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Abstract—Flying Base Station (FBS) is an evolving technology,
providing wireless services to ground and aerial users. With
the help of this system, the service required by users can be
provide with very high speed and low cost. Since pre-created
structures are not require in these systems, this feature helps
provide facilities in many scopes and difficult conditions. FBSs
can carry a variety of equipment, so they can play a role in
a variety of wireless communication networks. Meanwhile, the
limited power of this equipment has led to the importance of
optimizing the power consumption in this equipment. In this
paper, we discuss the joint optimization of three-dimensional
deployment and FBS trajectory under Backhaul constraints. We
formulate the p-median model to optimize the deployment of
the FBS and examined the effect of the number of candidate
points and the coverage factor of the users in optimizing the
minimum number of FBS required. In this paper, the height of
FBSs is optimized to reduce transmission power consumptions,
and finally, the 3D position of the FBS is present. Due to the
high mobility of users and the need to relocate FBSs, we use the
transportation model method to optimize the FBSs trajectory
to reduce their power consumptions. In this model, a method
is propose to calculate the optimal transit path for the FBS
trajectory between two-time slots. Numerical results show that
the proposed method can simultaneously minimize the number
of FBSs and their power consumptions and determine an optimal
path for their trajectory.

Index Terms—Flying base Station, Drone trajectory, Energy
efficiency, IoT, Fuzzy C-means, UAV placement, Transportation
model, 3D deployment

I. INTRODUCTION

UAVs have many advantages due to their special de-
sign. Since these systems can move continuously in three-
dimensional space and are quickly deployed anywhere, they
can provide high quality and extensive service in many fields
such as rescue, monitoring, multimedia services, etc. This
high accessibility has led to the use of drones in the fifth
generation (5G) wireless communications and IoT networks.
UAVs, which today have found their place in the industry more
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than ever, are used to increase users’ access to the network
with the minimum required quality of service.

In many 5G network scenarios, ground-based stations can
be used. Although these stations can cover a wide area with a
higher power, the static deployment of these stations, however,
is very time-consuming. These devices are deployed at a very
low speed and high cost at a specific point, providing real-
time communication and awareness of the environment during
casualties, immensely helping rescue missions [1]. Unlike
ground-based stations, FBSs can be quickly deployed in an
area and provide full coverage by moving throughout that
area. Therefore, UAVs have attracted the attention of many
researchers recently, since these types of equipment can not
only support the base stations and temporarily reduce pressure
during emergencies but can also connect with an available
mobile network and provide greater services [2]. On the other
hand, this feature of UAVs has caused its deployment and
trajectory in space require careful optimization. In other words,
planning the deployment and trajectory of UAVs requires
optimization algorithms, which are generally mathematical or
random optimization [3]. However, the issue of optimizing
the deployment and trajectory of UAVs along with constraints
such as energy constraints, service quality and backhaul con-
straints is generally an np-hard issue.

Alongside 5G mobile network scenarios, IoT scenarios can
also be considered. The expansion of the range of sensors
and reduction in their price along with wireless networks
has increased the scope of IoT applications. However, there
are still data collection problems at the edge of the cell [4]
that drones can help well in solving this problem. Drones
can increase the quality of service and reduce interference
by changing their locations, and increase the percentage of
users covered by the network [5]. Another issue that needs
to be addressed is the time duration of optimal placement or
trajectory generation calculations. Even though optimizing the
static deployment of FBSs will take less time and energy; how-
ever, dynamic FBSs can fly closer to ground users and provide
more services to improve the quality of the communication
channel. [6] Although in considering the type of environment,
the trajectory of drones can be predetermined or produced,
for example, if we talk about urban environments, they can be
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determined with the help of satellite images and pre-prepared
data according to the height of buildings and other obstacles;
However, a war environment can change rapidly; In these
cases, the drones must pass through unknown environments. In
such environments, drones must have a route design program
based on environmental information and some details in their
memory. This is done to ensure that missions are completed
[7].

II. RELATED WORKS

Numerous studies have been conducted on the use and
application of drones in wireless communications. This re-
search falls into several categories, one of which is the optimal
deployment and routing of drones under various limitations.
in [8] A new framework for the prediction of deployment
of drones as a temporary base station to integrate it with
ground-based mobile systems and help it against downlink
traffic overhead is proposed. Their theory proposed an in-
novative machine learning method, based on the weighted
maximum expectation (WEM) algorithm, is proposed to es-
timate user distribution and downlink traffic demand, and
a contract theory framework is used to ensure structured
information exchange.In [9] The bee colony algorithm is
used to minimize the number of UAVs under constraints
placed by the quality of service. The maximum coverage
radius of the UAV is calculated according to the minimum
required power to serve more users, and a three-dimensional
position and frequency band of each UAV is calculated to
increase the signal strength and reduce interference. In [10]
a non-orthogonal multiple access(NOMA) based approach is
presented to improve connectivity opportunities and spectrum
efficiency (SE) in fifth-generation wireless communications
and beyond. In this article, several drones relay information
to half of the ground users. The drones are deployed using a
clustering method and a location-based user pairing scheme
to optimize communication and enhance energy efficiency
under service quality constraints.In [11], the authors examine
a UAV-equipped cellular communication system in which
a very low-altitude UAV provides services to the ground
user. The problem of optimizing UAV 3D positions is more
realistically modeled taking 3D space constraints and ground
barrier constraints into considerations. The purpose of this
article is to increase the security of wireless communications
with the help of drones.The goal of [12] is to maximize the
total number of covered user equipment when the quality-of-
service requirements are met. In this process, the deployment
of UAVs is optimized to provide the satisfactory services
required by users in 3D. In this paper, the air-to-ground loss
model is considered and drone base stations are deployed first
horizontally using a genetic algorithm and then vertically to
maximize user coverage keeping in consideration the data dis-
tribution rate. In [13] the minimum achievable system through-
put which provides services to all ground users has been
maximized through a multidimensional deployment method.
Taking co-channel interface in consideration. In this approach,

first, the two-dimensional position and then the height and
transmission capacity of the drones are optimized separately.
In [14] UAVs are deployed to create a link between IoT
devices and ground-based stations to increase signal strength.
In this network, UAVs are responsible for facilitating the data
transfer of IoT devices. This paper presents a distributed user
clustering algorithm to cluster IoT devices as multiple user
clusters. This paper also formulates an optimization model to
minimize system energy consumption, where the deployment
and transmission of UAV power are jointly optimized. in [15]
we present an innovative evolutionary algorithm to determine
the optimal number and position of UAVs in the structure of
the Internet of Things. The mathematical model presented in
this paper reduces the problem space and obtains the optimal
position of the drones to provide IoT service for data collection
from them. An innovative mechanism for calculating candidate
points according to user density is also provided.In [16]we
presented an optimal UAV deployment method based on fuzzy
clustering. To reach optimal placement of UAVs as BS such
that it covers 100% of users, a mathematical model in the
form of optimal placement problem (OP) is presented to
minimize the total distance between users and UAVs under
Beckham constraints. In [17], a method for optimal deploy-
ment of drones in the most suitable place for task offloading
with TDMA protocol is presented. Specifically, in this paper,
the number of processing loads in the MDs-UAV system is
modeled according to the processing capacity of each drone.
In this paper, it is proved that the problem of UAV deployment
and processing load transfer is an NP-hard problem, so a
greedy method is proposed to optimize the algorithm. In [18],
the issue of dynamic deployment of drones to optimize the
energy efficiency of UAV-equipped networks in which UAVs
are responsible for providing communication and lighting to
users is investigated. In this study, UAV deployment, user
communication and energy efficiency are optimally optimized
using a combined algorithm of machine learning framework of
repetitive gate units (GRU) with convolutional neural networks
(CNN). The authors in [19] have investigated the connection
problems of aerial users (client drones) when they only receive
services from aerial-based stations. In particular, in this paper,
the issue of three-dimensional deployment of aerial-based
stations equipped with directional antennas is investigated. The
purpose of this article is to maximize the number of aerial
users covered by the spectrum sharing policy with terrestrial
networks. [20] examines the deployment of UAVs which
have the task of providing services to users who generate
large amounts of information. This paper formulates an issue
to maximize the total access rate of all users subject to a
minimum rate limit for each user.

In [21], the problem of optimizing the route of several
flight stations is modeled to maximize the data rate of mo-
bile phone users. The formulation limits the strength of the
ABS, including propulsion and signal transmission power, the
backhaul link capacity limit, and the collision avoidance limit.
The modeled problem is solved using an innovative algorithm
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based on a sequential convex approximation approach. [22]
During emergency situations to provide a multi-UAVs en-
abled wireless communication system, UAV deployment, and
movement should be energy efficient too, and the authors of
[22] have shed light on this topic. To maximize the energy
efficiency of the ground-users not only the positions of the
UAVs and the users association are considered but the transmit
power of the ground user is jointly optimized. In this article,
if a drone is lost, other drones with the least energy optimize
their location and movement to replace that drone. Joint
global and local path planning optimization for crowd air
monitoring is done by combining the improved particle swarm
optimization(PSO) algorithm, artificial potential algorithm,
path exploration mode switching strategy and energy-based
task scheduling mechanism. The purpose of [23] is to use
drones equipped with a surveillance system to overcome the
shortcomings of fixed position surveillance equipment such as
CCTV. [24] in an efficient route planning method is investi-
gated that can minimize the completion time of the cellular-
connected UAV’s mission under the required QoS. An iterative
path optimization algorithm based on geometric programming
is proposed to design the UAV path under real-time connection
constraints. Cognitive radiography has proved to improved
spectral performance. However, transmit power and channel
fading of a secondary network limits its secure performance.
To solve this problem, exploiting the high flexibility of a UAV
and the possibility of establishing the line-of-sight link,s a
communication network based on unmanned aerial vehicle
devices is presented in [25], in which the average secrecy rate
is strongly optimized and the path of movement and trans-
fer of the UAV is maximized. A UAV-assisted multi-carrier
wireless communication for IoT scenarios is presented. as an
aerial-based station, the drone transmits orthogonal frequency
division (OFDM) signals to the IoT nodes, meanwhile the
IoT nodes decode the information and store the signal energy.
They transfer information using the stored energy to the drone.
[26] proposed UDM route optimization and resource allocation
scheme, by collectively optimizing UAV trajectory, subcarrier,
power, and subplot allocation, the minimum achievable rate in
the uplink among all IoT nodes is maximized, subject to the
achievable sum rate of all IoT nodes in the downlink.

In [27], For information transmission and energy collection,
subcarriers of an Orthogonal Frequency Division Multiplexing
(OFDM) drone network are divided into two groups. The goal
of this plan is to maximize the average rate achievable for all
users by jointly optimizing the UAV route, user scheduling,
sub-carriers, and power allocation. Furthermore, a drone opti-
mization plan and a joint communication plan based on Simul-
taneous Wireless Information and Power Transfer (SWIPT)
according to the average energy harvested for users is also
proposed. [28] provides a functional SAG-IoRT framework
for drones as a relay for loading data from smart devices
to low-Earth orbit satellites. Given a large number of smart
devices, the purpose of this paper is to jointly optimize the
connection timing of smart devices, power control, and UAV

path To maximize system capacity. This paper formulates the
problem in the form of a nonlinear optimized complex integer
problem. [29] examines the use of several UAVs to provide a
joint service for several vehicles traveling on a highway with
limited or no service infrastructure. In this paper, with the
help of optimization of the routes of UAVs and allocating
radio resources for a certain period, the number of UAVs
deployed, under the minimum QoS limits required in terms of
data volume and the effect of vehicle movement, is minimized.
In [30], a wireless sensor network equipped with a drone is
considered in which the drone is used to collect data from
sensor nodes. By jointly optimizing the UAV communication
schedule and the 3D path, the minimum amount of data
collection from all sensor nodes that have a defined reliability
limit, are maximized. In [31] we consider a sporting event in a
rural area. Our goal is to use the 5G mobile network to provide
the amount of data needed by the participants and attendees
in this event. In this paper, we propose an efficient method
for determining the minimum number of drones required and
their optimal position. There is also an efficient method called
MergeCells for presenting candidate points and scoring points.

In this paper, a mathematical model for optimizing the lo-
cation and three-dimensional (3D) trajectory of several flying-
based stations is presented. The purpose of this article is
to minimize power consumption for data transmission with
FBS movement. First, the deployment optimization problem
is modeled based on the p-median method in the form of a
binary linear optimization problem. This helps us to select the
points as the optimal point from the candidate points for the 2D
location of the drones so that the total distance of the drones
from the users is minimized. Subsequently, we optimized the
altitude of the FBS according to its distance to the farthest
user. With this innovation, we optimize power used in data
transmission. In the next step, based on the transportation
model, a mathematical model is proposed to optimize the
trajectory of FBSs for moving between two-time slots. The
proposed model ensures that the path traveled by FBSs for
moving from deployment points at time t to new deployment
points at time t + 1 will be minimal. In summary, in this
paper, we first present points as candidate points using the
fuzzy clustering method. Then we obtain the minimum points
required to serve the workers under backhaul constraints using
the p-median method and then provide the optimal trajectory
using the transportation model method.

The rest of the paper is organized as follows. In section
III, the system model is presented and the p-median problem
and transportation model are formulated mathematically. In
Section IV, the numerical results are shown, the effect of the
number of cluster heads and α on the positioning problem is
investigated and the transportation model problem is evaluated.
Finally, the conclusion is discussed in Section V.

III. SYSTEM MODEL

UAV trajectory means finding the beginning and endpoint
of a transit route. The closer these points are to each other, the
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more curved paths can be created, and the farther apart these
points are, the more the path will be discontinuous. Although
we can save on power if we can cover all of the desired
environments by encountering the least number of points. To
find the station points, we first use the FCM algorithm to
create the candidate points. In clustering algorithms, we seek
to categorize and find dense points as the center of the cluster,
but in many of these algorithms, such as FCM, the presence of
noise or outgoing data can cause the cluster center to shift to
heavier clusters [32]. Therefore, after finding candidate points,
we use the p-median algorithm to find the best points. By best
points, we mean the points where the sum of the distances of
the client users from those points is minimum.

Today, many species of animals are endangered, these ani-
mals are under close surveillance in protected areas. Imagine
a protected area with no ground base station to protect the
environment and prevent degradation. Endangered species in
the area are equipped with IoT sensors to monitor the situation.
We plan to relay the information of these nodes to the
monitoring centers with the help of FBSs.

A. Mathematical Model of P-median Problem

In this model, we intend to model the p-median problem in
the form of binary linear optimization to obtain the least total
sum of user distances from FBSs.

min
∑
i∈I

∑
j∈J

dijXij (1)

In Equation (1) the objective function of the problem is
specified. In this relation, i represents the i-th user from the
I-user and j represents the j-th station from the J-station. dij
means the distance of the i-th user from the j-th station. We
intend to minimize the sum of dij if the i-th user is receiving
service from the j-th station. Xij binary indicates whether the
i-th user is receiving service from the j-th station or not. This
objective function is minimized under the constraints specified
in equation (2) to (7)

D∑
i=1

MBi =W (2)

Xij ≤MBi, ∀i ∈ I, ∀j ∈ J (3)

MBi in Equation (2) represents the binary selection or un-
election of the i-th candidate point. Therefore, the number
of selected points must be equal to the minimum number of
required stations specified by W . The value of W indicates the
minimum station required, this minimum value is calculated in
non-consecutive iterations using the bi-section algorithm and
indicates the minimum station required to serve users. In this
regard, Equation (3) states that user i can receive service from
station j if the candidate point j is selected as a station.

D∑
i=1

Xij ≤ 1 ∀j ∈ J (4)

Xij = 0 ∀i ∈ I, j ∈ J, dij > R (5)

Constraint (4) shows that a user can receive FBS service at
a maximum of one station, and constraint (5) states that the
client user must be within the FBS service area of a particular
station.

U∑
j=1

BWUjXij ≤ BW ∀i ∈ I (6)

In Equation (6) WBUj represents the bandwidth required by
the user j and BW represents the maximum bandwidth of the
UAV. Constraint (6) states that the total bandwidth required
by users at a station should not exceed the maximum UAV
bandwidth

U∑
j=1

D∑
i=1

Xij ≥ U ∗ α (7)

Constraint (7) indicates that the number of connections spec-
ified between users and stations must be greater than the
number of users which shows by U multiplied by α. This
equation guarantees service to at least α percentage of users.

B. Mathematical Representation of Transportation Model

The purpose of the transportation model problem is to
minimize the cost of moving from one point to another. In
this article, we are going to move some FBSs from locations
(xn, yn) at time T to locations (xm, ym) at time T + 1 with
the lowest cost.

min
∑
m∈M

∑
n∈N

Smndistmn (8)

In equation (8), the objective function of the problem is
specified. In this equation, set N represents points at time T
and set M represents points at time T +1. distnm represents
the distance between the point m and n. We intend to minimize
the sum distnm if the drone goes from point n to m. Snm is
a binary indication of whether the drone goes from point n at
time T to point m at time t+ 1.∑

m∈M

Smn ≤ 1 ∀n ∈ N (9)

∑
n∈N

Smn ≤ 1 ∀m ∈M (10)

Constraint (9) states that each FBS at time t can only go to
one point at time t + 1, and constraint (10) shows that each
point at time t+ 1 can only hold one FBS.

M∑
m=1

N∑
n=1

Snm = P (11)

Constraint (11) indicates that the number of paths specified
between points at time t to points at time t+1 must be equal
to points at time t+1. This limit prevents the number of routes
from reaching zero when minimizing.
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IV. NUMERICAL RESULTS

For simulation, we consider a 10x12 km area where 4,000
animals are equipped with IoT sensors. These users are
distributed at the center of 20 random points with the poisson
distribution. Lora SX1272 module is used for communication,
which due to its NLoS link conditions, has a working range
of 2km. FBSs are equipped with a directional antenna with
a beam angle of 90°, which creates a circle with a coverage
radius of 1.4km. Each IoT node, depending on the animal,
can send 24 to 60 KB of data, and FBS can relay up to 8 MB
of data to the monitoring center at any time via the backhaul
link.

A. Positioning of FBSs

To solve the problem with the help of the p-median algo-
rithm, we need a lower bound and an upper bound. To get
the lower bound, we go to the backhaul constraint. Given that
each user has an average of 42 KB of bandwidth, a total of
168 MB of user bandwidth will be needed. Since each drone is
allocated 8 MB of bandwidth, at least 21 FBS will be needed
if users are uniformly distributed. As a result, we set the lower
bound value to 21. In order to cover the whole environment
evenly, 30 FBS should be placed in the form of a simple mesh
with a distance of 2 km in the environment. This distance
is equivalent to the length of the side of the largest square
enclosed within the FBS antenna coverage circle. However,
due to the Poisson distribution of users and the limitations of
the backup arrangement of the drones like this, limitations of
the problems are not satisfied, therefore, more points will be
needed to calculate the deployment of FBSs; However, this
number can also be considered as an upper bound problem.

1) Effect of Number of Cluster Heads on Number of FBSs:
In the first step, we investigate the effect of the number of
clusters on the minimum number of UAVs. In this study, an α
coefficient of 1 is considered, which means 100% coverage of
users. The number of clusters in the FCM algorithm indicates
the number of candidate points presented to the positioning
algorithm. The lower the number, the faster the problem is will
be solved, but the problem may not reach a possible answer,
so getting an acceptable number from the number of candidate
points means achieving a possible answer in a short time. The
mathematical model of the problem is solved with the help of
CPLEX. In this execution, the maximum allowed time to solve
the problem is 20 minutes and the minimum gap of the answer
to the problem is 0.005. The results show that the number of
candidate points less than 80 have no answer to this issue
and due to the limited execution time and the enlargement
of the problem space, passing 120 candidate points brought
no progress in minimizing the number of UAVs. Figure 1
shows the number of FBSs required according to the number
of cluster heads. Therefore, the number of candidate points
for solving the problem is considered 120.
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Fig. 1: Number of FBSs required for different candidate point
number

2) Effect of α on Number of FBSs: Backhaul constraint will
require more FBS to cover the users in cluster centers. As a
result, a small number of users which are away from the cluster
centers may not be covered. The alpha parameter specifies the
minimum percentage of user coverage, which is very important
in the positioning process, so we solved the problem with 120
candidate points for alpha 0.96 to 1. The results show that
reducing the alpha up to 98% had a high effect, but after that
reducing the alpha did not have a high effect on reducing
the number of UAVs. Due to the high mobility of users and
possible high coverage in another time slot, we use 98% alpha
to compare the algorithm. Figure 2 shows the effect of α on
the number of FBSs required.
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Fig. 2: Number of drones required for different α

3) Altitude Optimization: For maximum transmission
power optimization, we reduce the altitude of each FBS as
much as possible. In the p-median model, all users and FBSs
are clustered and it is specified from which FBSs each user is
receiving the service. On the other hand, reducing the altitude
of each FBS means reducing the range of its coverage. For
this purpose, we lower the height of each FBS as long as it is
able to serve the farthest user under its coverage. Calculations
show that the height of a drone can be reduced by more than
450 meters. Figure 3 shows FBSs altitude after optimization.
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Fig. 3: FBSs altitude after altitude optimization

To compare the FCM algorithm, we obtain the problem
points for a set of similar users, once using the FCM method
and once using the simple mesh method, and then solve the
positioning problem. In both methods, the number of candidate
points is equal to 120 and α is 0.98. Figure 4 shows the
location of user candidate points and the selected points in
the algorithm. The results of this simulation show that the
FCM algorithm needs 23 FBS and the simple mesh algorithm
needs 24 FBS to satisfy the problem constraints, and the FCM
algorithm performs better than the simple mesh algorithm.

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

Fuzzy clustering algorithm needed 23 FBSs
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users candidate points FBSs deployment points

Fig. 4: FBSs location in FCM and simple mesh scenario

Given the backhaul limit, which indicates the need for at
least 21 FBS even when 98% of users are covered, satisfying

the problem constraints with the help of 23 candidate points
is an optimal answer to the problem due to the Poisson
distribution of users because Poisson distribution causes the
need to overlap FBSs in cluster centers and bring them closer
to cluster heads to increase, and the limited radius of coverage
per FBS will necessitate the use of another FBS in areas away
from cluster centers.

B. Trajectory of FBSs

Due to the high mobility of the users and their continuous
movement, we need to move the drones between two different
time slots. For this purpose, we mathematically modeled the
transportation model problem. This algorithm guarantees an
optimal global answer. For better understanding and evaluation
of the performance of the algorithm, we obtained the users’
position in two-time slots, t and t + 1, and with the help of
the FCM algorithm, we calculated the optimal position of the
drones at these two times. We solved the transportation model
problem to move drones from points M at time t to points
N at time t+1. For comparison, we used a greedy algorithm
to calculate the trajectory. In this method, the points are first
sorted at time t and t+ 1, then the algorithm greedily selects
the point closest to it to move. Figure 5 shows the performance
of these two algorithms together.
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Fig. 5: FBSs trajectory using transportation model vs. greedy
algorithm
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V. CONCLUSION

The numerical results show the performance of the proposed
algorithm for optimal deployment and trajectory. The study
found that the FCM versus simple mesh algorithm required
fewer FBSs to cover given users in an area. Although, the
number of candidate points required by the p-median al-
gorithm must be optimally selected. The small number of
points will reduce the possibility of selecting the optimal point
and will increase the number of FBS required. Also, due to
the time constraint of the algorithm and the enlargement of
the problem space, increasing this number can increase the
required FBSs. In another study, it was found that reducing the
alpha coefficient nonlinearly would reduce the number of FBSs
required. The results of the implementation of the FBSs alti-
tude optimization algorithm show that it is possible to reduce
the FBS height up to 450m in proportion to the location of the
covered users, which will significantly reduce the transmission
power. The results of the implementation of the transportation
model algorithm show that this algorithm provides an optimal
and minimum path for FBSs trajectory, which can reduce the
power consumption while moving between time slots.
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