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ABSTRACT: 18 

This study developed a random forest approach for downscaling the coarse-resolution (36 km) 19 

soil moisture measured by The National Aeronautics and Space Administration (NASA) Soil 20 

Moisture Active Passive (SMAP) mission to 1 km spatial resolution, utilizing airborne 21 

remotely sensed data (radar backscatter and radiometer retrieved soil moisture), vegetation 22 

characteristics (normalized difference vegetation index), soil properties, topography, and 23 

ground soil moisture measurements from before the launch of SMAP for training a random 24 

forest model. The 36 km SMAP soil moisture product was then downscaled by the trained 25 

model to 1 km resolution using the information from SMAP. The downscaled soil moisture 26 

was evaluated using airborne retrieved soil moisture observations and ground soil moisture 27 

measurements. Considering the airborne retrieved soil moisture as a reference, the results 28 

demonstrated that the proposed random forest model could downscale the SMAP radiometer 29 

product to 1 km resolution with a correlation coefficient of 0.97, unbiased Root Mean Square 30 

Error of 0.048 m3.m-3 and bias of 0.016 m3.m-3. Accordingly, the downscaled soil moisture 31 

captured the spatial and temporal heterogeneity and demonstrated the potential of the proposed 32 

machine learning model for soil moisture downscaling.  33 

Keywords: Machine learning, Downscaling, Soil moisture, SMAP, Random forest model, 34 

SMAPEx, SMAPVEX    35 

Highlights: 36 

• A random forest machine learning model was developed to downscale the SMAP 37 

radiometer soil moisture. 38 

• The random forest model was trained using active-passive microwave, landscape, and 39 

vegetation data. 40 

• Airborne pre- / post-launch data was used to train and subsequently validate the 41 

downscaling model. 42 

• Training to soil moisture data over 1 km grid cells decreased the training scale-43 

mismatch. 44 

• Assessment of variables showed the importance of horizontal polarised backscatter and 45 

terrain slope. 46 

 47 

 48 

 49 

 50 
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1. Introduction 51 

Soil moisture is an important variable in the hydrology, climatology, and agricultural 52 

sciences, as it is an essential factor in controlling the global water, energy and carbon cycles, 53 

linking land and atmospheric parameters (Seneviratne et al. 2010). Over the last decade, the 54 

possibility of global soil moisture monitoring has been made possible by the advent of remote 55 

sensing techniques (Entekhabi et al. 2010; Kerr et al. 2012). Accordingly, L-band passive 56 

microwave at 1.41 GHz frequency has been adopted as the preferred approach due to its ability 57 

to monitor data under all weather conditions, the direct relationship between passive 58 

microwave observation and soil moisture, and the low sensitivity to atmospheric effects, 59 

surface roughness and vegetation (Gao et al. 2022; Schmugge et al. 1986). Therefore, L-band 60 

satellites such as Soil Moisture and Ocean and Salinity (SMOS) mission were launched to 61 

provide global soil moisture maps (Barre et al. 2008). However, the low spatial resolution of 62 

passive microwave sensors is a major limitation to many applications. Consequently, 63 

investigations demonstrated that combining active (radar) and passive (radiometer) microwave 64 

observations can enhance the resolution by combing their respective advantages, including the 65 

high accuracy of passive observations with the fine spatial resolution of active observations 66 

(Das et al. 2011; Entekhabi et al. 2010). This method has been termed as active passive. 67 

On the 31st January 2015, the Soil Moisture Active Passive (SMAP) satellite was launched 68 

by the National Aeronautics and Space Administration (NASA), to provide global soil moisture 69 

maps of the top 5 cm soil surface with a temporal resolution of 2 to 3 days and spatial resolution 70 

of 9 km (Entekhabi et al. 2014). This was to be achieved by combining 1.26 GHz radar 71 

backscatter (σ) at 3 km resolution and 1.41 GHz radiometer brightness temperature (Tb) at 36 72 

km resolution, with the aim to provide a soil moisture accuracy better than 0.04 m3.m-3 (Chan 73 

et al. 2016). However, the SMAP radar instrument stopped working in July 2015, leaving only 74 

the radiometer observations measured by SMAP. Consequently, investigations have focused 75 
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on generating a high resolution soil moisture product by combining the SMAP radiometer with 76 

other radar observations, such as those from the Copernicus Sentinel-1 C-band radar (Das et 77 

al. 2019; Ghafari et al. 2020). Moreover, the data that was collected during the period the radar 78 

was working has provided an important experimental data set for developing and testing a 79 

variety of downscaled SMAP products using a range of data and algorithms (Colliander et al. 80 

2017a; Sabaghy et al. 2018; Wu et al. 2016; Wu et al. 2015).  81 

In recent years, several alternate methods have emerged for downscaling the coarse 82 

resolution SMAP and SMOS soil moisture products (Das et al. 2011; Kim and Zyl 2009; Merlin 83 

et al. 2012; Narayan et al. 2006; Piles et al. 2011). Among these approaches are machine 84 

learning methods, whereby optical and thermal observations, along with static 85 

geomorphological data at high spatial resolution are usually used as the covariates to downscale 86 

the passive microwave soil moisture product (Fang and Shen 2020; Karthikeyan and Mishra 87 

2021; Long et al. 2019). However, investigations on utilizing radar observations as a covariate 88 

for machine learning methods has been limited (Mao et al. 2019; Zhu et al. 2021). Several 89 

investigations have shown that among all the machine learning methods used for downscaling 90 

satellite-based products, being either the derived soil moisture or the observed brightness 91 

temperature, the random forest algorithm has shown the greater performance, as it is a more 92 

flexible model due to randomization and use of an ensemble approach (Abbaszadeh et al. 2019; 93 

Hu et al. 2020; Lei et al. 2022; Mao et al. 2022; Rao et al. 2022; Zhao et al. 2018). 94 

To ensure a robust satellite downscaling algorithm, this study used completely independent 95 

pre- and post-launch information for the training and testing phases of the machine learning 96 

model development, respectively. Moreover, a random forest model was developed, based on 97 

vegetation characteristics, topography, properties of the top 5 cm soil layer, and the soil 98 

moisture datasets available at only focus monitoring sites, for downscaling the coarse 99 

resolution SMAP passive soil moisture (36 km) to fine spatial resolution (1 km). This was 100 
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achieved utilizing the third Soil Moisture Active Passive Experiment (SMAPEx-3) and Soil 101 

Moisture Active Passive Validation Experiment 2012 (SMAPVEX-12) campaigns. Previous 102 

studies commonly used the 36 km SMAP grid cell soil moisture as the 1 km soil moisture input 103 

variable to construct the downscaling model (Abbaszadeh et al. 2019; Hu et al. 2020; Rao et 104 

al. 2022). Consequently, one of the novelties of this paper is utilizing soil moisture at the 105 

downscaling target resolution of 1 km as input to the training phase of the machine learning, 106 

as provided by pre-launch campaigns, instead of the coarse passive SMAP soil moisture. 107 

Furthermore, most machine learning approaches to date have validated the output at just a few 108 

in situ points (Abowarda et al. 2021; Lei et al. 2022; Long et al. 2019). However, this study 109 

used the microwave soil moisture data retrieved from airborne passive observations across 110 

several SMAP pixels at 1 km resolution for validation, along with all available ground soil 111 

moisture measurements, to ensure the accuracy of the achieved spatial patterns in soil moisture. 112 

2. Study area 113 

 Two field experiment sites were selected as the study areas due to their large-scale airborne 114 

and ground campaigns; the Soil Moisture Active Passive Experiments (SMAPEx) field 115 

campaigns carried out in south-eastern Australia, and the Soil Moisture Active Passive 116 

Validation Experiment 2012 (SMAPVEX-12) field campaign conducted in south central 117 

Manitoba, Canada. The extensive pre-launch data make these very suitable study areas for the 118 

purpose of this research. Combining the data from both campaigns provided a sufficiently large 119 

sample size for training the algorithm. Furthermore, these sites present complementary soil 120 

characteristics, weather status and vegetation coverage, thus providing a wide range of 121 

conditions. More detailed descriptions about the field campaigns follow. 122 

2.1. Soil Moisture Active Passive Experiment (SMAPEx) campaigns 123 
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 Five airborne field campaigns were undertaken over the period from 2010 to 2015 in south-124 

eastern Australia, known as the Soil Moisture Active Passive Experiments (SMAPEx) 125 

(Panciera et al. 2014; Ye et al. 2020). These were conducted in the Yanco SMAP validation 126 

area in the Murrumbidgee River catchment (Fig. 1). SMAPEx-1 to SMAPEx-3 were 127 

undertaken before the SMAP launch, while SMAPEx-4 and SMAPEx-5 were conducted post-128 

launch. These campaigns were designed with the basic target of developing the soil moisture 129 

algorithms for SMAP products at pre-launch, and for calibration and validation of SMAP 130 

observations and downscaled soil moisture at post-launch. Accordingly, during the SMAPEx 131 

campaigns, airborne passive and active observations were made similar to the SMAP 132 

observations (Wu et al. 2015), and the ground soil moisture and several kinds of ancillary data 133 

were collected coincident with SMAP overpasses. The third to fifth SMAPEx campaigns, 134 

which were utilized in this research for developing and then testing the machine learning 135 

downscaling model, were conducted in the austral spring (5th to 23rd September, 2011), autumn 136 

(30th April to 23rd May, 2015), and spring (6th to 28th September, 2015), respectively. These 137 

campaigns provided valuable datasets for developing the SMAP downscaling algorithm under 138 

Australian soil and vegetation conditions (Panciera et al. 2014). More details about the 139 

SMAPEx datasets are in the workplan reports available at https://www.smapex.monash.edu, 140 

so only a brief outline of the information is presented here. 141 

The dataset from the SMAPEx-3 campaign included six focus areas, being a 3 km × 3 km 142 

grid cell for each, corresponding to the EASE-2 SMAP grid cells across the SMAP radiometer 143 

pixel. These were used for constructing the downscaling model during the training phase of 144 

establishing the machine learning algorithm (Fig. 1). It is notable that only data from the third 145 

SMAPEx campaign was used at this step. The datasets during the SMAPEx-4 and SMAPEx-5 146 

experiments, covering approximately six coarse resolution SMAP grid cells over the SMAP 147 

validation flight area (Fig. 1), were utilized for validating the algorithm. The variability in soil 148 
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and vegetation conditions, the availability of the soil moisture dataset measured based on the 149 

ground experiments, and the availability of the required airborne and satellite data make these 150 

selected areas appropriate for research on microwave retrieval of soil moisture from satellites. 151 

The selected study site is located in a semi-arid area with flat topography. The six selected 152 

ground-sampling sites are called YA4, YA7, YB5, YB7, YE and YF. The land use of the sites 153 

is irrigated cropping (90%) and grazing (10%) for YA4 and YA7, irrigated cropping (85%) and 154 

grazing (15%) for YF, and entirely grazing for YB5, YB7 and YE. Therefore, the two main 155 

land cover types were cropping and grazing. The soil textures are categorized as clay loam for 156 

YA4 and YA7, silty clay loam for YE, and loam for YB5, YB7 and YF. The soil texture was 157 

obtained from gravimetric samples used to extract the soil particle distribution (Monerris et al. 158 

2011) and the CSIRO Digital Atlas of Australian Soils (1991). 159 

The SMAPEx-3 campaign took place in the austral spring, with moderate rainfall in the 160 

first half of the period resulting in a soil moisture dry down, and winter crops in their intensive 161 

growth periods. More descriptions of SMAPEx-3 are available in Panciera et al. (2014). The 162 

SMAPEx-4 campaign took place in the austral autumn. During this experiment, crop areas with 163 

dry or burned corn stubble or rice straw residual from harvest were dominant, while some crop 164 

areas had been ploughed for seeding. Consequently, the surface roughness was high due to the 165 

deep furrows in the ploughed and harvested areas, while the grazing area was covered by short 166 

grass. The range in soil moisture conditions was around 0.1 m3.m-3 and the average vegetation 167 

water content was approximately 0.1 kg.m-2. Before the campaign began, several heavy rainfall 168 

events occurred which made for heterogenous soil conditions during the dry down period in 169 

the selected area. Two medium rainfall events also occurred during the campaign, providing 170 

further heterogeneity to the soil water content distributions (Ye et al. 2020). The last campaign, 171 

SMAPEx-5, took place in the austral spring when the vegetation had high growth rates, with 172 

VWC up to approximately 2 kg.m-2. Heavy rainfall occurred before the campaign providing 173 
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heterogeneity in soil moisture conditions along with a dry down situation. The most vegetated 174 

area during this campaign was the irrigated and dryland cropping, followed by grazing land 175 

(Ye et al. 2020). 176 

2.2. The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX-12) 177 

campaign 178 

The SMAPVEX-12 field campaign was conducted at the pre-launch stage of SMAP to 179 

assist SMAP algorithm development. The campaign was conducted at the Canadian Red River 180 

Watershed in south central Manitoba, Canada (Fig. 2), mostly covered by agricultural and some 181 

 

Fig. 1. The SMAPEx study site in the Murrumbidgee River catchment in south-eastern of Australia 

with the Digital Elevation Model (DEM), and the six focus areas used for ground sampling, together 

with the SMAP grid cells overlain with the land use map.  Jo
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forest areas (McNairn et al. 2015). The period of the SMAPVEX-12 experiment was from June 182 

17th to July 19th, 2012, with the intent of collecting active and passive airborne observations 183 

together with ground soil moisture measurements and ancillary datasets. The size of the site 184 

was 12.8 km × 70 km, capturing forest and agricultural areas (Fig. 2). The soil texture varied 185 

from heavy clays to fine loamy sand through the east to west of the study area, leading to 186 

substantial soil moisture gradients over short distances. The site is predominately flat with a 187 

maximum slope of 2%. Ground soil moisture data were acquired by permanent soil moisture 188 

stations installed by Agriculture and Agri-food Canada, manual sampling teams, and temporary 189 

sites installed by the United States Department of Agriculture (USDA). 190 

As shown in Fig. 2, the selected site was dominated by a mix of agricultural area, mostly 191 

including cereals and oil seeds. Overall, 67% of the site was covered by crops and 192 

approximately 15% by grassland and pasture. Seeding was undertaken in April/May and 193 

harvesting in August/September. Fifty-five agricultural fields of at least 800 m × 800 m in size 194 

were monitored throughout the SMAPVEX-12 campaign, collecting ground soil moisture 195 

measurements as shown in Fig. 2. As both cropland and grassland data were available, the 196 

SMAPVEX-12 campaign provided useful information to complement the SMAPEx campaign 197 

dataset for downscaling the SMAP soil moisture utilizing the machine learning algorithm. 198 

Further details about the campaign are available in McNairn et al. (2015), with the SMAPVEX-199 

12 datasets accessible at https://nsidc.org/data/smap/validation-data. 200 

3. Data  201 

3.1. SMAP radiometer soil moisture product 202 

The SMAP satellite provides global scale soil moisture maps of the top 5 cm, with an 203 

ubRMSE of less than 0.04 m3.m-3 (Bindlish et al. 2016). This research utilized a machine 204 

learning approach for downscaling the SMAP radiometer-based soil moisture product. The 205 
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descending overpass of the SMAP L3 radiometer 36 km EASE-grid soil moisture product 206 

version 8 (L3_SM_P) was selected for this purpose (O'Neill et al. 2021). This product is 207 

available at https://nsidc.org/data/SPL3SMP/versions/8.   208 

3.2. Active and passive airborne datasets 209 

The airborne instruments used in the SMAPEx campaigns included the 1.41 GHz 210 

Polarimetric L-Band Multibeam Radiometer (PLMR) and the 1.26 GHz Polarimetric L-Band 211 

Imaging Synthetic Aperture Radar (PLIS), which provided the L-band passive (brightness 212 

temperature) and active (backscatter) microwave observations. Overall, there are nine flight 213 

dates from SMAPEx-3 (5th, 7th, 10th, 13th, 15th, 18th, 19th, 21st and 23rd September, 2011), six 214 

Fig. 2. Overview of the SMAPVEX-12 study site located at the Red River watershed in south-central 

Manitoba in Canada overlain with the land cover types and the location of USDA agricultural fields.  

Jo
urn

al 
Pre-

pro
of

https://nsidc.org/data/SPL3SMP/versions/8


11 
 

flight dates from SMAPEx-4 (2nd, 5th, 10th, 11th, 19th and 21st May, 2015) and eight flight dates 215 

from SMAPEx-5 (8th, 10th, 13th, 16th, 18th, 21st, 23rd and 26th September, 2015) covering several 216 

3 dB SMAP radiometer footprints. Notably, SMAPEx-4 data was coincident with both SMAP 217 

radiometer and radar observations. 218 

The passive airborne radiometer brightness temperature data for SMAPEx experiments was 219 

collected by the PLMR instrument with 1 km spatial resolution at horizontal and vertical (h 220 

and v) polarizations and nominal incidence angles of 17°, 21.5° and 38.5°. An accuracy of 221 

around ± 1.4 K was obtained for the calibration of PLMR brightness temperature at vertical 222 

and horizontal polarization, and an accuracy of about ± 1.5 K for thermal correction of the 223 

calibrated dataset was achieved during the SMAPEx campaigns (Ye et al. 2020). The PLMR 224 

brightness temperature observations were angle normalized from their original angles to the 225 

reference incidence angle of SMAP (~ 40º) utilizing a cumulative distribution function 226 

approach (Ye et al. 2015). An accuracy of about ± 2.4 K was achieved for angle normalization 227 

of the PLMR brightness temperature (Wu et al. 2015). As the SMAP soil moisture data did not 228 

exist for the training phase, due to being in the pre-launch period, the SMAPEx-3 airborne 229 

retrieved soil moisture at 1 km spatial resolution (Ye et al. 2020) was averaged to 36 km 230 

resolution to simulate the SMAP derived soil moisture data to train the machine learning 231 

algorithm. Additionally, the derived soil moisture observations from SMAPEx-4 and 232 

SMAPEx-5 PLMR brightness temperature at 1 km spatial resolution over the entire SMAP 233 

validation flight area (Fig. 1) were used in the testing phase of the machine learning algorithm 234 

development, for the purpose of evaluating the downscaling algorithm results. During the 235 

SMAPEx experiments, the airborne radar backscatter datasets were measured by the PLIS 236 

instrument at hh, hv, vh and vv polarizations, high temporal resolution and 10 m spatial scale 237 

(Ghafari et al. 2020; Zhu et al. 2018) with an incidence angle between 15º to 45º. The PLIS 238 

instrument provided complete coverage over the study area during SMAPEx-3, but with small 239 
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gaps across the SMAPEx-4 and 5 campaigns due to the flight design. However, previous 240 

investigations on the PLIS coverage gaps demonstrated that there was a nonsignificant effect 241 

on the accuracy of the PLIS backscatter when processed to 3 km resolution for use in 242 

downscaling (Ghafari et al. 2020). Before using the PLIS observations in the machine learning 243 

technique, the data was calibrated, georeferenced, and normalized for the incidence angle, with 244 

an accuracy of 0.58 dB achieved for calibration (Zhu et al. 2018). To normalize the PLIS 245 

incidence angle to that of SMAP (40º), the method utilized for angle normalization of the 246 

PLMR observations was performed (Ye et al. 2015). An accuracy of 0.8 dB was achieved for 247 

the angle normalized backscatter data at 1 km resolution (Wu et al. 2015). Finally, the PLIS 248 

backscatter data was aggregated by linear averaging from the original grid cell (10 m) to the 249 

required resolution (1 km). In this study, the vertical and horizontal co-polarized and cross-250 

polarized PLIS backscatter (σvv, σhh and σxpol) were used. 251 

The airborne instrument of the SMAPVEX-12 campaign is called the Passive Active L-252 

band Sensor (PALS), providing L-band radiometer brightness temperature with both vertical 253 

and horizontal polarization at 1.41 GHz frequency, and L-band radar backscatter with hh, hv, 254 

vh and vv polarizations at 1.26 GHz frequency. The PALS instrument was mounted to provide 255 

a single beam with a 40º incidence angle looking to the rear of the aircraft (McNairn et al. 256 

2015).  Sixteen flight dates of SMAPVEX-12 (7th, 12th, 15th, 17th, 22nd, 25th, 27th and 29th June, 257 

and 3rd, 5th, 8th, 10th, 13th, 14th, 17th and 19th July, 2012) provided active and passive airborne 258 

measurements for the machine learning algorithm training over the SMAPVEX-12 area. In this 259 

research, the calibrated co-polarized and cross-polarized PALS backscatter observations (σvv, 260 

σhh and σxpol), Version 1 (SV12PLBK) (Colliander 2014) measured over SMAPVEX-12 261 

agricultural sampling fields (nominal size of 800 m × 800 m) were resampled through a linear 262 

averaging approach to provide the 1 km resolution radar observations, while the retrieved soil 263 

moisture data, Version 1 (SV12PLSM) achieved from PALS brightness temperature 264 
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observations (Colliander 2017; Colliander et al. 2016) at 1 km spatial resolution was utilized 265 

to simulate the 36 km SMAP soil moisture. The SMAPVEX data was only used in the training 266 

step of developing the machine learning based downscaling algorithm. More description about 267 

the PALS instrument and its radar and radiometer calibration methodologies are available in 268 

McNairn et al. (2015). 269 

3.3. MODIS Normalized Difference Vegetation Index (NDVI) 270 

Machine learning methods are able to integrate various data sources. Utilizing vegetation 271 

index parameters in the satellite soil moisture downscaling methods has been one of the widely 272 

accepted approaches over the past decade (Fang and Lakshmi 2014; Merlin et al. 2008; Piles 273 

et al. 2011). The MODerate resolution Imaging Spectroradiometer (MODIS) is a multispectral 274 

instrument of the NASA Earth Observing System, consisting of Aqua and Terra satellites 275 

which measure the visible, near infrared, and thermal infrared signatures at 36 spectral bands 276 

every 1 to 2 days. In this study the daytime overpass of Terra, being most consistent with the 277 

SMAP overpass, was selected to extract the NDVI variable. The selected MODIS product was 278 

the version-061 daily surface spectral reflectance (MOD09GA) at 1 km spatial resolution, 279 

available at https://e4ftl01.cr.usgs.gov/MOLT/. The reflectance product is available at 500 m 280 

spatial resolution. However, for consistency with the microwave data it was resampled to 1 km 281 

resolution before calculating NDVI. 282 

3.4. Soil texture data 283 

Soil texture, including clay, silt and sand content, is one of the basic parameters affecting 284 

the soil moisture values, through its influence on the rate of water infiltration, soil moisture 285 

storage and soil drainage characteristics. Accordingly, several studies have shown that 286 

information on soil texture can be one of the important sources in downscaling soil moisture 287 

using machine learning (Abbaszadeh et al. 2019; Karthikeyan and Mishra 2021). 288 
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In this study, the machine learning algorithm utilized the information on soil texture (% 289 

clay, % silt, and % sand). The soil texture of the SMAPEx ground sampling site is clay loam 290 

(31% clay, 48% silt and 20% sand) for YA4 and YA7, silty clay loam (39% clay, 43% silt and 291 

17% sand) for YE, and loam (23% clay, 47% silt and 29% sand) for YB5, YB7 and YF. The 292 

SMAPEx ground sampling soil texture data values, and also the soil texture information over 293 

the SMAP validation flight area (Fig. 1), were obtained from gravimetric experiments that 294 

extracted soil particle size distribution and the CSIRO Digital Atlas of Australian Soils (1991). 295 

The soil texture information for SMAPVEX-12 was extracted from soil texture data collected 296 

by coring devices over each agricultural field as part of the campaign. The soil texture types 297 

varied over this selected area including sand (7% clay, 4% silt and 89% sand), loamy sand (6% 298 

clay, 6% silt and 88% sand), sandy clay loam (34% clay, 14% silt and 51% sand), sandy loam 299 

(16% clay, 9% silt and 75% sand), silty clay loam (40% clay, 56% silt and 4% sand), clay (56% 300 

clay, 30% silt and 14% sand), heavy clay (67% clay, 29% silt and 4% sand), clay loam (38% 301 

clay, 19% silt and 43% sand) and silty clay (54% clay, 40% silt and 6% sand). This dataset is 302 

accessible at https://nsidc.org/data/smap/validation-data (Bullock et al. 2014). 303 

3.5. Geographic data 304 

Soil moisture conditions, especially in the surface layers, are affected by topographic data 305 

(Crow et al. 2012). As elevation, terrain slope and aspect have been found to be the important 306 

topographic parameters in soil moisture downscaling studies (Mascaro et al. 2011; Wilson et 307 

al. 2005), these features were selected for use in the machine learning model developed here to 308 

downscale the SMAP soil moisture. The topography of the Murrumbidgee River catchment 309 

changes from 50 m to 2000 m (Fig. 1), however, based on the 250 m topography information 310 

from the Geoscience Australia Digital Elevation Model (DEM), the elevation at 1 km spatial 311 

resolution for the SMAPEx study area only changed from 100 m to 400 m throughout the 312 

SMAP validation flight area. The terrain slope and aspect values were derived from DEM 313 

Jo
urn

al 
Pre-

pro
of

https://nsidc.org/data/smap/validation-data


15 
 

information of the SMAP validation flight area, and changed from 0º to 12º and from -1º to 314 

360º respectively at 1 km resolution. The DEM product obtained from the ASTER Global-315 

DEM project (https://asterweb.jpl.nasa.gov/gdem.asp) has been used for SMAPVEX, having a 316 

30 m spatial resolution with a vertical accuracy of 7 m to 14 m. Based on the data extracted 317 

from ASTER, the mean elevations at the USDA agricultural fields varied from 237 m to 276 318 

m when averaged to 1 km resolution, while the terrain slope and aspect values changed from 319 

3º to 7.8º and from 127.2º to 215.1º.  320 

3.6. Ground soil moisture observations 321 

Each of the SMAPEx campaigns included six focus areas (3 km × 3 km) aligned with the 322 

SMAP radar grid cells, with dense soil moisture cluster monitoring stations to monitor soil 323 

moisture, along with intensive spatial ground sampling (Fig. 1). During the campaigns, 324 

intensive soil moisture values were monitored over the 0-5 cm depth concurrent with airborne 325 

overpasses at the focus areas using the Hydraprobe Data Acquisition System (HDAS) (Merlin 326 

et al. 2007). The soil moisture information was recorded on a 250 m × 250 m grid over each 327 

SMAPEx focus area. Three soil moisture values were measured at each ground sample point 328 

within a radius of one meter to consider soil moisture variations, reducing the impact of errors 329 

in measuring the data. For use in this study, these soil moisture values were aggregated through 330 

linear averaging within each 1 km grid, being the target spatial resolution. 331 

The selected ground soil moisture of the SMAPVEX-12 experiments for this research was 332 

from the temporary soil moisture sensors installed by the United States Department of 333 

Agriculture (USDA). As mentioned earlier, there were 55 measurement sites known as 334 

agricultural fields (Fig. 2). Soil moisture values during the SMAPVEX-12 experiments varied 335 

spatially due to variations in soil texture, the topography of the area, and differences in field 336 

irrigation management. To provide valid average soil moisture measurements, sixteen 337 
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sampling points with three replicates at each point were selected for every agricultural field 338 

(mostly 800 m × 800 m fields representing about 1 km spatial resolution) to measure ground 339 

soil moisture over the 0-5 cm depth. Replication was utilized to decrease the error resulting 340 

from spatial variability in soil properties. The average soil moisture data at each agricultural 341 

field was considered as the 1 km ground reference value. The soil moisture was measured using 342 

a Stevens Water Hydra Probe (McNairn et al. 2015). The information for the selected datasets 343 

is presented in Table 1. 344 

4. Methodology 345 

4.1. Summary of the Random Forest technique 346 

Random forest is a machine learning method that functions as an ensemble multiple 347 

decision tree model (Breiman 1996, 2001). Importantly, the overfit situation may easily occur 348 

in the training stage with this approach, leading to poor performance during the testing phase. 349 

To overcome this problem, the random forest model makes several decision trees that work 350 

individually at the training stage, with the output data achieved by calculating the average 351 

prediction of those trees. Accordingly, the input features are divided by the random forest 352 

algorithm into several regression trees, so that each tree is produced through a bootstrap sample 353 

providing its own prediction value. Overall, the reduction in generalization error occurs due to 354 

the combination of results from several decision trees (Breiman 2001). Based on previous 355 

research, random forest is the most appropriate machine learning approach for regression and 356 

classification problems, such as downscaling of satellite products like soil moisture (He et al. 357 

2016; Long et al. 2019; Mao et al. 2022), as it makes the decision trees using the adaptive, 358 

randomized and independent features for the relation between input and output variables (Amit 359 

and Geman 1997; Breiman 2001). 360 
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4.2. Soil moisture downscaling method 361 

The target of this research was to develop a random forest algorithm that leads to soil 362 

moisture at finer resolutions (i.e., 1 km), utilizing datasets sourced from before and after the 363 

Table 1. Characteristics of the datasets utilized in the machine learning approach.   

Data set Details Source 
Spatial 

resolution 

Temporal 

resolution 
Time series / Dates 

SMAP Level 3 

soil moisture 

 

Version 8, SMAP 

radiometer soil 

moisture product 

NSIDC 36 km 2-3 days 

May, 2015 (six dates) 

September, 2015 (eight 

dates) 

PLMR  

soil moisture 

Airborne soil moisture 

data from SMAPEx-3, 

SMAPEx-4 and 

SMAPEx-5 

experiments 

smapex.monash.edu 1 km Daily 

 

September, 2011 (nine 

dates) 

May, 2015 (six dates) 

September, 2015 (eight 

dates) 

PLIS 

backscatter 

Active airborne 

backscatter data from 

SMAPEx-3, 

SMAPEx-4 and 

SMAPEx-5 

experiments 

smapex.monash.edu 

10 m 

(resampled 

to 1 km) 

Daily 

September, 2011 (nine 

dates) 

May, 2015 (six dates) 

September, 2015 (eight 

dates) 

PALS  

soil moisture 

Airborne soil moisture 

data from 

SMAPVEX-12 

experiment 

NSIDC 

1500 m 

(resampled 

to 1 km) 

Daily 
June, 2012 (eight dates) 

July, 2012 (eight dates) 

PALS 

backscatter 

Active airborne 

backscatter data from 

SMAPVEX-12 

experiment 

NSIDC 

500 m, and 

1500 m 

(resampled 

to 1 km) 

Daily 
June, 2012 (eight dates) 

July, 2012 (eight dates) 

Normalized 

Difference 

Vegetation 

Index (NDVI) 

Extracted from 

MODIS MOD09GA – 

version 061 

NASA LP DAAC 1 km Daily 

September, 2011 (nine 

dates) 

June, 2012 (eight dates) 

July, 2012 (eight dates) 

May, 2015 (six dates) 

September, 2015 (eight 

dates) 

Soil Texture 
Variables (% Clay, 

Silt, Sand) 

CSIRO, and 

SMAPVEX-12 field 

surveys 

 

1 km Static 

September, 2011 (nine 

dates) 

June, 2012 (eight dates) 

July, 2012 (eight dates) 

May, 2015 (six dates) 

September, 2015 (eight 

dates) 

Terrain 

features 

Digital Elevation 

Model (DEM), 

Terrain slope and 

Aspect 

Geoscience 

Australia, and 

ASTER Global-

DEM project 

1 km Static 

September, 2011 (nine 

dates) 

June, 2012 (eight dates) 

July, 2012 (eight dates) 

May, 2015 (six dates) 

September, 2015 (eight 

dates) 

Ground soil 

moisture 

Focus areas of 

SMAPEx, and USDA 

agricultural fields of 

SMAPVEX-12 

smapex.monash.edu, 

and 

NSIDC 

Resampled 

to 1 km 
Daily 

September, 2011 (nine 

dates) 

June, 2012 (eight dates) 

July, 2012 (eight dates) 

May, 2015 (six dates) 

September, 2015 (eight 

dates) 
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SMAP launch. The basic idea for the approach is to construct a transfer function between 364 

different input variables and the soil moisture output variable using: 365 

𝑆𝑀𝑑 =  𝑓(𝐶) + 𝜀 ,  (1) 

𝐶 = (𝑐1, 𝑐2, 𝑐3, … 𝑐𝑁) ,  (2) 

where the 𝑆𝑀𝑑 is the downscaled surface soil moisture, 𝜀 is the model estimation error, and 𝑐𝑖 366 

demonstrates the individual input variables, including co-polarized and cross-polarized 367 

backscatter (σvv, σhh and σxpol), geographic data (elevation, terrain slope and aspect), soil texture 368 

(% clay, % silt, and % sand), airborne radiometer-based soil moisture and NDVI, and N is the 369 

dimension of input predictors (N = 11 in this study). 370 

The training of the random forest algorithm used 11 input variables that are at or resampled 371 

to the resolution of 1 km to downscale the SMAP radiometer soil moisture product (L3_SM_P). 372 

These included retrieved soil moisture data from airborne radiometer measurements at 1 km 373 

resolution aggregated to 36 km and radar backscatter in co-polarized and cross-polarized 374 

channels (σvv, σhh and σxpol) aggregated to 1 km, NDVI as being representative of the vegetation 375 

dynamics, soil texture, and geographic data including the Digital Elevation Model (DEM), 376 

derived terrain slope and aspect (Table 1). These parameters have shown a strong relationship 377 

with the temporal dynamics and spatial heterogeneity of soil moisture (Abbaszadeh et al. 2019; 378 

Abowarda et al. 2021; Zhu et al. 2020). As the training phase of the random forest algorithm 379 

needs a source of soil moisture data as the output response variable, the 1 km ground soil 380 

moisture datasets were utilized for this purpose. While the 1 km resolution radiometer 381 

observations could also have been used to aid in the training, this was not done in this instance. 382 

It is notable that over the SMAPEx-3 and SMAPVEX-12 experiments, the ground soil moisture 383 

datasets were only measured at the focus areas (size of 3 km × 3 km each as shown in Fig. 1) 384 

and at the agricultural fields (size of 800 m × 800 m each as shown in Fig. 2), respectively. 385 
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Moreover, the SMAP radar backscatter data from the active passive product 386 

(SMAP_L2_SM_AP) resampled to 1 km resolution were used rather than the PLIS backscatter 387 

during the SMAPEx-4 campaign.  388 

The dataset was split into two groups: i) the data collected before the SMAP launch to train 389 

the random forest model, and ii) the data collected after the SMAP launch, unseen by the 390 

random forest model, and thus used at the validation phase to verify the resultant downscaling 391 

model. Therefore, to investigate the main objective of this study, the data collected during 392 

SMAPEx-3 and SMAPVEX-12 (in the years 2011 and 2012, respectively) were used for the 393 

training phase of the model, and the data collected during SMAPEx-4 and SMAPEx-5 (in the 394 

year 2015) were used for the testing phase. Because the training phase was before the SMAP 395 

launch, the radiometer derived soil moisture from SMAPEx-3 and SMAPVEX-12 at 1 km 396 

resolution was aggregated to 36 km and used as the input soil moisture data in place of the 397 

SMAP 36 km soil moisture during training. In contrast, the SMAP 36 km radiometer soil 398 

moisture observations were utilized as the input at the validation stage and the 1 km resolution 399 

SMAPEx soil moisture data were used only for validation of the downscaled soil moisture. 400 

Table 2 presents numerical information regarding the available data in the training and 401 

validation phases. 402 

The 12 columns were considered during the training of the machine learning algorithm, 403 

which include the 11 input variables (available at 1 km or resampled to 1 km) and the one 404 

output response variable (1 km ground soil moisture data). As an example, the focus area of 405 

SMAPEx-3 provides a data set with 162 rows and 12 columns, where the 162 is computed as 406 

2×9×9, with 2 referring to the number of ground sampling focus areas with an available dataset 407 

for each day, 9 refers to the number of 1 km grid cells at each focus area (i.e., 3 km × 3 km), 408 

and the last 9 refers to the number of experiment days during the campaign. The 11 input 409 

variables were normalized from 0 to 1 before being utilized in both the training and validation 410 
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phases. This step was to remove any error due to the non-equal magnitudes of the input 411 

variables (Breiman 2001; O and Orth 2021; Srivastava et al. 2013). Subsequently, the SMAP 412 

soil moisture data was downscaled via the trained algorithm, utilizing the SMAPEx-4 and 413 

SMAPEx-5 data for the input variables. Finally, the SMAP downscaled soil moisture, was 414 

evaluated utilizing the ground soil moisture datasets and the high-resolution airborne 415 

radiometer derived soil moisture. 416 

Fig. 3 presents a schematic of the proposed random forest model for downscaling the 36 417 

km SMAP soil moisture. The random forest algorithm requires the input variables on a 1 km 418 

grid. Therefore, the data collections which were not originally at 1 km resolution were 419 

resampled to this spatial resolution. The MATLAB built-in function TreeBagger from the 420 

MATLAB Regression Learner application was used to apply the random forest algorithm, 421 

working based on the Bagging (Bootstrap + Aggregating) approach (Breiman 1996, 2001). 422 

Using this method, the training dataset was sampled to M subgroups by the bootstrap approach, 423 

and the M individual regression decision trees fitted to train the random forest algorithm 424 

through using the input variable data. The predicted data was calculated through M replications. 425 

Finally, the average of the output values from the individual decision trees was considered as 426 

Table 2. Description of the data used for training and validation phases, including the number of 1 km 

grid cells, number of experiment days and the total available samples over selected campaigns. 

 Campaign Number of 1 km grid cells  

Number of experiment 

days 

Total available 

samples 

T
ra

in
in

g
 

p
h

a
se

 

SMAPEx-3 18 9 162 

SMAPVEX-12 25–50 16 585 

V
a
li

d
a
ti

o
n

 

p
h

a
se

 

SMAPEx-4 6035 6 33234 

SMAPEx-5 6319 8 50552 
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the final result value. The ensemble decision was made by averaging the M results from 427 

individual regression trees: 428 

𝑝(𝑆𝑀𝑑|𝐶) =  
1

𝑀
 ∑ 𝑝𝑡(𝑆𝑀𝑑|𝐶)

𝑀

𝑡=1
,  (3) 

where 𝑝𝑡(𝑆𝑀𝑑|𝐶) is the output of each individual decision tree determining the conditional 429 

distribution of the downscaled soil moisture (𝑆𝑀𝑑) considering the multidimensional feature 430 

input vector (𝐶). 431 

The k-fold cross-validation technique (Hastie et al. 2009) was also included in the model 432 

to avoid overfitting. A k-value equal to 5 was selected as it showed the best performance during 433 

the training, obtained through a trial and error approach. It is also important to choose the 434 

appropriate values for minimum leaf size and number of learners applied in the random forest 435 

model during the training phase to improve the downscaling accuracy. For this purpose, 436 

different values were tested through trial and error, with a minimum leaf size equal to nine and 437 

a number of learners equal to 25 yielding the best performance of the trained random forest 438 

model in improving the downscale ing accuracy. After the training phase, the best calibrated 439 

random forest regression model was exported for implementation on the validation dataset, 440 

allowing the evaluation using unseen data. Accordingly, the SMAP radiometer soil moisture 441 

observations over the SMAP validation flight area (Fig. 1) were downscaled utilizing the 442 

calibrated random forest algorithm to 1 km resolution, and evaluated by the fine resolution 443 

ground soil moisture measurements at the focus areas averaged over 1 km grids, and also the 444 

soil moisture retrieved from the airborne brightness temperature at 1 km. 445 

Validation of the downscaled soil moisture included quantification of statistical metrics and 446 

model errors, by comparing the estimated values with the airborne retrieved soil moisture 447 

observations and ground soil moisture measurements as the reference data. These metrics 448 
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include the unbiased root mean square error (ubRMSE), Pearson correlation coefficient (R), 449 

and mean difference or bias. The ubRMSE was considered as the representative accuracy of the 450 

soil moisture in this research. 451 

The importance of each individual variable was assessed to analyze the relative 452 

contribution of input features on the random forest downscaling accuracy. For this purpose, a 453 

leave-one-out approach was performed by removing the one input variable (i.e., radar 454 

backscatter, NDVI, DEM, terrain slope and aspect, soil texture) and implementing the random 455 

forest downscaling algorithm using the rest of the variables in order to investigate the impact 456 

of the removed variable. 457 

5. Results and discussion 458 

5.1. Evaluation of the soil moisture data sets 459 

Original SMAP_L3, PLMR and PALS soil moisture observations (resampled to 1 km 460 

spatial resolution) were first evaluated against the ground soil moisture measured during the 461 

 

Fig.3. Flowchart of the proposed random forest downscaling model.    
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experiment periods. Fig. 4 demonstrates the evaluation of the different soil moisture 462 

observations against ground soil moisture measurements at the pixel level, including the 463 

statistical analysis values. Accordingly, the correlation coefficients between the PALS and 464 

PLMR retrieved soil moisture with the ground measurement were found to be higher than the 465 

SMAP_L3 soil moisture by 0.03 m3.m-3 and 0.07 m3.m-3 for PLMR and PALS, respectively. 466 

In contrast, the original SMAP_L3 soil moisture showed better ubRMSE against ground 467 

measurements than the airborne soil moisture retrieval from PLMR and PALS, achieving the 468 

lowest value equal to 0.062 m3.m-3. The highest ubRMSE was obtained between PLMR soil 469 

moisture retrieval and ground observations as 0.09 m3.m-3, which was partially due to standing 470 

water found in grasslands (due to heavy rainfall) at the beginning of the SMAPEx-5 campaign 471 

and crop lands (due to flood irrigation) at the end of the SMAPEx-5 campaign. Importantly, 472 

the PLMR instrument captured the soil moisture variation of these pixels. The calculation of 473 

bias statistics showed an overestimation for SMAP_L3 soil moisture of 0.013 m3.m-3, and an 474 

underestimation for PLMR and PALS soil moisture of -0.008 m3.m-3 and -0.029 m3.m-3 475 

respectively when compared against ground measurements. 476 

For comparison, the SMAP_L3 soil moisture has been resampled to 1 km resolution by 477 

applying the same soil moisture value for each 1 km pixel within each 36 km EASE grid cell. 478 

The resampled SMAP soil moisture has then been compared against the PLMR soil moisture 479 

obtained during the SMAPEx-4 and -5 experiments. This is considered as the “do-nothing” 480 

baseline performance that the downscaling algorithm must beat in order to add value. Fig. 5 481 

shows that the comparison had a correlation coefficient of 0.66, bias of 0.016 m3.m-3 482 

(SMAP_L3 higher), and ubRMSE of 0.121 m3.m-3. Thus, in order to ensure that the differences 483 

between the SMAP downscaled soil moisture and the airborne retrieved soil moisture at high 484 

spatial resolution were affected only by the machine learning downscaling algorithm, and not 485 
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because of the sensor to sensor bias, this bias value between the SMAP and PLMR soil moisture 486 

was removed before utilizing the data in the downscaling process. 487 

5.2. Results from random forest model development 488 

 The calibration and validation of the proposed random forest algorithm was conducted 489 

using the input and output variables over selected areas. As mentioned earlier, the normalized 490 

training dataset from the SMAPEx-3 and SMAPVEX-12 experiments was partitioned into a 5-491 

fold cross-validation. In the training phase, the 1 km ground soil moisture dataset was used in 492 

the algorithm for matching with the output response variable (see Fig. 3). The statistical results 493 

of the Ensemble TreeBagger algorithm applied at the training phase showed a good 494 

performance with R, root mean square error (RMSE) and mean absolute error (MAE) of 0.88, 495 

0.05 m3.m-3 and 0.04 m3.m-3, respectively, demonstrating the capability of the calibrated 496 

   

Fig. 4. Evaluation of different soil moisture observations against ground soil moisture measurements 

including a) 36 km SMAP_L3 SM during 30 April – 23 May, 2015 (SMAPEx-4, red points) and 6–28 

September, 2015 (SMAPEx-5, green points) at the SMAPEx-4 and -5 sites, respectively; b) 1 km PLMR 

SM during 5–23 September, 2011 (SMAPEx-3, blue points), 30 April – 23 May, 2015 (SMAPEx-4, red 

points) and 6–28 September, 2015 (SMAPEx-5, green points) at the SMAPEx-3, -4 and -5 sites, 

respectively; and c) 1 km PALS SM during 7 June – 19 July, 2012 at the SMAPVEX-12 site 

(SMAPVEX-12, brown points). 
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random forest model for generalization to an unseen dataset. These results showed a better 497 

correlation coefficient and RMSE than Senanayake et al. (2021), which used the Gaussian 498 

process regression model over the Yanco area for downscaling of soil moisture. The statistical 499 

results of this research have been obtained by trying different numbers of decision trees and 500 

tree leaf size to achieve a suitable calibrated random forest model for the downscaling. 501 

5.3. Assessment of the downscaling algorithm performance 502 

5.3.1. Comparison of downscaled soil moisture with PLMR airborne retrieved data 503 

Fig. 6 provides the scatterplots and statistical results of the SMAP downscaled soil moisture 504 

against PLMR soil moisture observations, which exhibit good agreements. The calculated R, 505 

bias, and ubRMSE were 0.97, 0.016 m3.m-3 and 0.048 m3.m-3. The results show the 506 

improvement of R from 0.66 between the SMAP_L3 and PLMR soil moisture to 0.97 between 507 

the downscaled SMAP and PLMR soil moisture. Importantly, when utilizing the random forest 508 

algorithm trained only by the SMAPVEX-12 data there was no apparent degradation in the 509 

downscaled results (results not shown) when applied to the SMAPEx data, even though applied 510 

   

 

Fig. 5. Comparison of SMAP_L3 SM resampled to 1 km against 1km PLMR airborne soil moisture 

retrieval during 30 April – 23 May, 2015 (SMAPEx-4, red points) and 6–28 September, 2015 

(SMAPEx-5, green points) over SMAPEx-4 and SMAPEx-5 flight areas, respectively. 
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to an entirely independent site, suggesting that there is some degree of transferability of the 511 

machine learning approach to locations different to those used for training. Additionally, the 512 

random forest algorithm was trained utilizing data over the entire flight areas of the SMAPEx-513 

3 (36 km × 38 km) and SMAPVEX-12 (12.8 km × 70 km) study areas (Fig. 2) on experiment 514 

days. In this case, the calculated R, bias, and ubRMSE between the downscaled SMAP soil 515 

moisture using the random forest model and PLMR soil moisture of SMAPEx-4 and SMAPEx-516 

5 were 0.97, 0.015 m3.m-3 and 0.051 m3.m-3, being only slightly different from the results 517 

reported in Fig. 6. However, the scatter plots indicate an overestimation at lower soil moisture 518 

values, and an underestimation between downscaled SMAP soil moisture and PLMR values at 519 

higher soil moisture values. Importantly, ubRMSE, the main statistical metric of the 520 

downscaling algorithm accuracy, improved from 0.121 m3.m-3 to 0.048 m3.m-3, showing good 521 

downscaling performance by the proposed random forest model. 522 

Overall, the statistical results achieved through the comparison of the downscaled SMAP 523 

pixel with the PLMR soil moisture showed the success of the developed random forest 524 

algorithm in downscaling the SMAP soil moisture. The results of the random forest method 525 

 
  

 

Fig. 6. Validation of downscaled SMAP soil moisture versus PLMR airborne soil moisture retrieval (1 

km) during 30 April – 23 May, 2015 (SMAPEx-4, red points) and 6–28 September, 2015 (SMAPEx-5, 

green points) and all available data (blue points) over PLMR flight areas. All available data (blue points) 

include both SMAPEX-4 (red points) and SMAPEx-5 (green points) data.  
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utilized in this study are encouraging, especially when evaluated with the results of the original 526 

SMAP soil moisture reported in Fig. 5, with an improved accuracy of downscaled SMAP soil 527 

moisture against PLMR measurements, and the results of earlier studies shown in Sabaghy et 528 

al. (2020) for the same site. Consequently, the quality of PLMR observations and their full 529 

spatial coverage over the selected area have provided a good opportunity to investigate machine 530 

learning based downscaling. 531 

In order to assess the soil moisture spatial distribution, the spatial pattern of SMAP 532 

downscaled soil moisture were investigated against the course resolution SMAP observations 533 

and the airborne retrieved soil moisture. Figs. 7 and 8 present the spatial variability in the 534 

downscaled, original SMAP soil moisture, and PLMR retrieved soil moisture over the SMAP 535 

validation flight area of SMAPEx-4 (71 km × 85 km) and SMAPEx-5 (71 km × 89 km) during 536 

each of the experiment days (D is representative of the day). The downscaled maps closely 537 

correspond to the airborne soil moisture retrieval patterns. The rainfall events on 9th and 18th 538 

May (D3 and D5) during SMAPEx-4 were clearly captured by the spatial pattern, as the soil 539 

moisture in these days showed higher values than others (Fig. 7). The dry down pattern during 540 

SMAPEx-5 from D1 to D8 corresponds to the rainfall events that preceded the campaign (Fig. 541 

8). Overall, the downscaled soil moisture closely matched the pattern of the PLMR 542 

observations during both the SMAPEx-4 and SMAPEx-5 experiments, conducted under 543 

diverse climate and vegetation conditions. 544 

To further analyse the capability of the downscaling model at capturing the soil moisture 545 

change, the pattern of the temporal variation of the SMAP downscaled and airborne soil 546 

moisture was investigated. There were several heavy rainfall events before both the SMAPEx-547 

4 and SMAPEx-5 campaigns, providing heterogeneous soil moisture conditions with dry 548 

downs. Furthermore, the two additional rainfall events on the 9th and 18th of May during the 549 

SMAPEx-4 experiments are visible in Fig. 7 as increased soil moisture values. In contrast, 550 
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there was no significant additional rainfall during SMAPEx-5, resulting in a prolonged dry 551 

down. Figs. 7 and 8 show that both the SMAP course resolution and the downscaled soil 552 

moisture values correspond to the temporal variability of the PLMR soil moisture in response 553 

to rainfall events. For instance, the higher amounts of soil moisture at the beginning of 554 

SMAPEx-5 are attributed to rainfall followed by a dry down with a distinct soil moisture 555 

pattern that is clearly detected. However, the consistency of the original and downscaled SMAP 556 

soil moisture with the PLMR soil moisture was affected based on the land cover and 557 

atmospheric situations. In the following, the differences are discussed according to the soil 558 

moisture dynamic ranges. For this purpose, the minimum and maximum amounts of soil 559 

moisture have been mentioned to clarify the ranges of the soil moisture. 560 

Over the SMAPEx-4 site, the original and downscaled SMAP soil moisture varied from 561 

0.09 m3.m-3 to 0.31 m3.m-3 and from 0.022 m3.m-3 to 0.57 m3.m-3, respectively. Over the 562 

SMAPEx-5 site, the SMAP course resolution and downscaled soil moisture varied from 0.13 563 

m3.m-3 to 0.33 m3.m-3 and from 0.02 m3.m-3 to 0.57 m3.m-3, respectively. Overall, the range of 564 

downscaled SMAP soil moisture was more than the range of the original SMAP soil moisture 565 

over SMAPEx-4 and SMAPEx-5. In addition, the PLMR soil moisture ranged from 0 m3.m-3 566 

to 0.6 m3.m-3 during SMAPEx-4 and SMAPEx-5. According to Figs. 7 and 8, it can be seen 567 

that the soil was generally wetter and with larger range during SMAPEx-5 than SMAPEx-4. 568 

Moreover, the vegetation water content was high with actively growing vegetation, and 569 

agricultural activities such as irrigation affecting the soil moisture ranges and the standing 570 

water, leading to increased PLMR retrieval uncertainties for some pixels. In order to minimize 571 

these errors, the bias value between the original SMAP soil moisture and the PLMR retrieved 572 

soil moisture was removed. 573 

To investigate the spatial distribution of errors during the downscaling process, the actual 574 

difference plots between the downscaled SMAP soil moisture and PLMR observations have 575 
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also been presented in Figs. 7 and 8. Overall, the difference values gave good agreement 576 

between PLMR and downscaled soil moisture, but showed that the errors between PLMR and 577 

downscaled products at the dry and wet soil moisture conditions had more bias than under more 578 

normal soil moisture situations. 579 
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Fig. 7. Spatial distribution of original SMAP_L3 soil moisture (36 km), downscaled SMAP soil 

moisture (1 km), and airborne PLMR retrived soil moisture (1 km)  at 5 cm depth during the period 30 

April – 23 May, 2015 at SMAPEx-4 over PLMR flight area (71 km × 85 km). 
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5.3.2. Comparison of downscaled soil moisture with ground measurements 580 
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Fig. 8. Same as Fig. 7 except for SMAPEx-5 over PLMR flight area (71 km × 89 km) during the period 

6–28 September, 2015. 
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 The calculated R, bias, and ubRMSE of the downscaled SMAP soil moisture against the 581 

ground data were 0.73, -0.047 m3.m-3 and 0.057 m3.m-3 for clay loam, 0.83, -0.038 m3.m-3 and 582 

0.072 m3.m-3 for loam, and 0.8, -0.031 m3.m-3 and 0.06 m3.m-3 for silty clay loam (Fig. 9). The 583 

statistical results demonstrated that the downscaled soil moisture had a good correlation with 584 

the ground soil moisture observations over these soil texture conditions, especially for loam 585 

and silty clay loam textures, and an underestimation of downscaled soil moisture over all of 586 

the selected soil texture conditions. The ubRMSE showed better performance for the clay loam 587 

and silty clay loam soil textures than the loam soil texture condition. 588 

   

    
Fig. 9. Validation of downscaled SMAP soil moisture versus ground soil moisture measurements (1 

km) over the SMAPEx focus area during 30 April – 23 May, 2015 (SMAPEx-4, red points) and 6–28 

September, 2015 (SMAPEx-5, green points). The first row presents the results for different soil texture 

conditions, and the second row shows the results for different land cover types, along with the results 

from all available data. 
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The performance of the downscaled SMAP soil moisture was also assessed considering the 589 

two types of land covers. The R, bias, and ubRMSE were 0.68, -0.061 m3.m-3 and 0.058 m3.m-590 

3 for the cropland, and 0.85, -0.028 m3.m-3 and 0.067 m3.m-3 for the grassland (Fig. 9). The bias 591 

was negative (downscaled SMAP soil moisture lower) for both cropland and grassland, and 592 

although the R was worse for the cropland than for the grassland, the ubRMSE was better for 593 

the cropland than for the grassland. 594 

The R, bias, and ubRMSE were 0.79, -0.04 m3.m-3 and 0.066 m3.m-3 for all data over 595 

selected focus areas (Fig. 9). Although the R was better compared with those for SMAP_L3 596 

(Fig. 4), the ubRMSE was not better in this case. Overall, the results of this study are consistent 597 

with those from Abbaszadeh et al. (2019), which utilized the random forest approach for SMAP 598 

soil moisture downscaling over the Continental United States at different soil texture 599 

conditions. 600 

For a more detailed investigation, the performance of the downscaled SMAP soil moisture 601 

was assessed with the SMAPEx-4 and SMAPEx-5 data separately. Because these campaigns 602 

were conducted in different seasons, they provide insight into the effects of different 603 

atmospheric conditions, soil moisture variations, and variability in vegetation. The SMAPEx-604 

4 data was collected in the austral autumn with the land surface type of bare soil in croplands 605 

and grasslands covered by short grass. In comparison, the SMAPEX-5 took place during the 606 

austral spring when the crops were in the growth stage with high vegetation water content, and 607 

grassland vegetation was at mature stages, as described earlier. Table 3 reports the statistical 608 

analysis, including R, bias, and ubRMSE between the downscaled SMAP soil moisture and 609 

ground measurements considering the soil texture and land cover scenarios for SMAPEx-4 and 610 

SMAPEx-5 experiments. The R showed good values for all scenarios of the SMAPEx-5 611 

experiment. Moreover, R showed acceptable values for the SMAPEx-4 experiment with the 612 

exception of loam soil texture and croplands. While the ubRMSE values meet the SMAP soil 613 
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moisture accuracy requirement for nearly all selected soil texture and land cover situations over 614 

SMAPEx-4, the ubRMSE over SMAPEx-5 showed worse values than SMAPEx-4 results, 615 

except for the cropland situation. 616 

Overall, considering the ground soil moisture measurements as an independent reference, 617 

the proposed random forest model improved the accuracy of downscaled SMAP soil moisture 618 

over the focus areas of SMAPEx-4, when comparing with the uniform values from the original 619 

SMAP_L3 product. However, the statistics of the downscaled SMAP soil moisture did not 620 

show equal improvement for the focus areas of SMAPEx-5. It seems that at these focus areas, 621 

the downscaling performance was affected by the high vegetation water content and flood 622 

irrigation during the SMAPEx-5 experiments. 623 

Fig. 10 and Fig. 11 present the spatial variability of the downscaled and original SMAP_L3 624 

soil moisture, and ground soil moisture measurements over the 3 km × 3 km SMAPEx focus 625 

areas of SMAPEx-4 and SMAPEx-5 during each of the experimental days. The downscaled 626 

soil moisture maps correspond to the patterns of the ground soil moisture observations by 627 

Table 3. The statistical metrics of soil moisture comparison between ground soil moisture and SMAP 

downscaled estimates according to land cover and soil texture during SMAPEx-4 and SMAPEx-5, 

separately.  

 Campaign name  SMAPEx-4  SMAPEx-5 

 
 

R Bias ubRMSE R Bias ubRMSE 

 - m3.m-3 m3.m-3 - m.m-3 m3.m-3 

S
o

il
 t

ex
tu

re
 Clay Loam 0.76 -0.013 0.04 0.68 -0.073 0.055 

Loam 0.27 -0.055 0.051 0.82 -0.026 0.084 

Silty Clay Loam 0.56 0.005 0.038 0.86 -0.048 0.062 

L
a

n
d

 

C
o

v
er

 Crop 0.36 -0.034 0.059 0.82 -0.086 0.046 

Grass 0.53 -0.034 0.046 0.84 -0.025 0.078 
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generally capturing the rainfall events during SMAPEx-4 (Fig. 10) and the dry down pattern 628 

of SMAPEx5 due to the rainfall events prior to the campaign (Fig. 11). 629 

The geographic parameters such as topography, vegetation coverage, and soil texture 630 

contribute to the heterogeneity. While the topography of the SMAPEx focus areas does not 631 

change substantially, there are three distinct soil texture types. Considering the spatial 632 

distribution based on the soil textures for SMAPEx-4 (Fig. 10), the downscaled soil moisture 633 

matched the spatial pattern of the ground soil moisture qualitatively for different soil texture 634 

conditions. Considering the spatial distribution based on the land cover of SMAPEx-4, it seems 635 
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Fig. 10. Spatial distribution of original SMAP_L3 soil moisture (36 km), downscaled SMAP soil 

moisture (1 km) and ground soil moisture (1 km) measurments at 5 cm depth during the period 30 April 

– 23 May, 2015 at SMAPEx-4 focus areas (3 km × 3 km). Jo
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that the spatial distribution of soil moisture within the focus area under both grassland and 636 

cropland showed good consistency when compared to the ground soil moisture measurements. 637 

It is notable that conditions included bare soil in the cropland and sparsely vegetated dry 638 

grassland during the SMAPEx-4 experiment. These conditions will have affected the soil 639 

drying states as well as rapid infiltration after any rainfall or irrigation. 640 
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Fig. 11. Same as Fig. 10 except for SMAPEx-5 focus areas (3 km × 3 km) during the period 6–28 

September, 2015. 
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Based on the spatial distribution maps, greater heterogeneity in the soil moisture spatial 641 

distribution was visible for vegetated and irrigated areas during SMAPEx-5. However, the 642 

greater vegetation led to an increased attenuation of the microwave signal, contributing to an 643 

underestimation of soil moisture. Considering the spatial distribution in the different soil 644 

texture variations, for SMAPEx-5 (Fig. 11) the downscaled soil moisture matched qualitatively 645 

the spatial pattern of the ground soil moisture for the clay loam texture type (YA4, YA7). 646 

Moreover, considering the spatial distribution based on the land cover of SMAPEx-5, the soil 647 

moisture spatial distribution of the focus area showed qualitatively better consistency under 648 

croplands (YA4 and YA7) than grasslands. The random forest method showed higher 649 

uncertainty under grassland (YB5 and YB7) in downscaling the SMAP soil moisture during 650 

the early days of the campaign, which were influenced by standing water. Table 3 reports the 651 

same results, with the ubRMSE values over SMAPEx-5 achieving 0.046 m3.m-3 and 0.078 652 

m3.m-3 for cropland and grassland, respectively. 653 

5.4. Results of utilizing 36 km SMAP data at 1 km in the training phase 654 

Most of the machine learning based passive soil moisture downscaling approaches to date 655 

have focused on utilizing the coarse resolution grid cell soil moisture uniformly across all fine 656 

resolution grid cells as an input in the training phase. In order to understand the effect of such 657 

assumptions, the results from utilizing the 1 km soil moisture values at the focus areas were 658 

compared with results from utilizing 36 km grid cell average soil moisture at the same focus 659 

areas as the input in the training phase of the random forest algorithm. Fig. 12 shows the scatter 660 

plots and the statistical analysis of the downscaled SMAP soil moisture against airborne PLMR 661 

soil moisture and the ground soil moisture measurements for the two different approaches over 662 

the ground sampling focus area. When using the average soil moisture of the 36 km grid cell 663 

as the input in the training phase, the statistical metrics R, bias, and ubRMSE of the SMAP 664 

downscaled soil moisture against PLMR soil moisture were 0.53, 0.055 m3.m-3, and 0.083 665 
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m3.m-3, and against ground soil moisture were 0.54, 0.014 m3.m-3 and 0.074 m3.m-3. The 666 

accuracy of the downscaled SMAP soil moisture derived from the random forest algorithm 667 

based on the proposed approach of this paper clearly showed better performance in ubRMSE 668 

(by 0.04 m3.m-3) than the algorithm based on utilizing the averaged soil moisture. Additionally, 669 

the range of downscaled soil moisture based on utilizing the average soil moisture changed 670 

from 0.02 m3.m-3 to 0.15 m3.m-3, which was substantially lower than the range of downscaled 671 

soil moisture based on the proposed approach. Overall, utilizing 1 km grid soil moisture 672 

observations as the input in the training phase showed a better skill level in matching with 673 

observed soil moisture patterns, meaning that it can construct a well-trained downscaling 674 

algorithm. 675 

5.5. Importance of input variables to the downscaled soil moisture  676 

The importance of different variables must be analysed in order to realize their 677 

effectiveness on the performance of the random forest algorithm for soil moisture downscaling. 678 

In random forest models, the increased percentage of MSE in comparison with that achieved 679 

from utilizing all variables in the model describes the importance of different variables. When 680 

an important variable is not used in the algorithm, the MSE will increase, with the larger the 681 

increase in MSE signifying the greater the importance of that variable (Breiman 2001). 682 

Therefore, the significance of each input variable was analysed using the ablation test, in which 683 

each input variable was independently omitted from the downscaling process and the random 684 

forest algorithm applied using the remaining variables. Ten different input schemes including 685 

removal of the radar backscatter (σvv, σhh, σxpol), NDVI, DEM, slope, aspect and soil texture (% 686 

clay, silt and sand) were tried independently. Removal of soil moisture from the input variables 687 

increased the percentage of MSE value equal to 23.8 %, showing the highest importance in this 688 

machine learning downscaling approach. Therefore, as downscaling of the SMAP soil moisture 689 

was the main purpose of this research, the soil moisture parameter was included in the input 690 
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schemes. The MSE values of the downscaled SMAP soil moisture estimates relative to PLMR 691 

soil moisture were calculated separately for each input variable, with percentage of increase in 692 

MSE values shown in Fig. 13. 693 

Horizontal backscatter (σhh) and slope are recognized as the most important variables (3.66 694 

% and 3.63 %, respectively), showing more influence than other variables on the random forest 695 

accuracy. Soil texture ranked third, indicating 2.85 % and 2.76 % importance for sand and clay, 696 

respectively. The soil texture can influence water permeability, infiltration rate and water 697 

storage capacity. In this assessment, silt fraction showed least importance compared to other 698 

  

   
Fig. 12. Validation of downscaled SMAP soil moisture against airborne PLMR retrieved soil moisture 

(1 km) and ground soil moisture measurements (1 km) over the SMAPEx focus areas during 30 April – 

23 May, 2015 (SMAPEx-4, red points) and 6–28 September, 2015 (SMAPEx-5, green points). The first 

row presents the results for utilizing 1 km soil moisture at focus areas as the input in the training phase, 

and the second row shows the results for utilizing the average soil moisture of the 36 km grid cell as the 

input in the training phase.  
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input variables in the proposed downscaling model. NDVI also showed high importance (2.51 699 

%) due to the ability of presenting the vegetation status; NDVI is one of the crucial auxiliary 700 

parameters used in soil moisture retrieval, and in several soil moisture downscaling algorithms 701 

(Colliander et al. 2017a; Colliander et al. 2017b). Among the airborne co-polarized and cross-702 

polarized backscatter products utilized in the random forest model, the importance of horizontal 703 

co-polarized backscatter (σhh) was highest (3.66 %). However, the vertical co-polarized 704 

backscatter (σvv) and cross-polarized backscatter (σhv) also showed a high influence. While the 705 

DEM had a slightly lower influence (1.73 %) compared to the high influence input variables 706 

on the results, it is one of the important input variables in the proposed random forest algorithm 707 

in this study. However, previous research has shown the high importance of a vegetation index 708 

such as NDVI in soil moisture retrieval, and the low importance of the DEM (Abowarda et al. 709 

2021; Karthikeyan and Mishra 2021). Overall, it is suggested that utilizing all selected input 710 

variables in the downscaling model would be necessary to obtain the best downscaling 711 

accuracy.  Moreover, landcover type was not included here as an option due to challenges in 712 

including categorical information in machine learning models. However, given the strong 713 

relationship in backscatter response to different landcover types and their associated land 714 

surface conditions, this could also be an important variable for use in future investigations. 715 

5. Conclusion 716 

This study presented a new strategy for downscaling the 36 km SMAP radiometer soil 717 

moisture product to 1 km spatial resolution. A random forest model using 1 km resolution 718 

remotely sensed backscatter, together with 1 km resolution vegetation characteristics, 719 

topography and soil properties, was used to downscale 36 km resolution passive microwave 720 

satellite soil moisture, based on training to focus areas with 1 km resolution soil moisture. The 721 

model was trained using data acquired pre-launch of SMAP, and evaluated with post-launch of 722 

SMAP airborne and field soil moisture data. Soil moisture from focus areas at 1 km spatial 723 
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resolution were utilized to train the random forest algorithm, rather than the more traditional 724 

approach of using the SMAP 36 km soil moisture. The SMAP downscaled soil moisture 725 

product from the proposed random forest downscaling algorithm was then validated using post-726 

launch airborne retrieved soil moisture observations and the ground soil moisture 727 

measurements from multiple points. This study was performed considering different soil 728 

characteristics and land cover conditions, including both grasslands and a variety of crops.  729 

Based on the validation results, the downscaled SMAP soil moisture demonstrated an 730 

excellent agreement with the airborne soil moisture observations over the flight area of 731 

SMAPEx-4 and SMAPEx-5. The statistical results between the downscaled SMAP and 732 

airborne PLMR retrieved soil moisture in terms of R, bias and ubRMSE were 0.97, 0.016 m3.m-733 

3 and 0.048 m3.m-3, respectively. Overall, compared to the original passive SMAP soil moisture 734 

product applied as a uniform field, the proposed downscaling random forest algorithm showed 735 

the ability to improve the ubRMSE of downscaled SMAP soil moisture from 0.121 m3.m-3 (Fig. 736 

 

Fig. 13. Importance of input variables of the random forest model to the downscaled SMAP soil 

moisture calculated through increased mean square error (MSE) in percentage, including soil moisture, 

σvv, σhh, σxpol, NDVI, DEM, slope, aspect and soil texture (clay, silt and sand). 
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5) to 0.048 m3.m-3 (Fig. 6), when considering the PLMR soil moisture as a reference, being 737 

close to the SMAP soil moisture accuracy requirement. The results of this study show that the 738 

proposed random forest downscaling algorithm has the ability to be applied regionally by 739 

training to a few local pixels at 1 km in order to downscale the coarse resolution microwave 740 

soil moisture, and that training in one location (SMAPVEX-12) could be applied to another 741 

location (SMAPEx). Moreover, the statistics between the downscaled SMAP and ground soil 742 

moisture measurements over the SMAPEx focus areas achieved 0.79, -0.04 m3.m-3 and 0.066 743 

m3.m-3 in terms of R, bias and ubRMSE, respectively. Additionally, the downscaled SMAP soil 744 

moisture observations satisfactorily captured the spatial and temporal heterogeneity relative to 745 

ground and airborne soil moisture observations. 746 

In order to investigate the importance of using data at fine spatial resolution to train the 747 

random forest algorithm, as was conducted for this research, the results were compared with 748 

those from the strategy of utilizing the average from a 36 km grid cell. In general, the statistical 749 

metrics showed a 0.04 m3.m-3 improvement in terms of ubRMSE downscaling accuracy by 750 

using the higher spatial resolution training data, when evaluated with airborne retrieved soil 751 

moisture. 752 

An investigation on the importance of the input variables in the random forest algorithm 753 

revealed that the best downscaling accuracy was achieved through contribution of all the input 754 

variables tested. Overall, the assessment showed that the variable importance in the random 755 

forest downscaling approach utilized in this study was in the following order: horizontal 756 

backscatter (σhh), slope, sand, clay, NDVI, DEM, vertical backscatter (σvv), cross-polarized 757 

backscatter (σhv), aspect and silt. However, the use of a landcover map should also be 758 

considered in future studies. 759 
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