified target or 
sink. Equations for the calculation of this index are expressed in Table 3 (Borselli et al. 2008).

Selection of 50 

watersheds in 

Queensland, 

Australia based 

on minimal 

anthropogenic 

influences              

Classification 

of watersheds 

into 4 classes 

(case study 1) 

and 32 classes 

(case study 2) 

based on 

values of IC 

and using a 

natural breaks 

classification 

algorithm

Calculation of 

geomorphic and 

climatic factors as 

input parameters

Feature importance 

analysis using 

MDI and pairwise 

correlation 

methods and IC 

estimating using 

M5P, RT, RF, 

AMT, and REPT 

models

Assessment of 

results using 

standard 

statistics (NSE, 

R
2
, RMSE, 

MAE, and 

RAE) 

Calculation of 

Borselli’s IC as 

an output 

parameter

Creation of two 

databases with 

200 and 1600

classes for case 

studies 1 and 2, 

respectively 

Borselli’s IC

Fig. 4  A basic flowchart of research methodology

Table 2  Statistical parameters of studied variables for the total data in case studies 1 and 2

1 ELEVm is average elevation,  SLPm is average slope, LS is total length of stream,  NDVIm is average nor-
malized difference vegetation index,  Pm is average monthly rainfall,  ICm is average index of sediment con-
nectivity, xmin is the minimum value of the data, xmax is the maximum value of the data, 

−
x is the mean of the 

data, �x is the standard deviation, G1 is the skewness, �2 is the kurtosis

Case study Statistical 
parameter

Variable

ELEVm (m) SLPm (%) Area  (km2) LS (km) NDVIm Pm (mm) ICm

xmin 32.251 2.71 0.095 0.235 0.414 0.233 -2.936
xmax 910.079 42.495 413.371 132.52 0.759 138.75 2.739

1 −
x 319.006 17.085 89.034 38.859 0.597 45.180 -0.697

�x 207.900 9.131 81.027 23.558 0.098 32.588 1.163
G1 1.008 0.393 1.618 1.413 -0.135 0.908 0.338
�2 0.726 -0.626 3.021 2.782 -1.291 0.113 -0.483
xmin 17.863 1.931 0.004 0.00 0.088 - -3.435
xmax 1093.177 144.298 148.859 285.918 0.857 - 3.828

2 −
x 318.993 17.895 10.991 5.088 0.595 - -0.095

�x 209.609 11.791 17.329 9.664 0.102 - 1.723
G1 0.992 1.318 2.706 18.434 -0.319 - 0.086
�2 0.626 7.961 9.760 490.709 -0.218 - -1.061
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Construction of IC Factor IC raster maps were prepared via ModelBuilder in an Arc-
GIS environment (Borselli et  al. 2008). The maps used for this model were: (1) ras-
ter maps with resolutions of 30 × 30  m of the hydrologically enforced DEM (DEM-
H) (Jarihani et  al. 2015), and (2) the weighting factor raster maps with resolution 
30 × 30 m derived from the cover-management factor of the Universal Soil Loss Equa-
tion (USLE)/Revised Universal Soil Loss Equation (RUSLE) (Wischmeier and Smith 
1978; Renard 1997). Since the measurement of the cover-management factor by field 
surveys is difficult, first remotely-sensed land cover maps (i.e., NDVI) were collected 
and then the cover-management factor maps of RUSLE were developed using the fol-
lowing equation (Durigon et al. 2014):

where C is the cover-management factor which ranges between 0 and 1; 0 indicates dense 
vegetation cover and protected soil and 1 indicates unprotected bare soil.

Construction of IC‑Influencing Factors The use of relevant and influencing input factors 
in supervised ML algorithms is important (Asadi et al. 2022). Different factors affect IC, 
which in this study, elevation, slope, area, length of stream channel, and NDVI were used 
for model input in both case studies. Also, rainfall was investigated as an input in case 
study 1. Maps of physical factors, such as slope gradient, elevation, and stream channel 
length were constructed using SRTM DEM with a resolution 30  m × 30  m using GIS 
software (ArcGIS 10.6.).

NDVI maps (30  m resolution from 2015 to 2022) were extracted from LANDSAT/
LC08/C01/T1_32DAY_NDVI products available at https:// explo rer. earth engine. google. 
com/. Monthly gridded rainfall maps (from 2015 to 2022) were collected from SILO 
(Scientific Information for Land Owners) through the https:// silo. longp addock. qld. gov. 
au/ gridd ed- data website. In this database, gridded daily climate surfaces derived either 
from splining or kriging the observational data with a resolution of approximately 5 km 
× 5 km. Maps of several factors influencing IC, as well as IC for Oyster Creek watershed 
are represented in Fig. 5.

3.1.3  Features Importance

Feature importance is a widely used analytical method that has been applied in modelling 
using ML algorithms due to its simplicity and interpretability of feature ranking (Asadi 
et al. 2023b). One of the effective feature ranking methods is pairwise correlation, which is 
inspired in the correlation-based feature selection (CFS) method (Jiménez et al. 2021). Also, 
some of the ML algorithms provide feature importance, for example, the RF algorithm eval-
uates feature importance based mean decrease in impurity (MDI) (Ali et al. 2021). In our 
study, two methods (MDI and pairwise correlation) were used for analysis of feature impor-
tance in which higher obtained values show higher predictive capability of the factors.

3.1.4  Descriptions of the Models

Five DT-based models were investigated to predict IC in two case studies. These models 
are briefly introduced as follows:

(1)C = (
1 − NDVI

2
)

https://explorer.earthengine.google.com/
https://explorer.earthengine.google.com/
https://silo.longpaddock.qld.gov.au/gridded-data
https://silo.longpaddock.qld.gov.au/gridded-data
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Reduced Error Pruning Tree (REPT) The REPT algorithm, which builds a decision or 
regression tree based on the information gain/variance reduction, is a hybrid of the Reduced 
Error Pruning (REP) method and the DT method (Quinlan 1987). This algorithm is 
performed in four steps: (1) creating multiple trees in various iterations (Jayanthi and Sasikala 
2013); (2) selecting the best tree from multiple trees; (3) applying the REP technique to avoid 
over-fitting; and (4) handling missing values using a C4.5 algorithm and sorting the values 
of numerical attributes. REP is a simple pruning method (Quinlan 1987) that decreases 

(a)

(b)

Fig. 5  Maps of some IC-influencing factors, namely elevation and stream length (a), NDVI (b), and slope 
(c) as well as IC factor map (d) for Oyster Creek watershed
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the complexity of the tree structure (Mohamed et  al. 2012) by removing some leaves and 
branches of the tree which provide little power for classification (Galathiya et al. 2012).

Random Forest (RF) RF is a DT-based algorithm (Breiman 2001) that is currently popu-
lar and requires few parameters to tune (Senagi and Jouandeau 2022). Several randomized 
decision trees are combined and a forest of decision trees is produced in which every tree 
predicts a class and the final decision is achieved by averaging all predictions (Ali et al. 
2021). This algorithm is trained in three steps: (1) drawing a bootstrap sample from the 

(c)

(d)

Fig. 5  (continued)
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training data; (2) growing a decision tree for each bootstrap sample by selecting the best 
split among the subset selected randomly from all the features; and (3) repeating these 
steps until an adequately large number of trees are produced (Mutanga et al. 2012).

M5 Prime (M5P) The M5P algorithm as a DT-based algorithm first introduced by Quinlan 
(1992). This algorithm has high flexibility (Zhan et al. 2011) and functions in four steps: 
(1) splitting input spaces and constructing the tree; using the standard deviation reduction 
(SDR), error reduction is maximized to achieve the best model performance; (2) develop-
ing a linear regression model in each of the sub-spaces using the data associated with that 
sub-space; (3) pruning the tree, starting after the tree is constructed to eliminate undesired 
sub-trees and the attributes are reduced one by one to minimize estimated error; and (4) 
smoothing the tree, performed to compensate for sharp discontinuities between adjacent 
linear models at the leaves of the pruned tree (Wang and Witten 1997).

Random Tree (RT) The RT algorithm (Aldous 1991, 1993) is a fast and flexible learner 
that uses the decision tree to develop the model and build the decision trees on a random 
subset of columns (LaValle 1998). The RT is formed by a stochastic process, which has 
one difference regarding decision trees; only a random subset of attributes is available for 
each split of the training dataset.

Alternating Model Tree (AMT) AMT (Freund and Mason 1999) is a class of regression trees 
that contains splitter and prediction nodes (two prediction nodes are generated at each split-
ter node). This algorithm is performed in three steps: (1) selecting the splitting variable by 
considering all input variables and splitting on the median value of the data that reaches a 
particular node; (2) fitting two linear regression models on the subsets resulting from the split 
and then placing these two models at the prediction nodes attached to the recent splitter node; 
and (3) to achieve the final prediction, the individual predictions made at each visited predic-
tion node are multiplied by a shrinkage parameter and summed together (the number of split-
ter nodes and the shrinkage parameter must be set by the user) (Fijani and Khosravi 2023).

3.2  Evaluation Criteria

Six quantitative metrics including coefficient of determination  (R2), root mean squared 
error (RMSE), mean absolute error (MAE), relative absolute error (RAE), root relative 
square error (RRSE), and Nash-Sutcliffe efficiency coefficient (NSE) were used for per-
formance analysis of the models in the testing dataset. The equations and the performance 
classification for these indices are expressed in Table 4.

4  Results and Discussion

4.1  Feature Importance Analysis

The importance of features was estimated using MDI and pairwise correlation methods in 
both case studies. For a better understanding of feature ranking, the results are visually pre-
sented in Fig. 6. In case study 1, feature selection results based on the MDI method indi-
cate that area is the most important factor for IC modelling, followed by slope, length of 
stream channel, NDVI, elevation, and rainfall, respectively. Based on pairwise correlation, 
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area is the most important factor, followed by slope, length of stream channel, NDVI, rain-
fall, and elevation, respectively. In case study 2, feature selection results based on both 
MDI and pairwise correlation methods show that slope is the most important factor for IC 
modelling, followed by area, length of stream channel, NDVI, and elevation, respectively.

The two most important features for assessing IC according to the applied techniques are 
slope and area. The importance of slope is easily justified because with an increase in slope 
angle, the time for infiltration decreases and runoff increases (Youssef et al. 2015) resulting in 
higher connectivity. Also, watershed area influences hydrological connectivity (Borselli et al. 
2008); an increase in watershed area affects the delivery of sediment to channels and the sedi-
ment output from the watershed (De Vente and Poesen 2005). The significance of these factors 
is consistent with previous results (Asadi et al. 2023a). The length of the stream channel (lon-
gitudinal connectivity) ranks third in both case studies because it is an important factor in con-
trolling water flow, connection, and sediment transport. High concentrations of flow into and 
within stream channels result in more connection and sediment transport (Croke et al. 2005). 
The next important factor which impacts hydrological processes including sediment connectiv-
ity is NDVI (Asadi et al. 2023a). Vegetation density is negatively correlated with runoff gen-
eration (Tehrany et al. 2014); areas with high vegetation density and forest cover will reduce 
surface runoff, and this decrease in runoff causes less internal linkages among sediment sources 
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Fig. 6  Graphical representation of features importance for case studies 1 and 2



A Comparative Assessment of Decision Tree Algorithms for Index…

1 3

within the watershed. Thus, NDVI affects the resistance of cells against runoff and sediment 
flow (Cavalli et al. 2013). Our results showed that although elevation had the lowest impact on 
estimating IC, it does affect runoff as low altitude regions have a higher potential for flow con-
nectivity due to water flowing down from higher elevations. Moreover, watershed altitude often 
influences the amount and type of precipitation (Garcia-Martino et al. 1996), which affects sur-
face runoff, energy balance, and hydrology of watershed (Ding et al. 2014). Also, rainfall, as a 
required input in case study 1, was considered since it is highly correlated with runoff genera-
tion and is the most important factor for generating runoff. However, the spatiotemporal dynam-
ics of rainfall are complicated (Jahanshahi and Booij 2023) and not easily described in IC mod-
eling. Although runoff occurs when the rainfall intensity exceeds the infiltration capacity of the 
soil, physical factors such as slope gradient, elevation, soil types, soil moisture, land use pat-
terns, and topography also control the amount of rainfall that can infiltrate into the ground, and 
hence the amount of rainfall which becomes flow (Jahanshahi et al. 2022).

4.2  Model Evaluation

All the five models were validated using the test dataset in case studies 1 and 2 (Table 5). 
For case study 1, the RF model had the highest performance based on standard statistical 
parameters (i.e., NSE,  R2, RMSE, MAE, and RAE), followed by the M5P, AMT, REPT, 
and RT models, respectively. In case study 2, the RF model also had the highest predic-
tive capability, followed by the REPT, RT, AMT, and M5P models, respectively. A test of 
model performance based on the NSE metric shows: (1) in case study 1, the RF model has 
very good performance, the M5P and AMT models have good performance, and the REPT 
and RT models are unsatisfactory. In case study 2, all techniques have very good perfor-
mance in determining IC except M5P which has good performance.

The comparison of the results produced by the RF model in both case studies indicated 
this model performed better in case study 2 compared with case study 1. The RF model 
accuracy was 20.8% and 19.5% higher based on NSE and  R2, respectively, and the error val-
ues were 16.9%, 21.6%, 48.4%, and 43.8% lower based on RMSE, MAE, RAE, and RRSE, 
respectively, in case study 2 compared to case study 1. Thus, modelling within more homog-
enous sections of watersheds produces superior results even with fewer factors, consistent 
with the previous results (Asadi et al. 2023a). To evaluate the performance of the DT-based 
algorithms, scatter plots of test data are shown for all models in both case studies (Fig. 7).

Table 5  Performance of 5 
models for prediction of IC in 
case studies 1 and 2

Case study Model RMSE MAE RAE RRSE NSE R2

RT 0.814 0.627 0.640 0.696 0.398 0.562
1 AMT 0.662 0.500 0.511 0.566 0.667 0.701

REPT 0.782 0.602 0.614 0.668 0.414 0.567
M5P 0.593 0.485 0.497 0.508 0.745 0.749
RF 0.546 0.435 0.446 0.468 0.771 0.780
RT 0.640 0.466 0.314 0.371 0.862 0.865
AMT 0.702 0.474 0.319 0.407 0.835 0.835

2 REPT 0.639 0.447 0.301 0.371 0.863 0.863
M5P 0.933 0.724 0.488 0.541 0.710 0.723
RF 0.454 0.341 0.230 0.263 0.931 0.932
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In both case studies, comparison of plots indicates that the best agreement between Bor-
selli’s IC and estimated IC was obtained using the RF model. Also, estimated IC values (in 
all models except M5P) were in closer agreement with Borselli’s IC values in case study 
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Fig. 7   Scatter plots of the Borselli’s IC and estimated IC for all models in case study 1 (a, b, c, d, and e) 
and case study 2 (f, g, h, i, and j)
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2 compared to case study 1. Therefore, the accuracy of modelling at small measurement 
scales of watersheds was higher than that at larger scales. Since water and sediment trans-
fers change according to the scale at which they are observed, hence, the concept of con-
nectivity and measurement scales are related (Cammeraat 2002).

Also, our investigation showed that some estimated values were not accurate, which often 
occurs in modeling (Sichingabula 1998). The reasons may be that the IC can be influenced by 
different factors including hydrological variables (e.g., soil moisture) and physical characteris-
tics of watershed (e.g., soil types), which were not used in our IC estimators. Additionally, geo-
morphic and hydrologic perturbations in watershed, including landslides and floods can affect 
water and sediment fluxes (Ziegler et al. 2014) as well as the degree of connectivity among 
different parts of a watershed. Moreover, the use of the other ML models, high quality data, and 
the data with high temporal and spatial resolution may improve results (Asadi et al. 2022).

Results of our models (M5P, RT, RF, AMT and REPT) were compared with the results of 
Borselli’s model. It is noteworthy that calculate values of IC in Borselli’s model may not be 
completely accurate due to limitations and uncertainties in computation (Heckmann and Ver-
icat 2018). Thus, the lack of comparison of model results with geomorphologic and sediment 
field observations is the main limitation of our study; this issue is the focus of future studies. 
The results obtained from this study indicate that the RF model can be applied as a reli-
able method for estimating IC. Advantages of this model are its accuracy, ability to deal with 
small sample sizes, and relatively few parameters required to tune (Biau and Scornet 2016).

Overall, the inability of the conventional methods (e.g., GIS-based models) to simul-
taneously apply different influencing factors (e.g., geomorphological, meteorological, and 
hydrological variables) in estimation of IC is the main limitation of these methods, while 
in ML-based approaches, the ability to use different factors regardless of physical pro-
cesses can create a more flexible, comprehensive, and efficient tool for use by management 
experts and the personnel involved quantitative assessments of sediment connectivity. It is 
noteworthy that more detailed studies should investigate the potential of this approach with 
various IC-influencing factors in different watersheds.

5  Conclusion

The accurate estimation of IC is a prerequisite for understanding the linkages amongst 
various parts of watershed with different land use and topographic features. IC is not 
only suitable to characterize sediment dynamics within the watershed, but also to help 
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geomorphological interpretation of the watershed. Accordingly, the availability of easily 
applicable methods for estimation of IC promotes potential for implementing this con-
cept as a management tool. Due to the non-linear and complex behavior of sediment 
transport within watersheds, DT-based machine learning algorithms have the potential to 
accurately estimate IC. Our study tested this potential for the first time by examining the 
prediction power of M5 prime (M5P), random tree (RT), random forest (RF), alternating 
model tree (AMT), and reduced error pruning tree (REPT) models. Findings revealed 
that in case study 1, the RF and M5P models were successful in assessing IC, while in 
case study 2, all techniques were successful. Among these methods, the RF model had 
the highest prediction power in both case studies. Moreover, the results indicate that the 
three most significant geomorphic features according to feature importance and correla-
tion value were slope, area, and length of stream channel in both case studies. Gener-
ally, findings provide a relatively inexpensive and efficient ML-based approach for rapid 
prediction of IC that can be used particularly in developing countries where the lack of 
adequate technical skills, equipment, and budget are serious constraints.
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