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Abstract
In this study, using a multi-layer perceptron neural network (MLPNN) model, total organic carbon (TOC) and hydrogen index 
(HI) values for Pabdeh and Gurpi Formations in the oil fields of Naft Sefid (NS-13), Kupal (KL-36, KL-38, and KL-48) and 
Palangan (PL-2) were calculated in the North Dezful Embayment located in the southwest of Iran. To build the MLPNN 
model, the geochemical data calculated by the Rock–Eval pyrolysis method (TOC and HI) and the conventional petrophysi-
cal well log data, including sonic transit time log (DT), formation density log (RHOB), total resistivity log (RT), spectral 
gamma-ray log, computed gamma-ray log and neutron porosity log from the NS-13 well were used. The log data were the 
input layer, and the geochemical data were the output layer of the model. Twenty-four datasets were used for MLPNN train-
ing, and seven datasets were used for MLPNN testing. Two hidden layers were considered in this technique. Each hidden 
layer has an activation function (tanh) and a solver parameter (lbfgs). The accuracy of measurement of TOC and HI indices 
of Pabdeh and Gurpi Formations in terms of R2 was 0.93 and 0.90, respectively. This model has higher accuracy than the 
ΔlogR technique (R2: 0.28). Considering the relationships between the input data and other wireline logs is an advantage 
of this technique. These two formations have five source rock zones. Pabdeh Formation has three zones. The middle zone 
of the Pabdeh Formation (Pz. II) has the highest TOC (2.6 wt%) and source rock potential. Pabdeh Formation has kerogen 
type II. Gurpi Formation has a weaker source rock potential than Pabdeh Formation due to its low TOC content (< 1%). 
Both source rock zones of this formation have low TOC, but in some layers of the lower zone of the Gurpi Formation (Gz. 
II), high values for TOC were predicted. Gurpi Formation has Kerogen types II and III.

Keywords  Neural network · ANN · Rock–Eval · TOC · Well logs · Pabdeh formation · Gurpi formation · North Dezful 
Embayment
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Introduction

Shale is capable of sedimentation in various environments, 
including marine (such as turbidity currents, post-pelagic 
transport, contour currents, slump flow-subaqueous slide, 
and hyperpycnal flow), transitional, and terrestrial (Stow 
et  al. 2001; Liu 2016; Awan et  al. 2021; Mahdi et  al. 
2022; Wu et al. 2022; Wu et al. 2022; Fathy et al. 2023; 
Li et al. 2023). Typically, source rocks consist of organic-
rich shales and calcareous mudstones (Hakimi et  al. 
2023; Li et al. 2023). Source rock evaluation is a crucial 
stage in hydrocarbon exploration dependent on numerous 

parameters. The amount of total organic carbon (TOC) 
and hydrogen index (HI) are the most crucial parameters 
(Vega-Ortiz et al. 2020; Lai et al. 2020).

Geochemical techniques are frequently time-consuming 
and costly despite providing valuable and beneficial infor-
mation. Since the physical properties of organic matter 
(OM), primarily bulk density, differ from the mineral com-
ponents of its host rock, petrophysical data can be used to 
interpret source rocks (Wang et al. 2018; Vega-Ortiz et al. 
2020; Awan et al. 2021; Abubakar et al. 2023).

Numerous studies, such as Schmoker (1981), Schmoker 
and Hester (1983), and Passey et al. (1990), cited the sig-
nificant potential of petrophysical logs for source rock 
properties. However, the primary objectives of these 
studies were to distinguish source rocks from non-source 
rocks by predicting TOC. In the past 2 decades, intelligent 
systems such as artificial neural networks (ANN), extreme 
learning machines, sequential Gaussian simulation (SGS), 
support vector machine (SVM), and neuro-fuzzy tech-
niques have also been utilized to determine OM content 
(Kamali and Mirshady 2004; Kadkhodaie-Ilkhchi et al. 
2009; Tabatabaei et al. 2015; Shi et al. 2016; Alizadeh 
et al. 2018; Bolandi et al. 2017; Wang et al. 2019; Zheng 
et al. 2021; Khalil Khan et al. 2022; Abubakar et al 2023; 
Diab et al. 2023; Hassan et al. 2023).

ANN is a mathematical model that simulates the behav-
ior of animal neural networks and processes data by alter-
ing the relationships between many internal nodes (Zheng 
et al. 2021; Liu et al. 2023). Multi-layer perceptron neural 
networks (MLPNN) constitute a significant subclass of 
neural networks. A network typically consists of sensory 
units or input nodes comprising the input layer, one or 
more concealed layers of neurons or computation nodes, 
and an output layer. The advantages of MLPNNs include 
hidden unit outputs (essential functions) that adapt during 
training, eliminating the need for users to select them in 
advance (Ouadfeul and Aliouane 2014; Zheng et al. 2021).

This research aims to estimate and evaluate several 
geochemical indexes (TOC and HI) using conventional 
petrophysical logs in Pabdeh and Gurpi Formations in 
Naft Sefid (NS-13), Kupal (KL-36, KL-38, and KL-48) 
and Palangan (PL-2) oilfields located in the North Dezful 
Embayment in SW Iran (Fig. 1) based on the ΔlogR and 
MLPNN techniques and comparing their performance with 
each other. Also, this study trained and tested an MLPNN 
model using the geochemical indexes obtained from the 
Rock–Eval analysis and logging data in one well. It was 
used to predict TOC and HI in some wells with logging 
data but no geochemical data. Finally, using the geochemi-
cal data predicted by the MLPNN model, kerogen type and 
source rock zoning have been done in Pabdeh and Gurpi 
Formations.
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Geological setting

The folded-thrust belt of Zagros, with a length of about 
1375 km and a width between 120 and 250 km, extends from 
southeastern Turkey to northern Syria and Iraq to western 
and southern Iran and from the continuous and long-term 
convergence between the Arabian Plate and Eurasia Plate 
was created during the closing of the Neo-Tethys Ocean 
basin (Al-Husseini 2000; Hessami et al. 2001; Alavi 2004, 
2007).

This belt is considered one of the wealthiest fold-thrust 
belts in the world, with substantial hydrocarbon fields. This 
belt was formed due to the change in the shape of the pri-
mary foreland system (pro-foreland) in the margin of the 
Zagros (Pirouz et al. 2017). The first comprehensive report 
on the Zagros fold-thrust belt was presented by James and 
Wynd (1965). Zagros can be structurally divided into Fars, 
Khuzestan, and Lurestan sub-basins (Aghanabati 2004). 
Regarding the structural pattern from the northeast to the 
southwest, Zagros includes thrust zones, folded belts, Dezful 
Embayment, and Abadan plain.

The Dezful Embayment is a part of the folded Zagros, 
which contains most of Iran's oil fields (including Ahvaz, 
Ab-Timur, Masjid Suleiman, Marun, Kupal, Aghajari, 
Karnaj, Parsi, Zilaei fields) (Bordenave and Burwood 
1994; Bordenave and Hegre 2010). The northeastern range 
of Dezful Embayment is determined by the mountain fron-
tal fault (MFF). Its southwestern range is located almost 
along the anticline parallel to the northwest–southeast 
structures of the Zagros front. Its eastern border is sur-
rounded by the Kazerun Fault, and its northern border by 
the Balarud Fault (McQuarrie and van Hinsbergen 2013). 
As mentioned, this Embayment is divided into two regions 
of Dezful North and South due to the Handijan fault zone 

with a north–south direction almost in the middle. Dez-
ful Embayment is tectonically more stable and less folded 
than the neighboring areas. This area has an area of about 
40,000 km2 (Aghanabati 2004).

The youngest Cretaceous stratigraphic unit in Zagros is 
the Gurpi Formation. The type section of this formation is 
located in Tang-e-Pabdeh, north of Masjid Sulaiman (Laeli 
oil field), with a thickness of 320 m. This formation has 
marl and gray calcareous shales and gray shaly limestones 
(Aghanabati 2004). In the studied area, this formation is 
123–150 m thick in the Kupal oil field, 6 m in the Naft-
Sefid oil field, and 176 m in the Palangan oil field. In the 
North Dezful Embayment, the Gurpi Formation is charac-
terized by a sedimentary discontinuity from the Ilam and 
Pabdeh Formations. In Inner Fars and the north Dezful 
Embayment, the limestone facies of the Tarbor Formation 
replace the Gurpi Formation. Campanian to Maastrichtian 
age has been reported in Dezful Embayment (Aghanabati 
2004) (Fig. 2).

In Lurestan and Dezful Embayment, the Imam Hassan 
limestone member is 114 m thick and has gray, thick-layered 
clayey limestone with interlayers of marl. Brown limestones 
characterize the Seymareh limestone member, and compared 
to the Imam Hassan limestone member, it is a shallower 
facies. The Mansouri limestone member is a neritic lime-
stone belonging to the deep parts of the basin, which has 
an outcrop in western Khuzestan but disappears toward the 
northeast (Aghanabati 2004). The TOC level of Gurpi For-
mation in the Dezful Embayment is around 0.5–1.5 wt%. 
According to Ala et al. (1980), the hydrocarbon generation 
potential of this formation in the Dezful Embayment is weak 
and insignificant because of its low TOC. This formation is 
a source rock in oil fields such as Marun, Kupal, Haftkel, 
and Naft Sefid.

Fig. 1   Location map of North 
Dezful Embayment, SW Iran 
(PL: Palangan; NS: Naft Sefid; 
KL: Kupal)
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Fig. 2   Stratigraphic chart of the Dezful Embayment and adjacent areas (After Setudehnia 1978; Harland 1990; Bordenave 2002). The Pabdeh 
and Gurpi Formations are shown with red and black stars, respectively
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The Pabdeh Formation type section in Tang-e-Pabdeh is 
798 m thick. It consists of marl and gray shales and marine 
clayey limestone, divided into two informal parts: purple 
shales and cherty limestones (James and Wynd 1965). In the 
North Dezful Embayment, the lower boundary of the Pabdeh 
Formation with the Gurpi Formation is discontinuous, and 
the upper boundary of this Formation with the limestones 
of the Asmari Formation is gradational. The age of this for-
mation is reported as the Late Paleocene—Late Oligocene 
(Aghanabati 2004). According to several sedimentological 
studies that have been carried out, the Pabdeh Formation is 
composed of three facies: pelagic, hemipelagic, and carbon-
ate turbidite; which indicates deposition on the deep parts 
of a carbonate ramp (Hosseini Asgarabadi et al. 2019). In 
the studied area, the Pabdeh Formation is mainly gray and 
brown shales with interlayers of limestone and sometimes 
marl with a thickness of 156–160 m in the Kupal oil field, 
256 m in the Naft-Sefid oil field, and 553 m in the Palangan 
oil field. Pabdeh Formation is a vital source rock and cap 
rock in Zagros. According to reports, its total organic matter 
(TOC) is between 2 and 6 wt%, and the kerogen is mostly 
type II with limited amount of type III continental organic 
matter (Rabbani and Kamali 2006; Karimi et al. 2016; Aliza-
deh et al. 2020) (Fig. 2). Alizadeh et al. 2020 reported that a 
brown shale unit was in the Pabdeh Formation in the Dezful 
Embayment. This brown shale unit (BSU) is rich in organic 
matter. Due to the presence of oil shale, this formation is 
also considered an unconventional source of hydrocarbon 
production (Alizadeh et al. 2020).

Methods and data

Espitalie et al. (1985) cite Rock–Eval pyrolysis as the most 
prevalent technique for determining the petroleum genera-
tion potential, thermal maturation, quantity, and quality of 
organic matter (OM) in sedimentary rocks. A Rock–Eval 
6 instrument (manufactured by Vinci Technologies) was 
used to analyze 31 samples at the Petroleum Laboratory of 
Shahid Chamran University of Ahvaz (Fig. 3). Tissot and 
Welte (1984) describe this method in more detail. Follow-
ing the standard procedure outlined by Behar et al. (2001), 
70–80 mg aliquots of pulverized samples were inserted into 
crucibles, and various parameters (such as S1, S2, S3, and 
Tmax) were measured. Other parameters (such as TOC and 
HI) were calculated from these measurements (Table 1).

The most common and practical method for calculating 
TOC is the ΔlogR technique (Passey et al. 1990). This pro-
cedure involves superimposing a suitably scaled sonic transit 
time log on a resistivity (RT) log with a specified overlap 
coefficient. The two curves are adjusted to each other at a 
known organic-lean shale interval, forming the baseline for 
zero TOC. TOC is estimated based on the distance between 

the two logs within other shale units (potential source rocks). 
The ΔlogR equation for calculating TOC from records of 
sonic velocity and resistivity is as follows (Passey et al. 
1990):

where ΔlogR represents the difference between the two logs, 
R is the measured resistivity (Ω m), and t is the measured 
sonic velocity (microsecond/ft.). R baseline is the resistivity 
corresponding to zero TOC. Based on the ratio of 50 micro-
sec/ft per one cycle of resistivity, the overlay coefficient is 
0.02. ΔlogR has a linear relationship with organic carbon. 
The equation is Passey et al. (1990):

where TOC is the organic carbon content calculation and 
LOM is the level of maturity. LOM for these samples is 12.

The first step in training an MLPNN is to collect the 
input data. The data required to train a neural network that 
can calculate TOC and HI values include sonic transit time 
log (DT), formation density log (RHOB), total resistivity 
log (RT) typically from the deep resistivity tool, spectral 
gamma-ray log (SGR), computed gamma-ray log (CGR) 
and neutron porosity log (NPHI) (Table 2). The TOC and 
HI were calculated by the Rock–Eval pyrolysis method 
(Table 3).

This study used a four-layer MLP neural network for the 
NS-13 well. Six neurons were included in wireline data in 
the first or input layer (Table 2). Seven neurons were used in 
the second layer (hidden layer), and three neurons were used 
in the third layer (hidden layer). Using two or more hidden 
layers in data with medium or low correlations can, in addi-
tion to measuring the relationships between input and output 

(1)ΔLogR = Log10

(

R∕Rbase

)

+ P ∗
(

Δt − Δtbase

)

(2)TOC = (ΔLogR) ∗10(2.297−0.1688∗LOM)

Fig. 3   Rock–Eval IV analyzer at the Petroleum Laboratory of Shahid 
Chamran University of Ahvaz
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data, evaluate the relationships of input data with each other 
and provide more accurate output data. In the fourth layer 
(output layer), one neuron was placed.

The first step is to remove null or invalid data (such as 
negative, zero, and exaggerated values) from the petrophysi-
cal logs in order to reduce the possibility of errors in the 
MLP neural network.

In the next step, the input and output data were normal-
ized by the Gaussian method so that the data was 0–1 (Wang 
et al. 2019; Liu et al. 2023). The importance of this step is 
determined because not normalizing the data can lead to 
errors in the output and unexpected values.

To build up the structure of this MPLNN, Python soft-
ware and the skLearn library were used. In this model, two 
hidden layers were considered, and 7 and 3 neurons were 
used for each layer (The number of neurons is calculated 
and suggested by MLPRegressor in the skLearn library.), 
respectively. The tanh activation function and the lbfgs 
solver parameter were used for hidden layers. The learning 
rate of the neural network was initially set to 0.01, which can 
be changed adaptively. The tolerance rate for the optimiza-
tion here is 1e−5 (Fig. 4).

All input and output data at each step are controlled and 
corrected by some factors, such as log corrections based on 
the well environment and lithology. The output data have 
also been compared and controlled with other works on 

these formations, such as Alizadeh et al. (2020). In the out-
put data, according to the geochemical data obtained from 
the Rock–Eval pyrolysis, values greater than 6 and less than 
0 were considered uncertain and unrealistic values for TOC 
predicted by the MLPNN method. On the other hand, for the 
predicted HI based on the data from the Rock–Eval pyroly-
sis, values greater than 500 and less than 0 were considered 
unreliable and unrealistic.

Finally, the performance of the MLPNN was evaluated 
using the coefficient of determination (R2). After MLPNN 
building-up, this neural network has been used in other wells 
to evaluate geochemical indexes.

In general, with the increase of the depth of burial (the 
density of the formation increases), the time to pass through 
the distance of mudstone decreases. However, in organic-
rich intervals, the sonic transit time is more extensive than 
in adjacent organic-lean intervals at similar depths of burial 
because of the lower density of organic matter compared to 
the mineral matrix (Liu et al. 2013; He et al. 2016; Khalil 
Khan et al. 2022). TOC content tends to increase the appar-
ent value of DT (correlation coefficient: 0.19). DT log with 
HI has a correlation coefficient of 0.66 (Figs. 5, 6a, 7a). DT 
log has a positive correlation coefficient with SGR, CGR, 
and NPHI logs and is negative with RT and RHOB logs 
(Fig. 8).

Since the bulk density of organic matter (1.1–1.4 g/cm3) 
is lower than that of quartz (2.65 g/cm3) and clay (2.77 g/
cm3) (He et al. 2016), the logarithm value of the density 
decreases. This log measures the apparent density of the 
formation. This density consists of the combined effects of 
matrix density and fluid density. Water saturation should 
be equal in shales with a similar degree of compaction and 

Fig. 4   Schematic diagram of MLPNN structure for this study. This 
MLPNN has two hidden layers were considered, and 7 and 3 neurons 
used for each layer, respectively. Input data are petrophysical logs. 
TOC and HI are the output data of this model

Fig. 5   Comparison of correlation coefficient of laboratory measure-
ments (TOC and HI) and the logging data for well NS-13
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matrix and similar fluid density. Solid OM has a density 
similar to that of water (approximately 1.0 g/ml) and, thus, 
less than the density of the surrounding rock matrix (Kad-
khodaie-Ilkhchi et al. 2009). If the density values in source 
rocks are lower than in typical shales, it must be a func-
tion of the amount of OM present. Because solid organic 
matter has a density close to the water and is substantially 
less dense than the surrounding rock, formations with high 
TOC are often of low density. As a result, the density dimin-
ishes as the TOC matures. However, in addition to biologi-
cal materials, a fall in rock density may also be brought on 
by increased porosity and clay minerals. Therefore, TOC 
estimates using density logs are favored for reservoirs with 
comparable fluid phases and constant mineralogy (He et al. 
2016; Khalil Khan et al. 2022). The density log against 
the discussed geochemical indices has a negative correla-
tion coefficient (− 0.09) for HI (Fig. 7b) and a correlation 

coefficient of 0.17 for TOC (Figs. 5, 6b). The correlation of 
petrophysical logs with this log is negative; only the gamma-
ray logs have a positive correlation coefficient (Fig. 8).

Shales and mudstones (including source rocks) are gener-
ally layered and electrically anisotropic. Mudstone intervals 
characteristically exhibit low resistivity due to the excellent 
conductivity of mudstone (both the rock skeleton and the 
water in the pores are conductive) (Passey et al. 1990; He 
et al. 2016). The RT log negatively correlates with other logs 
and geochemical indexes (except TOC) (Figs. 5, 6c, 7c, 8).

Because uranium or concentrated uranium ions in the 
shale layers may create rather intense radioactivity, shale 
layers rich in organic materials, particularly those from 
marine environments, produce significant gamma rays. A 
spectroscopic gamma-ray device may extract thorium, potas-
sium, and uranium enrichment levels from radiation meas-
urements. It can provide more reliable proof of the existence 

Fig. 6   Cross-plots of TOC 
laboratory-measurements and 
the logging data for well NS-13 
a DT-TOC; b RHOB-TOC; c 
RT-TOC; d NPHI-TOC; e CGR-
TOC; f SGR -TOC
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Fig. 7   Cross-plots of HI 
laboratory-measurements 
and the logging data for well 
NS-13 a DT-HI; b RHOB-HI; c 
RT-HI; d NPHI-HI; e CGR-HI; 
f SGR-HI

Fig. 8   Comparison between the 
correlation coefficient of differ-
ent logs together for well NS-13
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Fig. 9   Comparison between 
TOC values from Rock–Eval, 
MLPNN, and ΔlogR tech-
niques. This graph shows a 
good correlation between the 
laboratory-measurement data 
and the MLPNN technique

Fig. 10   Geochemical and 
wireline log for Pabdeh and 
Gurpi Formations in well 
NS-13 (L. Cr: late Cretaceous). 
Pabdeh and Gurpi Formations 
have 3 and 1 source rock zones, 
respectively

Fig. 11   a TOC (MLPNN) versus TOC (Rock–Eval) from train and test dataset. b HI (MLPNN) versus HI (Rock–Eval) from the train and test 
dataset
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of TOC than total gamma-ray data (Kadkhodaie-Ilkhchi 
et al. 2009). Uranium is often found in sedimentary salts 
and organic debris. It is conceivable that uranium ions, often 
present in saltwater and other trace elements, are adsorbable 
by plankton, which concentrates uranium in the source rock. 
Clay minerals are related to thorium and potassium (He et al. 
2016; Khalil Khan et al. 2022). The gamma-ray log correla-
tion coefficient (SGR and CGR) for TOC values based on the 
Rock–Eval pyrolysis does not show high values; it is about 
0.1 for CGR and about 0.37 for SGR (Figs. 5, 6c, f, 7c, f, 8).

The correlation coefficient of HI with CGR is about 0.5, 
and for SGR is about 0.58. Since MLPNN is a vast and 
complex network, relationships between petrophysical logs 
are also important (Fig. 8). Gamma logs show a positive 
correlation coefficient with all logs (except the RT log), as 
shown in Fig. 8. The NPHI log recorded the highest positive 
correlation coefficient (CGR: 0.75 and SGR: 0.68).

High HI of organic matter leads to a high neutron registra-
tion value (Kadkhodaie-Ilkhchi et al. 2009). In this study, it 
has the highest correlation with the HI (0.69) and DT (0.89), 
and on the other hand, it has a negative correlation with the 
RHOB and RT logs (Figs. 5, 6d, 7d, 8).

Results and discussion

Performance of ΔlogR technique

After using the ΔlogR technique, TOC values were calcu-
lated using the differences between the DT and RT logs. 
The TOC values based on this technique were between 0.35 
and 2.64 wt% (average: 0.88 wt%) for the samples, accord-
ing to the values in Table 2. Based on Figs. 5 and 8 and the 
correlation of TOC values with the ΔlogR technique against 
TOCs calculated based on the Rock–Eval pyrolysis, it was 
0.28. This technique in previous studies also does not show 
a good correlation coefficient with the data obtained from 
laboratory measurements (e.g., Alizadeh et al. 2018; Khalil 
Khan et al. 2022). It was only a practical method for the 
overall evaluation of the source rock. The main reason for 
this problem is that the RT and DT logs in the calibration 
well NS-13 do not show a proper trend and a strong correla-
tion with the TOC data calculated based on the Rock–Eval 
pyrolysis (Figs. 9, 12).

This technique is unsuitable for source rocks, especially 
those with the possibility of porosity and the presence of 
in-situ oil and oil shales. In such cases, it is better to use 

Fig. 12   Geochemical and wire-
line log for Pabdeh and Gurpi 
Formations in well KL-36. 
Pabdeh and Gurpi Formations 
have 3 and 2 source rock zones, 
respectively
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other techniques to consider the relationships between the 
wireline data in source rock studies and the evaluation of 
organic carbon values. One of these techniques is artificial 
neural networks (ANN), especially MLPNN, which can be 
considered by relationships between all data (input and out-
put data).

MLPNN model

Calculation of TOC and HI values based on DT, RT, ROHB, 
NPHI, SGR, and CGR logs for 24 datasets in the NS-13 well 
was performed. In Fig. 10a, predicted data from the train and 
measured TOC data are plotted against each other. The data 
are plotted near line 1:1 and shows R2: 0.95. On the other 
hand, the same method was performed for the HI data based 
on the input wireline data in the same datasets, which are 
plotted near the line 1:1 and show R2: 0.92 (Fig. 10b).

After MLPNN training, the trained neural network should 
be tested using a series of datasets. For this purpose, seven 
datasets from the same NS-13 well were selected, including 
DT, RT, ROHB, NPHI, SGR, and CGR logs. After running 
the neural network predicting the TOC and HI values and 

plotting them against the calculated values of these geo-
chemical indexes, it was observed that the R2 for TOC and 
HI was 0.91 and 0.89, respectively. All data are plotted near 
line 1:1 in Fig. 10.

Considering the high accuracy of MLPNN compared to 
single and multi-type wireline data evaluation techniques 
such as ΔlogR in the studied sample and other studies that 
have investigated neural networks and relationships of geo-
chemical indexes, MLPNN is a high-accuracy evaluation 
technique. It is based on log input for source rocks in oil 
fields.

Comparing this method with previous studies for neu-
ral networks shows that the technique has higher accuracy 
even with less input data (Table 4). This higher accuracy in 
predicting geochemical parameters (TOC and HI) is due to 
using the solver function (lbfgs), which can train the neural 
network better in small datasets. Two hidden layers and the 
optimized learning rate made the neural network quickly fix 
its errors (Fig. 11).

The MLPNN trained and tested for other wells KL-36, 
KL-38, KL-48, and PL-2 was also implemented using the 
input data, including DT, RT, ROHB, NPHI, SGR, and 

Fig. 13   Geochemical and wire-
line log for Pabdeh and Gurpi 
Formations in well KL-38. 
Pabdeh and Gurpi Formations 
have 3 and 2 source rock zones, 
respectively
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CGR logs. Finally, output data, including TOC and HI, were 
predicted.

Geochemical evaluation of the Pabdeh and Gurpi 
source rocks

After completing the steps mentioned above, the geo-
chemical indices of the Pabdeh and Gurpi Formations were 
assessed using the MLPNN approach utilizing wireline data 
from five wells. For these Formations in all wells, TOC, HI, 
and kerogen type were estimated every 15 cm (Figs. 12, 13, 
14, 15, 16).

With certain restrictions, TOC may be used to assess the 
potential for the formation of hydrocarbons. TOC is one of 
the standard criteria used to evaluate the abundance of OM 
(Peters 1986; Hakimi et al. 2016; Diab et al. 2023). With a 
TOC estimate, it is easier to evaluate shale gas or oil source 
rocks (Chalmers and Bustin 2007; Gasparik et al. 2014; 
Hakimi et al. 2023). The average TOC value for the Pabdeh 
Formation using the MLPNN is 1.19, 0.75, 0.7, 0.61, and 
1.06 wt% for the five studied wells, NS-13, KL-36, KL-38, 
and PL-2, respectively. The Rock–Eval TOC approach 
yields a TOC value for the Pabdeh Formation in the NS-13 

well that varies from 0.3 to 2.59 wt%, with a mean value of 
1.07 wt%. The five available wells, NS-13, KL-36, KL-38, 
KL-48, and PL-2, provided the MLPNN with average TOC 
readings for the Gurpi Formation that are 0.96, 0.52, 0.46, 
0.5, and 0.68 wt%, respectively. The laboratory approach 
yields a TOC value for the Gurpi Formation in the NS-13 
well that varies from 0.95 to 1.48 wt%, with a mean value 
of 1.2 wt%.

Organic material that is scattered across sediments is 
used to make petroleum. According to Peters (1986), Peters 
and Cassa (1994), and Valdon et al. (2023), the quantity 
of generated petroleum is direct to the amount and quality 
(i.e., kerogen type) of organic matter, thickness, and thermal 
maturity of potential source rock intervals. Peters and Cassa 
(1994) state that a source rock must have at least 1.0 wt% of 
total organic carbon to have a “good” hydrocarbon poten-
tial. A rock with a high TOC is often considered a superior 
hydrocarbon source, even if it is not the only factor used to 
assess its ability to generate hydrocarbons (Dembicki 2009). 
Rock production and storage volume are substantially influ-
enced by OM properties (enrichment, type, and maturity). 
Type I/II kerogen has a higher potential generation capacity 

Fig. 14   Geochemical and wire-
line log for Pabdeh and Gurpi 
Formations in well KL-48. 
Pabdeh and Gurpi Formations 
have 3 and 2 source rock zones, 
respectively
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than Type III and Type IV kerogens (Curtis 2002; Mahdi 
et al. 2022; Zheng et al. 2023; Fathy et al. 2023).

These findings show that the Pabdeh and Gurpi have 
higher OM concentrations in certain zones of their parent 
rocks. The acceptable to excellent levels of TOC in this 
study may point to a sea level rise during the deposition of 
these brown to sporadically dark-colored shales. Sea-level 
transgression encourages the upwelling of nutrients from the 
ocean's depths, which may lead to a high level of biological 
production, according to Awan et al. (2021). Additionally, 
the amount of organic carbon in sediments may rise due to 
anoxia development and rapid burial (organic preservation) 
(Miller et al. 2005; Müller et al. 2008; Valdon et al. 2023; Li 
et al. 2023). The assessment of source rocks may sometimes 
be impacted by hydrocarbons that move and collect in fine-
grained sediments (Peters 1986).

The kind of organic materials in a shale source rock is 
essential. Type I sapropelic, Type II sapropelic-humic com-
bination, and Type III humic have been used to categorize 
organic materials, notably kerogen (Tissot and Welte 1984; 
Sanders et al. 2022; Wu et al. 2023). These different types of 
kerogen have different capabilities to produce hydrocarbons 
and other products depending on the structure and chemical 

makeup of the OM. The composition and maceral variants 
are significant in the hydrocarbon generation potential and 
kerogen-type variation. Both type II and type I kerogen can 
generate oil and gas, while type III kerogen is generally lim-
ited to gas generation only. In this study, kerogen type was 
identified via pyrolysis analysis. The quantity of organic 
hydrogen in the kerogen is indicated by the hydrogen index 
(HI). It reveals if a chemical can create gas or hydrocarbons 
(Xu et al. 2022). With a mean value of 224 and 99 mg HC/g 
TOC, the HI in the Pabdeh and Gurpi Formations ranges 
from 99 to 388 and 56 to 125 mg HC/g TOC. The average HI 
value for the Pabdeh Formation utilizing the MLPNN is 221, 
292, 367, 430, and 363 mg HC/g TOC for the five available 
wells (NS-13, KL-36, KL-38, KL-48, and PL-2). The aver-
age HI value for the Gurpi Formation utilizing the MLPNN 
is 95, 104, 209, 173, and 298 mg HC/g TOC for the five 
available wells (NS-13, KL-36, KL-38, KL-48, and PL-2).

II and III kerogens may be oil and gas-prone, according 
to the hydrogen index data of the Pabdeh and Gurpi Forma-
tions (Figs. 11, 17). Humic (Type I) kerogen enters the gas 
window sooner than sapropelic (Type II) kerogen. Accord-
ing to Shuangfang et al. (2012) and Al-Yaseri et al. (2023), 
the mass gas potential of the sapropel kerogen group is later 

Fig. 15   Geochemical and 
wireline log for Pabdeh and 
Gurpi Formations in well PL-2. 
Pabdeh and Gurpi Formations 
have 3 and 2 source rock zones, 
respectively
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than that of the other kerogen kinds. The ability of Type III 
kerogen (low HI) to generate oil is much lower than kerogen 
Types I and II (higher HI).

Source rocks zonation

Pabdeh and Gurpi Formations were zoned in the studied 
wells based on the source rock potential. TOC classification 
was based on Peters (1986) and Peters and Cassa (1994). 
Kerogen classification was based on HI (Yandoka et al. 
2016). Pabdeh Formation has three zones, and Gurpi For-
mation has two zones (Fig. 18):

•	 Upper zone of Pabdeh Formation (Pz. I): This zone con-
sists of gray to calcareous and marly dark shales and 
dark-colored limestones. The thickness of this zone is 
between 25 and 122 m in the studied wells. TOC is, on 
average, 0.86 wt% by weight. The highest amount of 
TOC is in KL-48 (1.3) and PL-2 (1.27) wells. HI index 
in this zone is between 88 and 390 mg HC/g TOC and 
type II kerogens.

•	 Middle zone of Pabdeh Formation (Pz. II): This zone 
consists of brown to dark-colored limy shales, some-
times with interlayers of limestone and marl. The thick-
ness of this zone is between 69 and 256 m in the studied 
wells. TOC is, on average, 2.6 wt%. The decrease in the 
RHOB log and the difference between the two gamma-

Fig. 16   Cross plots of kerogen 
type for Pabdeh and Gurpi For-
mations in well NS-13. a The 
cross plot of Tmax versus HI 
displays the kerogen type and 
maturity (Modified after Yan-
doka et al. 2016). b Modified 
Van Krevelen diagram indicat-
ing the kerogen type

Fig. 17   The distribution of the Pabdeh and Gurpi Formation samples 
on a plot of TOC versus HI (after Jackson et al. 1985)
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ray logs (SGR and CGR), DT and the RT logs, are signs 
of organic materials in this zone. This zone was formed 
before the Pyrenean orogenic processes, and deep facies 
indicate the sedimentary basin's deepening and suitable 
conditions for forming source rock rich in organic mate-
rials (Alizadeh et al. 2018, 2020). The HI index in this 
zone is between 95 and 750 mg HC/g TOC and mainly 
type II kerogens. This zone has the highest amount of 
TOC and Highest potential for hydrocarbon production 
compared to other zones of the Pabdeh Formation. Its 
kerogen is mainly sapropelic, and its oil production ratio 
is more than gas.

•	 Lower zone of Pabdeh Formation (Pz. III): Same as Pz. 
I; it consists of gray to sometimes dark green calcareous, 
marly shales, and dark limestones. The thickness of this 
zone is between 43 and 175 m in the studied wells. TOC 
is, on average, 0.72 wt% by weight. The amount of TOC 
increases in the wells (NS-13 and PL-2) where this zone 

has marl. The HI index in this zone is between 7 and 410 
mg HC/g TOC and type II kerogens.

•	 Upper zone of Gurpi Formation (Gz. I): This zone 
includes brown to dark limestones with gray shales. The 
thickness of this zone is between 58 and 135 m. TOC is, 
on average, 0.34 wt%. HI index in this zone is between 
16 and 370 mg HC/g TOC and type II and III kerogens.

•	 Lower zone of Gurpi Formation (Gz. II): This zone 
includes gray shales and sometimes brown limestone 
interlayer. The thickness of this zone is between 6 and 
78 m. TOC is, on average, 0.98 wt%. HI index in this 
zone is between 79 and 623 mg HC/g TOC and type II 
kerogens. In a limited number of horizons in this zone, 
the TOC level reaches three wt%, which is suitable for 
hydrocarbon production.

During the geological period, the Zagros region had three 
major sedimentary basins, including the epicontinental 
platform (from the middle of the Permian to the Jurassic), 

Fig. 18   Correlation of Pabdeh and Gurpi source rock zonation from NW to SE of north Dezful embayment in studied wells
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the platform to the southwest, and the shelf to the north-
east (from the Jurassic to the end of the Cretaceous), and 
the proforland depositional system (from the middle of the 
Cretaceous to now) (Alavi 2004). Pabdeh and Gurpi forma-
tions were formed early in this proforland system. These 
two formations' tectonic settings have been located in two 
foredeeps according to the formation age. Many researchers 
have reported deep sedimentary environments in foredeep 
(e.g., Alavi 2004; Heydari 2008). On the other hand, accord-
ing to Heydari’s (2008) studies, the Pabdeh Formation is 
in the Sassan supersequence, and the Gurpi Formation was 
formed in the Ardavan supersequence. At the beginning of 
these supersequences, with the increase of the water level 
and reaching the maximum flooding surface, a deep marine 
environment had formed, and in these environments, suit-
able conditions such as anoxia level, abundance of Organic 
materials, and fine-grain sediment to form the source rock 
of hydrocarbon (Heydari 2008; Alizadeh et al. 2017, 2020). 
The brown shales of the Pabdeh Formation (Pz. II) were 
formed at the maximum flooding surface and have the most 
significant source rock potential. The Gurpi Formation has 
also formed in a deep environment. However, based on rea-
sons such as low thickness of layers and reduction of organic 
matter, compared to Pabdeh Formation, it has less potential 
for oil production. Nevertheless, some of the layers of this 
formation show relatively good potential (Alavi 2004; Hey-
dari 2008).

Conclusions

A robust multi-layer perceptron neural network (MLPNN) 
model was built to accurately estimate the total organic car-
bon (TOC) and hydrogen index (HI) for Pabdeh and Gurpi 
Formations. The following conclusions could be drawn from 
the results obtained in this study:

•	 In this study, the logR technique proved inappropriate for 
determining TOC. This is the result of a combination of 
several reasons, such as (a) only taking into account the 
total resistivity log (RT) and the sonic transit time log 
(DT) logs; (b) not making use of any additional logs; and 
(c) failing to verify the relationships between the logs. 
Only the areas of the NS-13 well that are particularly 
abundant in organic matter (OM) will be seen using this 
technique.

•	 MLPNN, with its structure based on the multi-layered 
perceptron, can be useful for both TOC and HI values. 
In this technique, due to the small number of datasets 
of a lbfgs solving function and the adaptive learning 
rate, the network could be trained with high accuracy 
(TOC R2: 0.95; HI R2: 0.93). This model's accuracy was 
significantly improved by several aspects, including the 
high precision of the log data and their strong conver-
gence with each other. During the validation process, this 
model likewise demonstrated high accuracy (TOC R2: 
0.91; HI R2: 0.89). The overfitting data hypothesis was 
debunked in the last phase by applying validation on log 
data from other wells. As a result, a large quantity of 
anticipated TOC was projected and calculated on organic 
matter (OM) prone horizons. This method has an accu-
racy of 0.93 for predicting TOC, and it has an accuracy 
of 0.9 for predicting HI in the well that was tested.

•	 The amount of laboratory-measured TOC in the Pabdeh 
and Gurpi Formations was 1.07 and 1.2 wt% on average. 
The highest amount of laboratory-measured TOC (> 1.5 
wt%) has been recorded in the dark gray to brown shales 
of the Pabdeh Formation. These formations can produce 
hydrocarbons in a suitable amount and are of kerogen 
type II (sapropelic-humic combination, oil–gas prone).

•	 The Pabdeh Formation consists of three zones. The mid-
dle zone of the Pabdeh Formation (Pz. II), compared 
to the other two zones, has more organic matter (The 
average TOC is 2.6 wt%) and can produce more hydro-
carbons. These are due to some factors such as (a) the 
decrease in density log, (b) the difference between the 
two gamma-ray logs, and values of DT and RT data for 
this formation. The kerogen of this formation is mainly 
type II, and according to the HI index, it can produce oil 
and gas.

•	 Gurpi Formation has two zones. This formation has a 
weak source rock potential due to the amount of TOC 
(> 1 wt%), and only in a few limited horizons of gray 
shales in the lower zone (Gz. II) can play a role in 
hydrocarbon production. The kerogen of this formation 
is of type II and III, and due to the relatively low HI 
index, it can produce oil and gas (mainly gas).

Appendices

Tables 1, 2, 3 and 4.
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Table 1   Rock–Eval pyrolysis 
derived parameters in NS-13

Formation Sample Depth S1 S2 S3 HI OI PI T max TOC
m mg HC/g mg HC/g mg HC/g mg HC/g mg HC/g °C wt%

Pabdeh 1 1440.3 0.93 1.86 1.16 388 241 0.33 425 0.48
Pabdeh 2 1454.4 0.44 1.39 1.10 290 230 0.24 423 0.48
Pabdeh 3 1459.8 0.38 0.87 1.07 290 357 0.30 422 0.3
Pabdeh 4 1469.3 1.17 4.08 1.30 340 108 0.22 428 1.2
Pabdeh 5 1476.3 1.41 8.75 1.57 350 63 0.14 438 2.5
Pabdeh 6 1484.8 1.35 7.33 1.49 386 78 0.16 435 1.9
Pabdeh 7 1493.2 0.56 2.28 1.16 190 97 0.20 425 1.2
Pabdeh 8 1503.4 1.68 6.37 1.45 246 56 0.21 434 2.59
Pabdeh 9 1508.5 0.41 2.75 1.18 220 94 0.13 425 1.25
Pabdeh 10 1515.8 1.36 7.70 1.51 372 73 0.15 436 2.07
Pabdeh 11 1520.8 0.56 2.76 1.19 230 99 0.17 425 1.2
Pabdeh 12 1529.5 0.78 4.50 1.30 253 73 0.15 429 1.78
Pabdeh 13 1536.3 0.70 1.62 1.13 108 75 0.30 424 1.5
Pabdeh 14 1544.4 0.66 1.74 1.14 171 111 0.27 424 1.02
Pabdeh 15 1554.9 0.43 0.99 1.08 141 154 0.30 423 0.7
Pabdeh 16 1559.4 0.27 0.72 1.06 167 245 0.27 422 0.43
Pabdeh 17 1568.0 0.25 0.74 1.06 105 151 0.26 422 0.7
Pabdeh 18 1574.3 0.35 0.74 1.06 148 212 0.32 422 0.5
Pabdeh 19 1589.2 0.53 1.91 1.14 239 142 0.22 424 0.8
Pabdeh 20 1604.9 0.53 2.96 1.20 190 77 0.15 426 1.56
Pabdeh 21 1612.5 0.42 2.01 1.14 251 142 0.17 424 0.8
Pabdeh 22 1619.1 0.34 1.59 1.11 269 188 0.18 423 0.59
Pabdeh 23 1631.7 0.30 1.78 1.12 99 62 0.14 424 1.8
Pabdeh 24 1641.5 0.48 0.95 1.08 159 180 0.33 423 0.6
Pabdeh 25 1647.9 0.37 1.45 1.10 227 172 0.20 423 0.64
Pabdeh 26 1655.7 0.47 0.90 1.08 173 207 0.34 423 0.52
Pabdeh 27 1663.8 0.26 0.39 1.04 118 314 0.40 422 0.33
Pabdeh 28 1678.1 0.49 1.03 1.09 149 157 0.32 423 0.69
Gurpi 29 1686.2 0.62 1.37 1.11 117 95 0.31 423 1.17
Gurpi 30 1691.2 0.43 1.85 1.13 125 76 0.19 424 1.48
Gurpi 31 1692.1 0.27 0.53 1.05 56 110 0.33 422 0.95
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Table 2   Petrophysical training 
and testing dataset in NS-13 (N: 
not detected)

Formation Sample Dataset type DEPTH DT RHOB RT CGR​ SGR NPHI
m us/f gr/cm3 ohmm gapi gapi v/v

Pabdeh 1 Train 1440.3 N N N N 52.70 N
Pabdeh 2 Train 1454.4 N N 3.27 41.52 87.49 0.33
Pabdeh 3 Test 1459.8 N N 3.99 46.02 103.45 0.25
Pabdeh 4 Train 1469.3 82.28 2.62 3.42 33.56 107.00 0.26
Pabdeh 5 Train 1476.3 83.75 2.57 2.83 30.29 91.14 0.33
Pabdeh 6 Train 1484.8 85.39 2.57 2.93 29.32 92.16 0.29
Pabdeh 7 Train 1493.2 73.15 2.63 3.74 30.46 79.60 0.26
Pabdeh 8 Test 1503.4 73.05 2.62 5.92 23.67 69.78 0.17
Pabdeh 9 Train 1508.5 73.24 2.65 4.84 29.87 84.05 0.20
Pabdeh 10 Train 1515.8 76.59 2.62 4.44 31.62 89.69 0.27
Pabdeh 11 Train 1520.8 73.93 2.64 6.18 29.50 86.85 0.21
Pabdeh 12 Train 1529.5 71.12 2.64 6.04 26.58 73.81 0.18
Pabdeh 13 Test 1536.3 67.01 2.65 7.11 22.47 62.25 0.14
Pabdeh 14 Train 1544.4 66.74 2.63 6.45 19.04 47.03 0.13
Pabdeh 15 Train 1554.9 66.87 2.62 6.65 18.25 44.37 0.12
Pabdeh 16 Train 1559.4 68.93 2.58 9.85 14.43 34.92 0.13
Pabdeh 17 Test 1568.0 69.41 2.61 5.86 18.05 44.87 0.14
Pabdeh 18 Train 1574.3 87.90 2.47 5.39 31.13 56.25 0.30
Pabdeh 19 Train 1589.2 76.92 2.54 16.49 16.36 67.63 0.19
Pabdeh 20 Train 1604.9 74.44 2.46 29.63 8.48 33.86 0.14
Pabdeh 21 Test 1612.5 71.15 2.51 20.55 8.50 30.72 0.14
Pabdeh 22 Train 1619.1 80.69 2.51 20.01 13.09 66.70 0.18
Pabdeh 23 Train 1631.7 56.87 2.56 42.24 9.73 47.43 0.08
Pabdeh 24 Test 1641.5 64.22 2.62 9.35 17.43 40.00 0.13
Pabdeh 25 Train 1647.9 62.55 2.63 10.89 17.01 40.12 0.11
Pabdeh 26 Train 1655.7 66.64 2.60 7.04 16.47 33.01 0.14
Pabdeh 27 Train 1663.8 69.07 2.61 4.57 18.15 40.92 0.15
Pabdeh 28 Train 1678.1 76.62 2.51 3.23 14.80 26.16 0.24
Gurpi 29 Test 1686.2 69.89 2.60 8.60 17.85 49.80 0.15
Gurpi 30 Train 1691.2 66.34 2.64 8.62 20.99 57.93 0.15
Gurpi 31 Train 1692.1 63.25 2.64 13.24 23.86 68.16 0.11
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Table 3   Training and testing 
TOC and HI values from 
Rock–Eval pyrolysis, ΔlogR, 
and MLPNN in NS-13 (N: not 
detected)

Formation Sample Dataset type DEPTH TOCRock–Eval HIRock–Eval TOCΔlogR TOCMLPNN HIMLPNN

m wt% mg HC/g wt% wt% mg HC/g

Pabdeh 1 Train 1440.3 0.5 388 N 0.50 450
Pabdeh 2 Train 1454.4 0.5 290 1.09 0.43 321
Pabdeh 3 Test 1459.8 0.3 290 0.85 0.20 263
Pabdeh 4 Train 1469.3 1.2 340 0.50 1.38 339
Pabdeh 5 Train 1476.3 2.5 350 0.35 2.30 385
Pabdeh 6 Train 1484.8 1.9 386 0.48 2.26 441
Pabdeh 7 Train 1493.2 1.2 190 0.10 1.00 194
Pabdeh 8 Test 1503.4 2.6 246 0.64 2.80 216
Pabdeh 9 Train 1508.5 1.3 220 0.41 1.37 232
Pabdeh 10 Train 1515.8 2.1 372 0.49 1.93 341
Pabdeh 11 Train 1520.8 1.2 230 0.74 1.38 255
Pabdeh 12 Train 1529.5 1.8 253 0.56 1.95 234
Pabdeh 13 Test 1536.3 1.5 108 0.53 1.94 86
Pabdeh 14 Train 1544.4 1.0 171 0.40 0.66 135
Pabdeh 15 Train 1554.9 0.7 141 0.44 0.57 120
Pabdeh 16 Train 1559.4 0.4 167 1.03 0.45 202
Pabdeh 17 Test 1568.0 0.7 105 0.43 0.63 110
Pabdeh 18 Train 1574.3 0.5 148 1.35 0.31 113
Pabdeh 19 Train 1589.2 0.8 239 2.08 0.65 185
Pabdeh 20 Train 1604.9 1.6 190 2.65 1.47 247
Pabdeh 21 Test 1612.5 0.8 251 2.03 0.89 257
Pabdeh 22 Train 1619.1 0.6 269 2.52 0.40 223
Pabdeh 23 Train 1631.7 1.8 99 2.10 2.00 97
Pabdeh 24 Test 1641.5 0.6 159 0.70 0.46 166
Pabdeh 25 Train 1647.9 0.6 227 0.79 0.46 184
Pabdeh 26 Train 1655.7 0.5 173 0.50 0.45 192
Pabdeh 27 Train 1663.8 0.3 118 0.11 0.52 123
Pabdeh 28 Train 1678.1 0.7 149 0.12 0.43 160
Gurpi 29 Test 1686.2 1.2 117 0.92 0.98 93
Gurpi 30 Train 1691.2 1.5 125 0.72 1.32 78
Gurpi 31 Train 1692.1 1.0 56 1.07 0.77 57

Table 4   Comparison between 
this study and other studies that 
used neural network, based on 
the input data and R2 factor

This study/other references Technique Input data R2

This study MLPNN DT, RT, CGR, SGR, NPHI, RHOB 0.93
Tan et al. (2013) RBF AC, GR, DEN, CNL, RT 0.85
Alizadeh et al. (2012) ANN GR, CGR, SGR, THOR, POTA, DT, NPHI 0.94
Wang et al. (2019) CNN RT, DN, CNL, AC 0.79
Wang et al. (2019) BPANN RT, DN, CNL, AC 0.75
Zheng et al. (2021) MLPNN GR, AC, DNL, RT, DEN 0.9
Chan et al. (2022) ANN GR, CGR, SGR, THOR, POTA, DT, NPHI, RT 0.83
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