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A R T I C L E I N F O A B S T R A C T

Editor: A. Volovich Recent work has proposed a method for imposing T-duality on the metric, 𝐵-field, and dilaton of the classical 
effective action of string theory without using Kaluza-Klein reduction. Specifically, the 𝐷-dimensional effective 
action should be invariant under global 𝑂(𝐷, 𝐷) transformations, provided that the partial derivatives along the 
𝛽-parameters of the non-geometrical elements of the 𝑂(𝐷, 𝐷) group become zero. In this paper, we speculate 
that the global 𝛽-symmetry can be utilized to identify both bulk and boundary couplings.

We demonstrate that the Gibbons-Hawking term at the leading order of 𝛼′ is reproduced by this symmetry. 
Additionally, for closed spacetime manifolds at order 𝛼′, we show that the 20 independent geometrical couplings 
at this order are fixed by this symmetry up to field redefinitions. Specifically, we show that the invariance of the 
most general covariant and gauge invariant bulk action at order 𝛼′ under the most general covariant deformed 
𝛽-transformation at order 𝛼′ fixes the action up to 13 parameters. These parameters reflect the field redefinitions 
freedom for the closed spacetime manifolds. For particular values of these parameters, we recover the effective 
action in the Metsaev-Tseytlin and in the Meissner schemes.
1. Introduction

The classical effective action of string theory and its non-pertur-

bative objects can be determined by imposing gauge symmetries and 
T-duality. This duality was first observed in the spectrum of string the-

ory when compactified on a circle [1,2]. It has been shown in [3,4]

that the Kaluza-Klein reduction of the classical spacetime effective ac-

tion of string theory on a torus 𝑇 (𝑑) is invariant under rigid 𝑂(𝑑, 𝑑)-
transformations at all orders of 𝛼′. However, the non-perturbative 
objects D𝑝-brane/O𝑝-plane are not invariant under the rigid 𝑂(𝑑, 𝑑)-
transformations, but they are transformed covariantly under a ℤ2-

subgroup of the 𝑂(𝑑, 𝑑)-group [5]. By assuming that the effective ac-

tions at the critical dimension are background independent, one can 
consider a particular background that includes one circle. Then, one 
can use the non-geometrical ℤ2-subgroup of the rigid 𝑂(1, 1)-group 
to construct the higher-derivative corrections to the bulk and bound-

ary spacetime effective actions of string theory [6–15]. Furthermore, 
it has been shown in [16–21] that the ℤ2-constraint can be used to 
construct the higher-derivative corrections to the bulk and boundary 
D𝑝-brane/O𝑝-plane actions. The ℤ2-transformations in the base space 
are the Buscher rules [22,23], plus their 𝛼′-corrections [24] that de-

pend on the scheme of the effective action [6]. The constant parameter 
of the 𝑂(1, 1)-group corresponds to the trivial geometrical re-scaling 
transformation that receives no 𝛼′-corrections.

The rigid 𝑂(𝑑, 𝑑)-group contains geometrical subgroups consisting 
of rigid diffeomorphisms with 𝑑2 parameters and shifts on the 𝐵-field 
with 𝑑(𝑑 − 1)∕2 parameters, as well as the following non-geometrical 
𝛽-transformations:

𝛿𝐸𝜇𝜈 = −𝐸𝜇𝜌𝛽𝜌𝜎𝐸𝜎𝜈 ,

𝛿Φ= 1
2
𝐸𝜇𝜈𝛽

𝜇𝜈 . (1)

Here, Φ is the dilaton, 𝐸𝜇𝜈 =𝐺𝜇𝜈 +𝐵𝜇𝜈 , and 𝛽𝜇𝜈 is a constant antisym-

metric bi-vector with 𝑑(𝑑 − 1)∕2 parameters [25]. A diffeomorphism 
invariant and 𝐵-field gauge invariant effective action at the critical 
dimension 𝐷 is naturally invariant under the geometrical subgroups 
of the 𝑂(𝐷, 𝐷)-group with non-constant parameters. The invariance of 
the 𝐷-dimensional covariant action under the 𝛽-transformations then 
demands that the effective action is invariant under the rigid 𝑂(𝐷, 𝐷)-
transformations. Recently, in [26], it has been proposed that the uni-

versal sector of the effective actions of string theories at any order of 
𝛼′ should be invariant under the 𝛽-transformations with the following 
constraint on the partial derivatives:

𝛽𝜇𝜈𝜕𝜈(⋯) = 0 . (2)

The 𝛽-transformations (1) should be deformed at higher orders of 𝛼′, as 
in the Buscher rules.
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Using the frame formalism, in which the frames 𝑒𝑎𝜇 are defined as 
𝑒𝑎𝜇𝑒

𝑏
𝜈𝜂𝑎𝑏 = 𝐺𝜇𝜈 and are the independent fields, it has been shown in 

[26] that the following effective action at the leading order of 𝛼′ is 
invariant under the 𝛽-transformations:

S0 = − 2
𝜅2 ∫ 𝑑𝐷𝑥

√
−𝐺𝑒−2Φ

(
𝑅− 4∇𝜇Φ∇𝜇Φ+ 4∇𝜇∇𝜇Φ− 1

12
𝐻2

)
.

(3)

Here, 𝐻 is the field strength of the 𝐵-field. The existence of this sym-

metry at the supergravity level was already noted in [27]. It has been 
observed in [26] that the 𝛽-transformations (1) in combination with 
the local Lorentz transformations satisfy a closed algebra. It has also 
been shown that the effective action at order 𝛼′ in a particular scheme, 
namely the two-parameter generalized Bergshoeff-de Roo scheme, in 
which the local Lorentz transformations and the 𝐵-field gauge trans-

formations receive a particular 𝛼′-correction [28], is invariant under 
a deformed 𝛽-transformations. The corresponding deformations at or-

der 𝛼′ for the 𝛽-transformations (1) have been found. It has also been 
shown that the deformed local transformations and the deformed 𝛽-

transformations satisfy a closed algebra [26].

Assuming that the effective actions of string theory at the critical 
dimension are background-independent [14], we can expect that the 
global symmetry observed in the effective action of closed spacetime 
manifolds also applies to open spacetime manifolds. In the latter case, 
we have both bulk and boundary actions, denoted as 𝑆 and 𝜕𝑆 respec-

tively. In certain schemes, the sum of these two actions may exhibit 
invariance under global transformations, represented as:

𝛿(𝑆 + 𝜕𝑆) = 0 . (4)

In other schemes, each action may possess separate invariance:

𝛿𝑆 = 0 ; 𝛿(𝜕𝑆) = 0 . (5)

In the former cases, the bulk action remains invariant under the global 
symmetry, albeit with residual total derivative terms. Similarly, the 
boundary action is also invariant, but may contain anomalous terms. 
However, these anomalous terms can be canceled out by the residual 
total derivative terms in the bulk through the utilization of Stokes’ 
theorem. In the latter cases, both the bulk and boundary actions lack 
residual total derivative terms and anomalous terms respectively. In this 
paper, we are going to study bulk and boundary covariant couplings by 
imposing invariance under the 𝛽-transformations.

To determine the bulk and boundary actions with 𝛽-symmetry at 
any order of 𝛼′ in an arbitrary covariant scheme, one must consider 
the most general bulk and boundary covariant and gauge invariant cou-

plings, excluding total derivative terms, with arbitrary coefficients. The 
next step involves fixing the parameters by ensuring the actions remain 
invariant under the deformed 𝛽-transformations and verifying that the 
combined deformed 𝛽-transformations and standard local transforma-

tions satisfy a closed algebra. However, in this paper, our focus is solely 
on imposing the invariance of effective actions and determining the ex-

tent to which this constraint can fix the parameters within the bulk 
effective action. Such a calculation in bosonic string theory at order 
𝛼′ has been performed in [6] by imposing the invariance of the action 
under the deformed Buscher rules.

The outline of the paper is as follows: In section 2, we demonstrate 
that in the presence of a boundary, the combination of the leading-

order bulk effective action and the Gibbons-Hawking boundary term 
satisfies the 𝛽-symmetry. In section 3, we investigate the bulk effective 
action at order 𝛼′. We assume no deformation for the local transforma-

tions and use the most general covariant deformations at order 𝛼′ for 
the 𝛽-transformations given in Eq. (1). We show that the invariance of 
the most general bulk couplings under the 𝛽-transformations fixes the 
couplings up to 13 parameters. The couplings are exactly the same as 
2

those found by the deformed Buscher rules. In section 4, we provide a 
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brief discussion of our results. We have used the “xAct” package [32]

for performing our calculations in this paper.

2. The 𝜷-symmetry at leading order

In [26], it was shown that the leading-order bulk action given in 
Eq. (3) is completely invariant under the 𝛽-transformation, meaning 
that there are no residual total derivative terms. However, this action is 
not the standard spacetime effective action of string theory. For closed 
spacetime manifolds, where there is no boundary, one can use an in-

tegration by parts to convert the effective action to the standard form, 
which has no Laplacian of the dilaton, as

S0 = − 2
𝜅2 ∫ 𝑑𝐷𝑥

√
−𝐺𝑒−2Φ

(
𝑅+ 4∇𝜇Φ∇𝜇Φ− 1

12
𝐻2

)
. (6)

However, for spacetime manifolds with boundaries, one expects both 
boundary and bulk couplings. At the leading order of 𝛼′, there is the 
Gibbons-Hawking boundary term for the spacetime action [29]. How-

ever, as we will see shortly, this term is not invariant under the 𝛽-

transformations. Therefore, the 𝛽-symmetry does not allow us to add 
the Gibbons-Hawking term to the bulk action given in Eq. (3). In [8], it 
was shown that if one adds the Gibbons-Hawking term to the standard 
form of the bulk action given in Eq. (6), then the resulting action is in-

variant under the Buscher rules. Therefore, we expect this combination 
to be invariant under the 𝛽-transformations as well.

We consider a spacetime 𝑀𝐷 with a boundary 𝜕𝑀𝐷 . Using the 
transformations given in Eq. (1) and the constraint given in Eq. (2), 
one can derive the following transformations for the different terms in 
Eq. (6):

𝛿(
√
−𝐺𝑒−2Φ) =

√
−𝐺𝑒−2Φ

[
− 2𝛿Φ+ 1

2
𝐺𝜇𝜈𝛿𝐺𝜈𝜇

]
= 0 ,

𝛿(𝑅) = −2𝐺𝛾𝛿∇𝛾∇𝛿(𝐵𝜇𝜈𝛽𝜇𝜈)

+𝐺𝛼𝛾𝐺𝛽𝛿∇[𝛾 (𝐵𝛿]𝜇𝛽
𝜇

1 )∇[𝛼(𝐺𝛽]𝜈𝛽𝜈2 ) − (𝛽1 ↔ 𝛽2) ,

𝛿(∇𝜇Φ∇𝜇Φ) =𝐺𝛼𝛽∇𝛼(𝐵𝜇𝜈𝛽𝜇𝜈)∇𝛽Φ ,

𝛿(𝐻2) = 12𝐺𝛼𝛾𝐺𝛽𝛿∇[𝛾 (𝐵𝛿]𝜇𝛽
𝜇

1 )∇[𝛼(𝐺𝛽]𝜈𝛽𝜈2 ) − (𝛽1 ↔ 𝛽2) , (7)

where we have also defined the vectors 𝛽𝜇1 , 𝛽
𝜇

2 as1 𝛽𝜇𝜈 = 1
2 (𝛽

𝜇

1 𝛽
𝜈
2 −𝛽

𝜈
1𝛽
𝜇

2 ). 
It is worth noting that the field (𝐵𝜇𝜈𝛽𝜇𝜈) is a scalar in spacetime. 
Similarly, the fields 𝐺𝜇𝛼𝛽𝛼1 , 𝐺𝜇𝛼𝛽𝛼2 , 𝐵𝜇𝛼𝛽𝛼1 , and 𝐵𝜇𝛼𝛽𝛼2 are vectors in 
spacetime. Therefore, the right-hand side terms in Eq. (7) are covariant 
and invariant under the gauge transformations corresponding to these 
vectors.

Upon substituting the transformations given in Eq. (7) into the ac-

tion given in Eq. (6), one can observe that the transformation of 𝐻2 is 
canceled by the last two terms in the transformation of 𝑅. Similarly, 
the transformation of (∇Φ)2 combines with the first term in the trans-

formation of 𝑅 to produce the following covariant derivative:

𝛿( S0) = 4
𝜅2 ∫ 𝑑𝐷𝑥

√
−𝐺∇𝛾

(
𝑒−2Φ𝐻𝛾𝜇𝜈𝛽

𝜇𝜈
)
. (8)

The presence of the total derivative term given in Eq. (8) indicates 
that for spacetime manifolds with a boundary, there must be some 
covariant couplings on the boundary that are not invariant under the 𝛽-

transformations either. Using Stokes’ theorem, one can write the anoma-

lous term given in Eq. (8) as:

𝛿( S0) = 4
𝜅2 ∫ 𝑑𝐷−1𝜎

√|𝑔|𝑛𝛾[𝑒−2Φ𝐻𝛾𝜇𝜈𝛽𝜇𝜈] . (9)

1 It is worth noting that the terms on the right-hand side of the second and 
fourth lines in equation (7) can be expressed in terms of 𝛽𝜇𝜈 . As a result, the 
combination (𝛽𝜇1 𝛽𝜈2 + 𝛽𝜈1𝛽

𝜇

2 ), which encompasses 𝑑(𝑑 + 1)∕2 parameters, does 
not appear in the transformations stated in equation (7). Therefore, only 𝑑(𝑑 −
1)∕2 parameters of 𝛽𝜇 and 𝛽𝜇 appear in the transformations, precisely the same 
1 2
parameters that 𝛽𝜇𝜈 possesses.
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Here, 𝑛𝜇 is the outward-pointing normal vector to the boundary, which 
is spacelike (timelike) if the boundary is spacelike (timelike). Inside the 
square root, 𝑔 is the determinant of the induced metric on the boundary, 
which is given by:

𝑔�̃��̃� =
𝜕𝑥𝜇

𝜕𝜎�̃�
𝜕𝑥𝜈

𝜕𝜎�̃�
𝐺𝜇𝜈 . (10)

Here, the boundary is specified by the functions 𝑥𝜇 = 𝑥𝜇(𝜎�̃�), where 𝜎�̃�
are the coordinates of the boundary 𝜕𝑀𝐷 .

Let us now consider the following boundary term:

𝜕 S0 = −2𝑎
𝜅2 ∫ 𝑑𝐷−1𝜎

√|𝑔| 𝑒−2Φ𝐺𝜇𝜈𝐾𝜇𝜈 . (11)

Here, 𝑎 is a constant parameter, and 𝐾𝜇𝜈 is the extrinsic curvature given 
by 𝐾𝜇𝜈 = ∇𝜇𝑛𝜈 ∓ 𝑛𝜇𝑛𝜌∇𝜌𝑛𝜈 . The minus (plus) sign is used for timelike 
(spacelike) boundaries. We specify the boundary as 𝑥𝜇(𝜎�̃�) = (𝜎�̃�, 𝑧∗), 
where 𝑧∗ is fixed on the boundary. The normal vector becomes along 
the 𝑧-direction, and the induced metric (10) becomes 𝑔�̃��̃� = 𝐺�̃��̃� . The 
measure in (11) becomes invariant under the 𝛽-transformations:

𝛿(
√|𝑔|𝑒−2Φ) =√|𝑔|𝑒−2Φ[− 2𝛿Φ+ 1

2
𝐺�̃��̃�𝛿𝐺�̃��̃�

]
= 0 . (12)

Here, 𝐺�̃��̃� is the inverse of the induced metric 𝐺�̃��̃� , and we have used 
the 𝛽-transformations of metric and dilaton:

𝛿𝐺�̃��̃� = −𝐺�̃��̃�𝛽�̃�𝛽𝐵𝛽�̃� −𝐺�̃��̃�𝛽�̃�𝛽𝐵𝛽�̃� , 𝛿Φ= 1
2
𝐵�̃��̃�𝛽

�̃��̃� . (13)

These transformations are the same as the transformation (1), in which 
the following constraint is also imposed:

𝑛𝜇𝛽
𝜇𝜈 = 𝛽𝑧𝜈 = 0 . (14)

This latter constraint is similar to the ℤ2-constraint for circular reduc-

tion, in which it is assumed that the unit vector 𝑛𝜇 has no component 
along the killing circle [14]. The transformation of the boundary action 
(11) under the 𝛽-transformations (1) and the constraints (2) and (14)

becomes:

𝛿(𝜕 S0) = −2𝑎
𝜅2 ∫ 𝑑𝑑−1𝜎

√|𝑔| 𝑒−2Φ𝑛𝛾𝐻𝛾𝜇𝜈𝛽𝜇𝜈 . (15)

The above transformation cancels the anomalous term in (9) for 𝑎 = 2. 
Hence, the following bulk and boundary actions:

S0 + 𝜕S0 = − 2
𝜅2

[
∫ 𝑑𝐷𝑥

√
−𝐺𝑒−2Φ

(
𝑅+ 4∇𝜇Φ∇𝜇Φ− 1

12
𝐻2

)

+2∫ 𝑑𝐷−1𝜎
√|𝑔|𝑒−2Φ𝐾]

, (16)

are invariant under the 𝛽-transformations, i.e., they satisfy (4). Note 
that the coefficient of the boundary term is exactly the one that appears 
in the Gibbons-Hawking boundary term [29].

It is worth noting that we could also include the term 𝑛𝛼∇𝛼Φ in the 
boundary coupling (11). Such a term would also be consistent with the 
𝛽-symmetry; however, it would not be consistent with the least action 
principle [13] if one considers (6) as the bulk action. If we consider 
the action (3) as the bulk action, then we can include the term 𝑛𝛼∇𝛼Φ
in the boundary action. In fact, the following combination is invariant 
under the 𝛽-transformation:

𝜕 S(0) = −
2𝑎1
𝜅2 ∫ 𝑑𝐷−1𝜎 𝑒−2Φ

√|𝑔| (−1
2
𝐾 + 𝑛𝜇∇𝜇Φ

)
. (17)

The above boundary couplings are consistent with the least action prin-

ciple when 𝑎1 = −4. The sum of the bulk action (3) and the above 
boundary action, after applying Stokes’ theorem, becomes (16).

In the upcoming section, our attention will be directed towards the 
bulk couplings at order 𝛼′ for closed spacetime manifolds. We will pro-

ceed under the assumption that these bulk couplings remain invariant 
3

under the standard local transformations while permitting covariant 
Physics Letters B 851 (2024) 138575

deformations of the 𝛽-transformations. By adopting this assumption, 
we will discover that the invariance of the bulk action under the de-

formed 𝛽-transformations serves to determine the bulk couplings, up to 
the most general field redefinitions.

3. The 𝜷-symmetry at order 𝜶′

If the local Lorentz and diffeomorphism and 𝐵-field gauge trans-

formations are not deformed at order 𝛼′ , then the most general bulk 
couplings involve 41 covariant and gauge-invariant terms. However, 
some of these terms are related by total derivative terms, while others 
are related by the Bianchi identities. Removing these redundancies, one 
can identify 20 independent even-parity couplings [30]. That is

S1 = −2𝛼′

𝜅2 ∫ 𝑑𝐷𝑥
√
−𝐺𝑒−2Φ

[
𝑎1𝐻𝛼

𝛿𝜖𝐻𝛼𝛽𝛾𝐻𝛽𝛿
𝜀𝐻𝛾𝜖𝜀

+𝑎2𝐻𝛼𝛽
𝛿𝐻𝛼𝛽𝛾𝐻𝛾

𝜖𝜀𝐻𝛿𝜖𝜀

+𝑎3𝐻𝛼𝛽𝛾𝐻
𝛼𝛽𝛾𝐻𝛿𝜖𝜀𝐻

𝛿𝜖𝜀 + 𝑎4𝐻𝛼
𝛾𝛿𝐻𝛽𝛾𝛿𝑅

𝛼𝛽

+𝑎5𝑅𝛼𝛽𝑅
𝛼𝛽 + 𝑎8𝑅𝛼𝛽𝛾𝛿𝑅

𝛼𝛽𝛾𝛿

+𝑎9𝐻𝛼
𝛿𝜖𝐻𝛼𝛽𝛾𝑅𝛽𝛾𝛿𝜖 + 𝑎11𝑅∇𝛼∇

𝛼Φ

+𝑎10𝐻𝛽𝛾𝛿𝐻
𝛽𝛾𝛿∇𝛼∇𝛼Φ+ 𝑎13𝑅∇𝛼Φ∇𝛼Φ

+𝑎12𝐻𝛽𝛾𝛿𝐻
𝛽𝛾𝛿∇𝛼Φ∇𝛼Φ+ 𝑎14∇𝛼Φ∇𝛼Φ∇𝛽∇𝛽Φ

+𝑎15𝐻𝛼
𝛾𝛿𝐻𝛽𝛾𝛿∇𝛼Φ∇𝛽Φ

+𝑎16𝑅𝛼𝛽∇
𝛼Φ∇𝛽Φ+ 𝑎17∇𝛼Φ∇𝛼Φ∇𝛽Φ∇𝛽Φ

+𝑎18𝐻𝛼
𝛾𝛿𝐻𝛽𝛾𝛿∇𝛽∇𝛼Φ

+𝑎19∇𝛽∇𝛼Φ∇𝛽∇𝛼Φ+ 𝑎20∇𝛼𝐻
𝛼𝛽𝛾∇𝛿𝐻𝛽𝛾 𝛿

+𝑎7𝑅
2 + 𝑎6𝑅𝐻𝛼𝛽𝛾𝐻

𝛼𝛽𝛾

]
, (18)

where 𝑎1, ⋯ , 𝑎20 are 20 parameters that the gauge symmetries can not 
fix them.

In this section, we assume the most general covariant deformation 
for the 𝛽-transformations at order 𝛼′. By requiring the bulk action to be 
invariant under the deformed 𝛽-transformations, we can then determine 
the relations between the parameters in (18). Specifically, we consider:

𝛿Φ= 𝛿Φ(0) + 𝛼′𝛿Φ(1) +⋯ , 𝛿𝐺𝛼𝛽 = 𝛿𝐺
(0)
𝛼𝛽

+ 𝛼′𝛿𝐺(1)
𝛼𝛽

+⋯ , 𝛿𝐵𝛼𝛽

= 𝛿𝐵(0)
𝛼𝛽

+ 𝛼′𝛿𝐵(1)
𝛼𝛽

+⋯ , (19)

where 𝛿Φ(0), 𝛿𝐺(0)
𝛼𝛽

, 𝛿𝐵(0)
𝛼𝛽

are given in (1) and

𝛿Φ(1) = 𝑓3𝐻𝛼𝛽𝛾𝛽𝛽𝛾∇𝛼Φ+ 𝑓1𝛽𝛼𝛽∇𝛾𝐻𝛼𝛽𝛾 + 𝑓2𝐻𝛼𝛽𝛾∇𝛾𝛽𝛼𝛽 ,

𝛿𝐺
(1)
𝛼𝛽

= 𝑔1(𝛽𝛾𝛿∇𝛼𝐻𝛽𝛾𝛿 + 𝛽𝛾𝛿∇𝛽𝐻𝛼𝛾𝛿) + 𝑔4(𝐻𝛽𝛾𝛿∇𝛼𝛽𝛾𝛿 +𝐻𝛼𝛾𝛿∇𝛽𝛽𝛾𝛿)

+𝑔7(𝐻𝛽𝛾𝛿𝛽𝛾𝛿∇𝛼Φ+𝐻𝛼𝛾𝛿𝛽𝛾𝛿∇𝛽Φ) + 𝑔8𝐻𝛾𝛿𝜖𝐺𝛼𝛽𝛽𝛿𝜖∇𝛾Φ

+𝑔9(𝐻𝛽𝛾𝛿𝛽𝛼𝛿∇𝛾Φ+𝐻𝛼𝛾𝛿𝛽𝛽𝛿∇𝛾Φ)

+𝑔2(𝛽𝛽𝛾∇𝛿𝐻𝛼𝛾 𝛿 + 𝛽𝛼𝛾∇𝛿𝐻𝛽𝛾 𝛿)

+𝑔5(𝐻𝛽𝛾𝛿∇𝛿𝛽𝛼𝛾 +𝐻𝛼𝛾𝛿∇𝛿𝛽𝛽 𝛾 ) + 𝑔3𝐺𝛼𝛽𝛽𝛾𝛿∇𝜖𝐻𝛾𝛿𝜖

+𝑔6𝐻𝛾𝛿𝜖𝐺𝛼𝛽∇𝜖𝛽𝛾𝛿 ,

𝛿𝐵
(1)
𝛼𝛽

= 𝑒5𝐻𝛾𝛿𝜖𝐻𝛾𝛿𝜖𝛽𝛼𝛽 + 𝑒1𝑅𝛽𝛼𝛽
+𝑒2(𝑅𝛽𝛾𝛽𝛼𝛾 −𝑅𝛼𝛾𝛽𝛽𝛾 ) + 𝑒6(𝐻𝛽𝛿𝜖𝐻𝛾𝛿𝜖𝛽𝛼𝛾 −𝐻𝛼𝛿𝜖𝐻𝛾𝛿𝜖𝛽𝛽 𝛾 )

+𝑒7𝐻𝛼𝛾 𝜖𝐻𝛽𝛿𝜖𝛽𝛾𝛿 + 𝑒8𝐻𝛼𝛽𝜖𝐻𝛾𝛿𝜖𝛽𝛾𝛿

+𝑒3𝑅𝛼𝛽𝛾𝛿𝛽𝛾𝛿 + 𝑒4𝑅𝛼𝛾𝛽𝛿𝛽𝛾𝛿

+𝑒9(∇𝛼∇𝛾𝛽𝛽 𝛾 −∇𝛽∇𝛾𝛽𝛼𝛾 )
+𝑒12(∇𝛽Φ∇𝛾𝛽𝛼𝛾 −∇𝛼Φ∇𝛾𝛽𝛽 𝛾 )
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+𝑒10(∇𝛾∇𝛼𝛽𝛽𝛾 −∇𝛾∇𝛽𝛽𝛼𝛾 ) + 𝑒17(𝛽𝛽𝛾∇𝛾∇𝛼Φ− 𝛽𝛼𝛾∇𝛾∇𝛽Φ)

+𝑒11∇𝛾∇𝛾𝛽𝛼𝛽

+𝑒18𝛽𝛼𝛽∇𝛾∇𝛾Φ+ 𝑒13∇𝛾𝛽𝛼𝛽∇𝛾Φ

+𝑒15𝛽𝛼𝛽∇𝛾Φ∇𝛾Φ+ 𝑒14(∇𝛼𝛽𝛽𝛾∇𝛾Φ−∇𝛽𝛽𝛼𝛾∇𝛾Φ)

+𝑒16(𝛽𝛽𝛾∇𝛼Φ∇𝛾Φ− 𝛽𝛼𝛾∇𝛽Φ∇𝛾Φ) . (20)

The parameters 𝑓1, 𝑓2, 𝑓3, 𝑔1 through 𝑔9, and 𝑒1 through 𝑒18 are 
all subject to the 𝛽-constraint on the effective action (18). The 𝛽-

transformations 𝛿Φ(0), 𝛿𝐺(0)
𝛼𝛽

, and 𝛿𝐵(0)
𝛼𝛽

should be imposed on the action 
at order 𝛼′ to produce 𝛿( S1). Similarly, 𝛿Φ(1), 𝛿𝐺(1)

𝛼𝛽
, and 𝛿𝐵(1)

𝛼𝛽
should 

be imposed on the leading-order action (6) to produce 𝛼′Δ( S0). The 
latter produces the following terms at order 𝛼′:

𝛼′Δ( S0) = −2𝛼′

𝜅2 ∫ 𝑑𝐷𝑥
√
−𝐺𝑒−2Φ

[
−𝑅𝛼𝛽𝛿𝐺(1)

𝛼𝛽

− 1
24
𝐻𝛽𝛾𝛿𝐻

𝛽𝛾𝛿𝛿𝐺(1)𝛼
𝛼 +

1
2
𝑅𝛿𝐺(1)𝛼

𝛼

+1
4
𝐻𝛼

𝛾𝛿𝐻𝛽𝛾𝛿𝛿𝐺
(1)𝛼𝛽 + 1

6
𝐻𝛼𝛽𝛾𝐻

𝛼𝛽𝛾𝛿Φ(1)

−2𝑅𝛿Φ(1) + 8∇𝛼Φ∇𝛼𝛿Φ(1)

+2𝛿𝐺(1)𝛽
𝛽∇𝛼Φ∇𝛼Φ− 8𝛿Φ(1)∇𝛼Φ∇𝛼Φ

+∇𝛽∇𝛼𝛿𝐺(1)𝛼𝛽 −∇𝛽∇𝛽𝛿𝐺(1)𝛼
𝛼

−4𝛿𝐺(1)
𝛼𝛽∇𝛼Φ∇𝛽Φ− 1

2
𝐻𝛼𝛽𝛾∇𝛾 𝛿𝐵(1)𝛼𝛽

]
. (21)

Upon substituting the deformations (20) into the equation mentioned 
above, it becomes evident that certain resulting terms are intercon-

nected through total derivatives, while others may be linked by the 
Bianchi identities. Furthermore, the deformed 𝛽-transformation (19), 
when combined with the local transformations, must satisfy a closed 
algebra. As a consequence, the parameters in (20) are not all inde-

pendent. It is possible to determine the relationships between these 
parameters by imposing the condition of a closed algebra and eliminat-

ing the parameters that are related by total derivatives and the Bianchi 
identities. In such a scenario, the constraint of the effective action’s in-

variance under the resulting deformed 𝛽-transformations could fix both 
the effective action and the deformed 𝛽-transformations, up to field 
redefinitions. However, in this paper, our focus lies in fixing the pa-

rameters within the effective action (18). Therefore, we do not impose 
the aforementioned constraint on the parameters in (20). In general, 
without imposing the closed algebra constraint, the parameters of the 
effective action cannot be fixed up to field redefinitions. However, as 
we will see for the couplings at order 𝛼′, they are indeed fixed up to 
field redefinitions.

By using the transformations (1) and the constraint (2), one can 
determine the transformation of each coupling in the action (18). The 
𝛽-constraint requires that the sum of 𝛿( S1) and 𝛼′Δ( S0) must be some 
total derivative terms. Therefore, we include all possible covariant total 
derivative terms in our calculations. The most general total derivative 
terms that are invariant under standard diffeomorphisms and 𝐵-field 
gauge transformations involving the spacetime fields and the parameter 
𝛽 are given by:

 (1) = −2𝛼′

𝜅2 ∫ 𝑑𝐷𝑥
√
−𝐺∇𝛼

[
𝑒−2Φ𝐼 (1)𝛼

]
, (22)

where the vector 𝐼 (1)𝛼 is obtained by contracting 𝑅, 𝐻 , ∇Φ, 𝛽, and 
their covariant derivatives at order 𝛼′. It contains 48 terms

𝐼 (1)𝛼 = 𝑗1𝐻𝛾𝛿𝜖𝑅𝛽𝛾𝛿𝜖𝛽
𝛼𝛽 +⋯+ 𝑗48𝐻𝛼

𝛾𝛿𝛽
𝛽𝛾∇𝛿∇𝛽Φ , (23)

where the parameters 𝑗1, ⋯ , 𝑗48 are subject to the 𝛽-constraint on the 
4

effective action in (18).
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The 𝛽-constraint on the bulk action dictates that the following rela-

tion must be satisfied:

𝛿( S1) + 𝛼′Δ( S0) +  (1) = 0. (24)

To solve this equation, we must impose various Bianchi identities as 
well as the constraint (2). To impose these constraints, we express the 
curvatures and covariant derivatives in (24) in terms of partial deriva-

tives of the metric and write the field strength 𝐻 in terms of the 𝐵-field. 
This automatically satisfies all the Bianchi identities. Then, we can write 
the equation (24) in terms of independent and non-covariant terms. The 
coefficients of the independent terms must be zero, which produces 
some algebraic equations involving all parameters that can be easily 
solved.

Interestingly, we obtain the following seven relations between the 
parameters of the effective action (18):

𝑎3 = 𝑎1∕3 − 𝑎10∕8 − (5𝑎12)∕48 − (5𝑎14)∕384 − (5𝑎15)∕144

−(25𝑎17)∕2304 + 𝑎18∕72 + 𝑎19∕576

+𝑎2∕9 − (5𝑎20)∕36, 𝑎4 = −12𝑎1 − 𝑎15∕4

−𝑎16∕16 + 𝑎19∕16 − 4𝑎2 − 𝑎20,

𝑎6 = 𝑎10∕2 − 𝑎11∕8 + 𝑎12∕4 − (5𝑎13)∕48

+𝑎14∕12 − 𝑎16∕48 + (5𝑎17)∕96, 𝑎8 = 24𝑎1,

𝑎7 = 𝑎11∕2 + 𝑎13∕4 − 𝑎14∕8 − 𝑎17∕16, 𝑎9 = −12𝑎1,

𝑎5 = 𝑎15 + 𝑎16∕4 − 𝑎19∕4 + 4𝑎20, . (25)

These relations are identical to the ones obtained by imposing the 
Buscher rules [6]. Note that 𝑎1 must be non-zero to be consistent with S-

matrix elements. This is because upon substituting the above relations 
into (18), we find that 𝑎1 is the coefficient of the Riemann squared 
term, which must be non-zero for consistency. The parameters in the 
deformations (19) and the total derivative terms in (22) are not en-

tirely determined solely by the parameters 𝑎1, 𝑎2, 𝑎10, ⋯ , 𝑎20. We have 
obtained the following deformations for the 𝛽-transformations:

𝛿Φ(1) = 1
8
(192𝑎1 − 192𝑎2 + 52𝑎11 + 52𝑎13 + 12𝑎14 + 188𝑎15 + 13𝑎16

+24𝑎17 − 24𝑎18 − 𝑎19 + 816𝑎20)𝐻𝛼𝛽𝛾𝛽𝛽𝛾∇𝛼Φ

+ 1
16

(−576𝑎1 + 64𝑎2 − 156𝑎11
−152𝑎13 + 64𝑎14 − 204𝑎15 − 39𝑎16
+26𝑎17 + 8𝑎18 + 3𝑎19 − 816𝑎20)𝛽𝛼𝛽∇𝛾𝐻𝛼𝛽𝛾

+ 1
32

(1344𝑎1 + 960𝑎2 − 624𝑎10
−260𝑎11 − 600𝑎12 − 250𝑎13 + 50𝑎14
−460𝑎15 − 65𝑎16 + 96𝑎18
+19𝑎19 − 1840𝑎20)𝐻𝛼𝛽𝛾∇𝛾𝛽𝛼𝛽 +⋯ ,

𝛿𝐺
(1)
𝛼𝛽

= (−24𝑎1 − 8𝑎2 −
1
2
𝑎15 −

1
8
𝑎16 − 𝑎18

+1
8
𝑎19 + 2𝑎20)(𝛽𝛾𝛿∇𝛼𝐻𝛽𝛾𝛿 + 𝛽𝛾𝛿∇𝛽𝐻𝛼𝛾𝛿)

+(−12𝑎1 − 4𝑎2 −
3
4
𝑎15 −

3
16
𝑎16 − 𝑎18

+ 3
16
𝑎19 + 𝑎20)(𝐻𝛽𝛾𝛿∇𝛼𝛽𝛾𝛿 +𝐻𝛼𝛾𝛿∇𝛽𝛽𝛾𝛿)

+(−2𝑎15 − 8𝑎20)(𝐻𝛽𝛾𝛿𝛽𝛾𝛿∇𝛼Φ

+𝐻𝛼𝛾𝛿𝛽𝛾𝛿∇𝛽Φ)

+(𝑎11 + 𝑎13 +
1
4
𝑎14 + 4𝑎15 +

1
4
𝑎16

1
+
2
𝑎17 + 16𝑎20)𝐻𝛾𝛿𝜖𝐺𝛼𝛽𝛽𝛿𝜖∇𝛾Φ
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+(−96𝑎1 + 32𝑎2 + 4𝑎18 − 8𝑎20)(𝐻𝛽𝛾𝛿𝛽𝛼𝛿∇𝛾Φ+𝐻𝛼𝛾𝛿𝛽𝛽𝛿∇𝛾Φ)

+(−72𝑎1 + 8𝑎2 −
1
2
𝑎15 −

1
8
𝑎16

+𝑎18 +
1
8
𝑎19 − 2𝑎20)(𝛽𝛽𝛾∇𝛿𝐻𝛼𝛾 𝛿 + 𝛽𝛼𝛾∇𝛿𝐻𝛽𝛾 𝛿)

+(−72𝑎1 + 8𝑎2 −
1
2
𝑎15 −

1
8
𝑎16

+1
8
𝑎19 − 2𝑎20)(𝐻𝛽𝛾𝛿∇𝛿𝛽𝛼𝛾 +𝐻𝛼𝛾𝛿∇𝛿𝛽𝛽 𝛾 )

+(−3
2
𝑎11 −

3
2
𝑎13 +

5
8
𝑎14 − 2𝑎15 −

3
8
𝑎16

+1
4
𝑎17 − 8𝑎20)𝐺𝛼𝛽𝛽𝛾𝛿∇𝜖𝐻𝛾𝛿𝜖

+(12𝑎1 + 4𝑎2 − 3𝑎10 −
5
4
𝑎11 − 3𝑎12 −

5
4
𝑎13 +

1
4
𝑎14

−9
4
𝑎15 −

5
16
𝑎16 +

1
2
𝑎18 +

1
16
𝑎19 − 9𝑎20)𝐻𝛾𝛿𝜖𝐺𝛼𝛽∇𝜖𝛽𝛾𝛿 +⋯ ,

𝛿𝐵
(1)
𝛼𝛽

= (−4𝑎1 −
4
3
𝑎2 + 𝑎10 +

1
4
𝑎11 + 𝑎12 +

1
4
𝑎13 +

1
24
𝑎14 +

3
4
𝑎15

+ 1
16
𝑎16 +

1
12
𝑎17 −

1
6
𝑎18 −

1
48
𝑎19 + 3𝑎20)𝐻𝛾𝛿𝜖𝐻𝛾𝛿𝜖𝛽𝛼𝛽

+(48𝑎1 + 16𝑎2 + 𝑎15 +
1
4
𝑎16 + 2𝑎18

−1
4
𝑎19 − 4𝑎20)(𝑅𝛽𝛾𝛽𝛼𝛾 −𝑅𝛼𝛾𝛽𝛽𝛾 )

+(24𝑎1 − 8𝑎2 −
1
2
𝑎18 + 2𝑎20)(𝐻𝛽𝛿𝜖𝐻𝛾𝛿𝜖𝛽𝛼𝛾 −𝐻𝛼𝛿𝜖𝐻𝛾𝛿𝜖𝛽𝛽 𝛾 )

+48𝑎1𝐻𝛼𝛾𝜖𝐻𝛽𝛿𝜖𝛽𝛾𝛿

+192𝑎1𝑅𝛼𝛾𝛽𝛿𝛽𝛾𝛿

+(−2𝑎11 − 2𝑎13 +
3
2
𝑎14 −

1
2
𝑎16 + 𝑎17)𝛽𝛼𝛽∇𝛾∇𝛾Φ+⋯ , (26)

where dots represent terms in the deformation in which their coeffi-

cients are not in terms of the parameters 𝑎1, 𝑎2, 𝑎10, … , 𝑎20. The ob-

tained solution also fixes the total derivative terms (23), which we are 
not concerned with for closed spacetime manifolds.

Upon substituting the relations (25) into (18), the resulting cou-

plings give the effective action of bosonic string theory if we choose 
𝑎1 = 1∕96. There are 12 arbitrary parameters 𝑎2, 𝑎10, 𝑎11, ⋯ , 𝑎20 that 
reflect the freedom of the action to use arbitrary covariant and gauge in-

variant field redefinitions in closed spacetime manifolds. For any choice 
of these parameters, the effective action appears in a specific covariant 
scheme. For example, if we set 𝑎2 = −3𝑎1 and all other arbitrary param-

eters to zero, then we obtain the action in the Metsaev-Tseytlin scheme 
[30], i.e.,

S1 = − 𝛼′

2𝜅2 ∫ 𝑑26𝑥𝑒−2Φ
√
−𝐺

[
𝑅𝛼𝛽𝛾𝛿𝑅

𝛼𝛽𝛾𝛿 − 1
2
𝐻𝛼

𝛿𝜖𝐻𝛼𝛽𝛾𝑅𝛽𝛾𝛿𝜖

+ 1
24
𝐻𝜖𝛿𝜁𝐻

𝜖
𝛼
𝛽𝐻𝛿

𝛽
𝛾𝐻𝜁

𝛾
𝛼 − 1

8
𝐻𝛼𝛽

𝛿𝐻𝛼𝛽𝛾𝐻𝛾
𝜖𝜁𝐻𝛿𝜖𝜁

]
. (27)

The corresponding 𝛽-transformations are

𝛿Φ(1) =𝐻𝛼𝛽𝛾𝛽𝛽𝛾∇𝛼Φ− 1
2
𝛽𝛼𝛽∇𝛾𝐻𝛼𝛽𝛾 −

1
2
𝐻𝛼𝛽𝛾∇𝛾𝛽𝛼𝛽 +⋯ ,

𝛿𝐺
(1)
𝛼𝛽

= −2(𝐻𝛽𝛾𝛿𝛽𝛼𝛿∇𝛾Φ+𝐻𝛼𝛾𝛿𝛽𝛽𝛿∇𝛾Φ)

−(𝛽𝛽𝛾∇𝛿𝐻𝛼𝛾 𝛿 + 𝛽𝛼𝛾∇𝛿𝐻𝛽𝛾 𝛿)

−(𝐻𝛽𝛾𝛿∇𝛿𝛽𝛼𝛾 +𝐻𝛼𝛾𝛿∇𝛿𝛽𝛽 𝛾 ) +⋯ ,

𝛿𝐵
(1)
𝛼𝛽

= 1
2
(𝐻𝛽𝛿𝜖𝐻𝛾𝛿𝜖𝛽𝛼𝛾 −𝐻𝛼𝛿𝜖𝐻𝛾𝛿𝜖𝛽𝛽𝛾 )

+1
2
𝐻𝛼𝛾

𝜖𝐻𝛽𝛿𝜖𝛽
𝛾𝛿 + 2𝑅𝛼𝛾𝛽𝛿𝛽𝛾𝛿 +⋯ . (28)
5

If we choose the arbitrary parameters as
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𝑎10 = −16𝑎1, 𝑎11 = 0, 𝑎12 = 16𝑎1, 𝑎13 = 192𝑎1, 𝑎14 = 384𝑎1, 𝑎15 = 0,

𝑎16 = −384𝑎1, 𝑎17 = −384𝑎1, 𝑎18 = 48𝑎1, 𝑎19 = 0, 𝑎2 = −3𝑎1, 𝑎20 = 0,

(29)

then we obtain the action in the Meissner scheme [31], i.e.,

S1 = − 𝛼′

2𝜅2 ∫
𝑀

𝑑26𝑥
√
−𝐺𝑒−2Φ

[
𝑅2
𝐺𝐵

+ 1
24
𝐻𝛼

𝛿𝜖𝐻𝛼𝛽𝛾𝐻𝛽𝛿
𝜀𝐻𝛾𝜖𝜀

−1
8
𝐻𝛼𝛽

𝛿𝐻𝛼𝛽𝛾𝐻𝛾
𝜖𝜀𝐻𝛿𝜖𝜀

+ 1
144

𝐻𝛼𝛽𝛾𝐻
𝛼𝛽𝛾𝐻𝛿𝜖𝜀𝐻

𝛿𝜖𝜀 +𝐻𝛼𝛾𝛿𝐻𝛽𝛾𝛿𝑅𝛼𝛽

−1
6
𝐻𝛼𝛽𝛾𝐻

𝛼𝛽𝛾𝑅− 1
2
𝐻𝛼

𝛿𝜖𝐻𝛼𝛽𝛾𝑅𝛽𝛾𝛿𝜖

−2
3
𝐻𝛽𝛾𝛿𝐻

𝛽𝛾𝛿∇𝛼∇𝛼Φ+ 2
3
𝐻𝛽𝛾𝛿𝐻

𝛽𝛾𝛿∇𝛼Φ∇𝛼Φ

+8𝑅∇𝛼Φ∇𝛼Φ+ 16∇𝛼Φ∇𝛼Φ∇𝛽∇𝛽Φ

−16𝑅𝛼𝛽∇𝛼Φ∇𝛽Φ− 16∇𝛼Φ∇𝛼Φ∇𝛽Φ∇𝛽Φ

+2𝐻𝛼𝛾𝛿𝐻𝛽𝛾𝛿∇𝛽∇𝛼Φ
]
, (30)

where 𝑅2
𝐺𝐵

is the Gauss-Bonnet couplings. The corresponding 𝛽-

transformations are

𝛿Φ(1) = −1
8
𝐻𝛼𝛽𝛾∇𝛾𝛽𝛼𝛽 +⋯ ,

𝛿𝐺
(1)
𝛼𝛽

= 1
4
(𝐻𝛽𝛾𝛿∇𝛼𝛽𝛾𝛿 +𝐻𝛼𝛾𝛿∇𝛽𝛽𝛾𝛿)

−1
2
(𝐻𝛽𝛾𝛿∇𝛿𝛽𝛼𝛾 +𝐻𝛼𝛾𝛿∇𝛿𝛽𝛽 𝛾 ) +⋯ ,

𝛿𝐵
(1)
𝛼𝛽

= 1
4
(𝐻𝛽𝛿𝜖𝐻𝛾𝛿𝜖𝛽𝛼𝛾 −𝐻𝛼𝛿𝜖𝐻𝛾𝛿𝜖𝛽𝛽𝛾 )

+1
2
𝐻𝛼𝛾

𝜖𝐻𝛽𝛿𝜖𝛽
𝛾𝛿 + 2𝑅𝛼𝛾𝛽𝛿𝛽𝛾𝛿 +⋯ , (31)

where dots represent terms in the deformation that have unfixed pa-

rameters. These parameters may be fixed by requiring the deformed 
𝛽-transformations, in combination with the local transformations, to 
close an algebra. Since all the parameters in the effective actions are 
already completely fixed, we are not interested in this algebra.

4. Discussion

In this paper, we have demonstrated that the standard covariant 
bulk and boundary NS-NS couplings at the leading order of 𝛼′ are 
invariant under the global 𝛽-transformations (1). We have then inves-

tigated this symmetry at order 𝛼′ for covariant couplings. Through ex-

plicit calculations at this order, we have shown that the effective actions 
of bosonic string theory in the Metsaev-Tseytlin and Meissner schemes 
can be obtained by imposing this symmetry. Furthermore, we have dis-

covered the corresponding deformations of the 𝛽-transformations up to 
some unfixed parameters, which may be determined by requiring that 
the combinations of the deformed 𝛽-transformation and local transfor-

mations satisfy a closed algebra [26]. In the covariant schemes used 
in this paper, the action is invariant under 𝛽-transformations, but the 
Lagrangian is not invariant. Hence, to demonstrate that the transforma-

tions satisfy a closed algebra, one would need to use the equations of 
motion in order to observe the closure of the algebra [34].

We have observed that by imposing the constraint of invariance 
of the effective action under the deformed 𝛽-transformations, all 20 
independent couplings at order 𝛼′ are completely fixed, up to field 
redefinitions. This is achieved without requiring the deformed 𝛽-

transformations and local transformations to satisfy a closed algebra. 
If one removes total derivative terms and uses the most general higher-

derivative field redefinitions, there would be only 8 couplings at order 
𝛼′ [30]. Starting with these couplings, the 𝛽-symmetry can fix all cou-
plings up to one overall factor. However, this is not the case for higher 
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orders of 𝛼′. For example, at order 𝛼′ 2, there are 60 independent cou-

plings up to field redefinitions [33]. We have conducted calculations at 
order 𝛼′ 2 and found that the 𝛽-constraint on the effective action results 
in only 28 relations among the 60 independent parameters at this order. 
The remaining parameters need to be determined by imposing the con-

dition that the deformed 𝛽-transformations, in combination with the 
local transformations, satisfy a closed algebra. These 28 relations are 
consistent with the 59 relations fixed by the Buscher rules. It would be 
intriguing to investigate whether imposing the closure algebra and the 
invariance of the effective action under the 𝛽-transformations can com-

pletely determine all 60 parameters of the effective action, up to one 
overall factor.
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