
Composite Structures 337 (2024) 118086

Available online 29 March 2024
0263-8223/© 2024 Elsevier Ltd. All rights reserved.

Introducing a novel piezoelectric-based tunable design for mode-localized 
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A B S T R A C T   

This investigation focuses on developing a new sensitivity-improving approach for high-order mode-localized 
mass micro-sensors by utilizing the capabilities of piezoelectric materials. To this end, an electrostatically 
coupled micro-beam as the building block of MEMS mass sensors is considered. The present design includes the 
incorporation of a patterned arrangement of piezoelectric thin films placed on the lower electrode of the system. 
The nonlinear reduced equations of motion for the introduced tunable system are derived by employing the 
Hamilton principle in conjunction with the Euler-Bernoulli beam theory and the Ritz discretization procedure. 
These equations are subsequently solved using the harmonic balance method. The present findings are validated 
by those available in the literature for the case of static excitation. In addition, the eigenvalue loci of the pro-
posed system have been compared and verified by those obtained through three-dimensional finite element 
simulations carried out in COMSOL Multiphysics commercial software. Taking the shift of the amplitude ratio as 
the measure demonstrating the sensitivity of the proposed design, it is observed that incorporating piezoelectric 
excitation can significantly enhance the efficiency of these systems more than two times in comparison to 
conventional mode-localized mass micro-sensors without piezoelectric layers.   

1. Introduction 

Microelectromechanical systems (MEMS) are mainly operated as 
sensors or actuators [1]. These devices, which are used in different en-
gineering fields, are fabricated at micro and nano scales [2]. Mass micro- 
sensors represent an important sub-category for MEMS devices [3]. 
These sensors are often manufactured as single-degree-of-freedom 
(sDoF) resonators [4]. The sensitivity concept associated with the 
resonant mass micro-sensors is defined as the shift in the resonance 
frequency of the device that occurred before and after the attachment of 
a small particle [5]. Although sDoF mass sensors are frequently used in 
various practical applications, they do not enjoy high sensitivity; 
because adding a small mass to an sDoF resonator cannot significantly 
change its resonance frequency [6]. Thus, multi-degree-of-freedom 
(mDoF) coupled resonators have been introduced as a new design for 
mass micro-sensors to improve their sensitivity in the past decade [7]. 

A new generation of high-sensitive coupled mass sensors has been 
developed based on employing the mode-localization phenomenon [8], 

first suggested by Spletzer et al. [9]. Although they did not optimize 
their proposed system, it represented considerably higher sensitivity 
compared to traditional frequency shift-based sensors. It is noteworthy 
that the mode-localization phenomenon refers to the concentration of 
vibrational energy in a small geometric region instead of the whole 
structure [10]. According to the mode-localization phenomenon, the 
presence of small irregularities in periodic structures under conditions of 
weak internal coupling can cause the propagation of vibration to be 
inhibited, and so the vibration modes are localized [11]. 

The mode-localized mass micro-sensors generally consist of two or 
more weakly coupled similar micro-resonators whose resonance zones 
are very close to each other. When a small particle is attached to one of 
the micro-resonators, the resonance frequency of that resonator un-
dergoes a slight change. This results in a drastic change in the vibration 
amplitudes of the micro-resonators. That is, the vibration amplitude of 
the resonator on which the added mass is attached, is drastically 
decreased and that of the other one is dramatically increased. This 
change in the vibrational pattern of the resonator amplitudes, which is 
interpreted as the vibrational mode localization around the resonator 
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without the mass-disturbance, is the sensing principle utilized in mode- 
localized mass micro-sensors [12]. This phenomenon is the main oper-
ation principle utilized in mode-localized resonant mass micro-sensors 
[13]. 

Given the mode-localization-based sensing principle discussed 
above, it is evident that introducing disorder (e.g., attaching a small 
particle to one of the resonators) unbalances the system, leading to the 
occurrence of the mode-localization phenomenon. For a more detailed 
investigation of this phenomenon, consider a weakly coupled 2-DoF 
system in its balanced state, where a veering phenomenon [14] can be 
observed in the loci of eigenvalues graph (i.e., a graph depicting the 
variation of the system eigenvalues versus the disorder parameter [15]). 
In this manner, applying a disorder changes the position of the system’s 
natural frequencies so that the one corresponding to the resonator with 
the added mass takes place far away from the veering zone where the 

excitation frequency also exists. Doing so, it is apparent that the vibra-
tion mode will strongly be localized around the other resonator on 
which the disorder is not applied [16]. 

In the recent decade, mode-localization-based sensing technology 
has experienced significant growth with the introduction of tunable 
MEMS devices. Thironkatanathan et al. [17] initially introduced this 
new generation of tunable mode-localized mass micro-sensors by uti-
lizing electrical actuation to establish weak coupling between the res-
onators. In the sequence of this work, Zhao et al. [18] proposed a 3-DoF 
weakly coupled system instead of the previously introduced 2-DoF de-
vice and showed that increasing the degrees of freedom enhances the 
sensitivity of the sensor. Rabenimanana et al. [19] developed a mode- 
localized mass micro-sensor consisting of two mechanically coupled 
micro-cantilevers with different lengths. They proposed the employment 
of electrostatic actuation as a reliable procedure to overcome 

Nomenclature 

b Width of the micro-beams 
c Linear viscous damping 
Ep Young’s modulus of the piezoelectric layers 
Es Young’s modulus of the micro-beams’ substrate 
Fc Electrostatic attraction between the upper and lower 

micro-beams 
Fele Electrical attraction between the lower micro-beam and 

the fixed electrode underneath it 
gc Initial gap between the upper and lower micro-beams 
ga Initial gap between the lower micro-beam and the fixed 

electrode underneath it 
h1 Thickness of the upper micro-beam’s substrate 
h2 Thickness of the lower micro-beam’s substrate 
hp Thickness of the piezoelectric layers 
H(x) Unit step function 
Ki Kinetic energy of the ith micro-beam (i = 1,2) 
L Length of the micro-beams 
Lp Length of the piezoelectric layers 
Le Length of the fixed substrates 
Mi Moment resultant of the ith micro-beam (i = 1,2) 
mp Mass of the small particle attached on the upper micro- 

beam 
Ni Force resultant of the ith micro-beam (i = 1,2) 
qs1,i Static counterpart of the ith (i = 1, 2, 3, …) generalized 

coordinate of the upper micro-beam in the Ritz procedure 
qs2,i Static counterpart of the ith (i = 1, 2, 3, …) generalized 

coordinate of the lower micro-beam in the Ritz procedure 
qd1,j(t) Dynamic counterpart of the jth (j = 1, 2, 3, …) generalized 

coordinate of the upper micro-beam in the Ritz procedure 
qd2,j(t) Dynamic counterpart of the jth (j = 1, 2, 3, …) generalized 

coordinates of the lower micro-beam in the Ritz procedure 
Sa

j Sensitivity associated with the jth (j = 1, 2) resonance mode 
t Time 
Ui Strain energy expression of the ith micro-beam (i = 1,2) 
ui Displacements of a point located on the mid-plane of the ith 

micro-beam (i = 1,2) in the x direction 
u1 Displacement component of an arbitrary point on the 

micro-beam cross section along the x-direction 
u2 Displacement component of an arbitrary point on the 

micro-beam cross section along the y-direction 
u3 Displacement component of an arbitrary point on the 

micro-beam cross section along the z-direction 
Vi Volume of the ith micro-beam (i = 1,2) 
Vp1 Piezoelectric voltage applied across the upper piezoelectric 

layers 
Vp2 Piezoelectric voltage applied across the lower piezoelectric 

layers 
Vac AC voltage 
Vc Coupling voltage 
Vdc DC voltage 
Wi

ext Work done by the external forces on the ith micro-beam (i 
= 1,2) 

WD Work done by damping force 
Wc Work done by electrostatic attraction between the upper 

and lower micro-beams 
Wele Work done by electrical attraction between the lower 

micro-beam and the fixed electrode underneath it 
W0

1,j Amplitude of the upper micro-beam associated with the jth 

(j = 1, 2) resonance mode at the balanced state 
W0

2,j Amplitude of the lower micro-beam associated with the jth 

(j = 1, 2) resonance mode at the balanced state 
W1,j Amplitude of the upper micro-beam associated with the jth 

(j = 1, 2) resonance mode after adding small mass 
W2,j Amplitude of the lower micro-beam associated with the jth 

(j = 1, 2) resonance mode after adding small mass 
w1(x, t) Deflection of the upper micro-beam 
w2(x, t) Deflection of the lower micro-beam 
wi Displacement of a point located on the mid-plane of the ith 

micro-beam (i = 1,2) in the z-direction 
x0 Position of the small mass on the upper micro-beam 
x x-coordinate along the length of the micro-beam 
y y-coordinates along the width of the micro-beam 
z z-coordinates along the thickness of the micro-beam 
βi(x) ith (i = 1, 2, 3, …) normalized eigenvalue of a beam with 

clamped boundary condition 
δ Variational operator 
δi2 i2 (i = 1, 2) component of the Kronecker delta 
δ(x − x0) Dirac function 
ε Dielectric constant of the vacuum 
εx Axial strain in the x direction 
e31 Piezoelectric constant 
ρp Density of the piezoelectric layer 
ρs Density of the micro-beams’ substrate 
σx Normal stress in the x direction 
φi(x) ith (i = 1, 2, 3, …) linear un-damped mode-shape of a 

clamped beam 
Ω Excitation frequency 
Ωi ith (i = 1, 2) natural frequency of the system  
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manufacturing defects and balance an initially unbalanced system. 
Pandit et al. [20] explored the possibility of employing coupled 
nonlinear resonators as a mode-localized mass sensor. They observed 
that nonlinear systems exhibit higher efficiency compared to systems 
operating in the linear regime. Lyu et al. [21] analyzed nonlinear 2-DoF 
coupled micro-beams with variable length ratios whose balance state 
was adjusted by the electrostatic attraction between the two electrodes. 
They verified their findings by those observed experimentally and 
showed that reducing the length ratio of the beams or decreasing the 
coupling between the two electrodes can improve the sensitivity. 

Recently, the influence of exciting high-order modes on increasing 
the efficiency of mass micro-sensors has been explored by many re-
searchers. This technique, which was first introduced by Lochon et al. 
[22] for sDoF mass sensors, provides the possibility of improving the 
sensitivity of the device without making any structural modifications. In 
the sequence of this work, Lyu et al. [23] analyzed a 2-DoF mass micro- 
sensor whose third eigenmodes are weakly coupled with each other. 
Doing so, they showed that the sensitivity of the device is improved up to 
five times. In addition, Lyu et al. [23] indicated that the sensitivity of the 
device can also be doubled again if the electrical excitation is applied via 
distributed electrodes whose layouts are more compatible with the 
configuration of those modes. Following this study, Zhao et al. [24] 
investigated the influence of coupling between dissimilar eigenmodes 
on the sensitivity of these systems. They discovered that if a symmetric 
eigenmode of one micro-beam is being coupled with an asymmetric 
eigenmode of the other one, the sensitivity of the sensor can drastically 
be improved up to 20 times greater than that corresponds to a system 
whose first eigenmodes are coupled to each other. 

As can be seen from the literature reviewed above, the influences of 
electrical actuation and high-order mode excitation on the efficiency of 
mode-localized mass micro-sensors have been investigated in several 
research studies. Traditional mass MEMS sensors face limited tunability 
due to the fact that the electrical actuation that is used to adjust the 
system’s balance state can only decrease the stiffness of the structure. 
Therefore, the idea of incorporating thin film piezoelectric materials 
into these conventional sensors arises, as they possess the capability to 
both decrease and increase the stiffness of a structure. This characteristic 
offers enhanced adjustability and tunability to the sensors. Hence, since 
the effect of piezoelectric excitation on the efficiency of mode-localized 
mass micro-sensors remains largely unexplored so far, the present work 
aims to introduce a piezoelectric-based design for mode-localized mass 
micro-sensors. The goal is to investigate the combined effects of the 
piezoelectric and electrostatic actuation on the sensitivity of such de-
vices when their high-order eigenmodes are being excited. It is to be 
noted that the proposed design can present more degrees of freedom for 
adjusting the stiffness of the system in comparison to the traditional 
mode-localized mass sensors and enjoy much more sensitivity up to two 
times, as will be shown later. 

The present paper is organized so that the details of mathematical 
modeling are provided in section 2. In this section, the reduced equa-
tions governing the motion of two electrically actuated coupled micro- 
beams are derived by adopting the Hamilton principle in conjunction 
with the Euler-Bernoulli beam theory and the Ritz discretization pro-
cedure. Section 3 investigates the static, free vibration, and dynamic 
behaviors of the present system by providing some numerical examples. 
This section firstly validates the present model predictions by comparing 
the present findings for the case of static excitation with those available 
in the literature. Some other comparisons are also made in this section 
between the present eigenvalue loci and those obtained by 3-D finite 
element (FE) simulations performed in COMSOL Multiphysics com-
mercial software [25]. After a detailed parametric study, the rest of 
section 3 is allocated to the dynamic analysis of the present system by 
using the harmonic balance method. Furthermore, this section studies 
the combined influences of the piezoelectric and electrical actuation on 
the sensitivity of the proposed device. The findings indicate that incor-
porating piezoelectric excitation can provide a much more tunable 

design with higher degrees of freedom, resulting in a significant effi-
ciency improvement more than two times compared to the designs re-
ported by others. The main conclusions that can be drawn from the 
present study are summarized in section 4. 

2. Mathematical modeling 

Fig. 1 shows a schematic view of two clamped micro-beams that are 
electrically coupled to each other by applying a coupling voltage Vc. The 
coupling voltage adjusts the electrical attraction between the upper and 
lower micro-beams. The upper micro-beam (i.e., micro-beam 1) is made 
of a homogeneous material. Furthermore, the lower micro-beam (i.e., 
micro-beam 2) is made of a homogeneous substrate with a pattern of 
piezoelectric thin films attached to it. According to Fig. 1, x, y, and z are 
the coordinates along the length (L), width (b), and thickness (h1) of the 
upper micro-beam, respectively. Also, gc is the initial gap between the 
two micro-beams. In addition, ga indicates the initial gap between the 
lower micro-beam and distributed fixed substrate electrodes. It is 
assumed that the upper and lower micro-beams have different thick-
nesses (i.e., h1 ∕= h2) while other geometric properties are considered to 
be the same. The voltages applied across the upper and lower piezo-
electric layers are indicated by Vp1 and Vp2, respectively. Moreover, hp 
and Lp are the thicknesses and the lengths of the piezoelectric layers, 
respectively. Furthermore, x0 denotes the position of the small particle 
on the upper micro-beam. 

According to the Euler-Bernoulli beam’s hypothesis, the displace-
ment field associated with an arbitrary point on the micro-beam cross- 
section can be expressed as [26]: 

u1 = u(x, t) − z
∂w(x, t)

∂x
, u2 = 0 , u3 = w(x, t), (1)  

where u and W denote the displacements of an arbitrary point located on 
the mid-plane of the micro-beam in the x and z directions, respectively. 
Employing the von Kármán strain–displacement relation, the strain 
components associated with the displacement field presented in Eq. (1), 
can be written as follows [26]: 

εx =
∂u
∂x

+
1
2

(
∂w
∂x

)2

− z
∂2w
∂x2 , εy = εz = εxy = εxz = εyz = 0. (2) 

In view of the von Kármán strain–displacement introduced in Eq. (2), 
the expression for the variation of the strain energy associated with the 

Fig. 1. Schematic view of the proposed piezoelectric-based mode-localized 
mass micro-sensor. 
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ith micro-beam (i = 1, 2) is given by [27]: 

δ Ui =

∫

Vi

σx δ εxdVi = b
∫ L

0

(
Ni δ u′

i + Ni w′
i δ w′

i − Mi δ w″
i

)
dx , (3)  

where the prime sign denotes differentiation with respect to variable x. 
Furthermore, Ni and Mi are the force and moment resultants associated 
with the ith micro-beam (i = 1, 2), which are defined as [27]: 

(Ni,Mi) =

∫

σx(1, z)dz, (4) 

Bearing in mind that the lower micro-beam (i.e., micro-beam 2) is 
made of three different layers, the corresponding stress–strain relations 
can be expressed as: 

σx =

⎧
⎨

⎩

(Epεx + e31Vp1/hp)H1(x) −
(
hp + h2/2

)
≤ z ≤ − h2/2

Esεx − h2/2 ≤ z ≤ h2/2
(Epεx + e31Vp2/hp)H2(x) h2/2 ≤ z ≤

(
h2/2 + hp

) , (5)  

where Es denotes Young’s modulus of the substrates and Ep, hp, and e31 
are Young’s modulus, thickness, and piezoelectric constant of the 
piezoelectric layers. Furthermore, H1(x) and H2(x) represent the unit 
step functions associated with the upper and lower piezoelectric layers 
attached to both sides of the lower substrate which are given by: 

H1(x) = H
(
Lp − x

)
+H

(
x −

(
L − Lp

) )
, (6a)  

H2(x) = H
(

x −
(
L − Lp

)

2

)

+H
(

x −
(
L + Lp

)

2

)

. (6b) 

The electrostatic excitation between the two micro-beams (Fi
c) and 

the electrical actuation applied on the lower micro-beam (Fele), 
neglecting the fringing field effect, can be expressed as [28]: 

Fi
c =

εbV2
c ( − 1)i+1

2(gc − w1 + w2)
2He(x), (7)  

Fele =
εb(Vdc + Vaccos(Ωt) )2

2(ga − w2)
2 He(x),

where w1(x, t) and w2(x, t) are the deflections of the upper and lower 
micro-beams and ε = 8.854 × 10-12 (Fm− 1) is the dielectric constant of 
the vacuum [29]. Also, Vdc and Vac represent the amplitude of the DC 
and AC voltages. Moreover, Ω and He(x) are the excitation frequency 
and unit step function associated with the electrical excitation applied 
by distributed electrodes, which can be expressed as: 

He(x) = H(Le − x)+H(x − (L − Le) ), (8)  

where Le is the length of each distributed electrode. 
The virtual works done by the damping forces on the two micro- 

beams and those of the electrical attractions can be written as: 

δ Wi
D = − cb

∫ L

0
ẇiδwidx, (9a)  

δ Wi
c =

∫ b

0

∫ L

0
Fi

cδwidxdy =

∫ L

0

εbV2
c ( − 1)i+1

2(gc − w1 + w2)
2He(x)δwidx, (9b)  

δ Wele =

∫ b

0

∫ L

0
Feleδw2dxdy =

∫ L

0

εb(Vdc + Vaccos(Ωt) )2

2(ga − w2)
2 He(x)δw2 dx.

(9c) 

The variational form of the kinetic energy associated with the upper 
and the lower micro-beams are given by [27]: 

δK1 = b
∫ L

0
ρsh1

(

u̇1δu̇1 + ẇ1δẇ1

)

dx+
∫ L

0
δ(x − x0)mp

(

ẇ1δẇ1

)

dx, (10a)  

δK2 = b
∫ L

0

{
ρsh2 + ρphp(H1(x) + H2(x) )

}
(

u̇2δu̇2 + ẇ2δẇ2

)

dx, (10b)  

where the dot-superscript denotes differentiation with respect to time t. 
Also, δi 2, δ (x - x0), and mp, respectively, refer to the Kronecker delta, 
Dirac delta function, and mass of the small particle attached to the upper 
micro-beam. In addition, ρi is the density of the ith micro-beam (i = 1,2). 
As previously stated, the density of the upper micro-beam (i.e., ρ1) re-
mains constant throughout its thickness. However, the density of the 
lower micro-beam (i.e., ρ2) varies throughout its thickness and can be 
expressed as: 

ρ =

⎧
⎨

⎩

ρpH1(x) −
(
hp + h2/2

)
≤ z ≤ − h2/2

ρs − h2/2 ≤ z ≤ h2/2
ρpH2(x) h2/2 ≤ z ≤

(
h2/2 + hp

) , (11)  

where ρp and ρs are the densities of the piezoelectric layers and substrate 
of the lower micro-beam, respectively. The equations of motion associ-
ated with the present system can be obtained by employing Hamilton’s 
principle. This principle for an elastic body can be stated as [27]: 
∫ ti

tf

(
δ Ki − δ Ui + δ Wi

ext

)
dt = 0, (12)  

where δWi
ext (i = 1,2) refers to the virtual works done by the external 

forces on the ith micro-beam and introduces as follows: 

δ Wi
ext = δ Wi

c + δ Wi
D + δi2 δ Wele, (13)  

Substituting Eqs. (3), (9), and (10) into Hamilton’s principle in (12), 
integrating the in-plane equations by part, neglecting the axial accel-
erations in comparison to the translatory ones and solving the 
displacement ui in terms of the deflection Wi for the case of clamped 
boundary conditions, one gets: 
∫ tf

ti

∫ L

0

{

b
(
ρs hi + δi1 δ(x − x0)mp + δi2 ρphp(H1(x) + H2(x) )

)
ẅi δ wi

+ c ẇi δ wi + bÑi w′
i δ w′

i (14)  

− bM̃i δ w″
i −

εbV2
c ( − 1)i+1

2(gc − w1 + w2)
2 He(x) δ wi

−
δi2 ε b(Vdc + Vaccos(Ω t) )2

2(ga − w2)
2 He(x) δ w2

}

dtdx

= 0,

The stress resultants Ñi and M̃i (i = 1,2) introduced in Eq. (14) are 
defined as: 

Ñ1 =
Esh1

2L

(∫ L

0

(
w′

1

)2
dx
)

, M̃1 = −

(
Esh3

1

12

)

w″
1,

Ñ2 = {N + A}
(

− a1 w″
2 − a2 + a3

{∫ L

0

1
2
(
w′

2

)2
dx +

∫ L

0
a1 w″

2 dx

+

∫ L

0
a2 dx

})

+B w″
2 +Np, (15)  

M̃2 = − B
(

− a1 w″
2 − a2 + a3

{∫ L

0

1
2
(
w′

2

)2
dx +

∫ L

0
a1 w″

2dx

+

∫ L

0
a2dx

})

− {M + D}w″
2 +Mp.

where 
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D =
1
3
Ep

(

h3
p +

3
2

h2
ph +

3
4
hph2

)

(H1(x) + H2(x) ), Np

= e31
(
Vp1H1(x) + Vp2H2(x)

)
,N = Esh2 , M =

Esh3
2

12
, A

= Ephp(H1(x) + H2(x) ) , B =
1
2

Ephp
(
hp + h

)
(H1(x) − H2(x) ), (16)  

Mp =
1
2
e31
(
hp + h

)(
Vp2H2(x) − Vp1H1(x)

)
, a1 =

B
N + A

, a2(x)

=
Np

N + A
, a3 =

1
{N + A}

∫ L
0

dx
N+A

.

For convenience, the equations of motion associated with the present 
system given in Eq. (14) are also normalized. To this end, the following 
non-dimensional variables are introduced: 

x̂ =
x
L
, ŵ1 =

w1

ga
, ŵ2 =

w2

ga
, t̂ =

t
τ , R =

gc

ga
, (17)  

where 

τ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

12ρsL4

Esh2

√

, (18)  

Upon substitution of the non-dimensional quantities given in Eq. (17) 
into Eq. (14) and dropping the hats, the following normalized equations 
of motion are obtained: 

w″
1δw″

1+(1

+δ(x)Δm)ẅ1δw1+c1ẇ1δw1+α1

(∫ 1

0
w′2

1 dx
)

w′
1δw′

1 − α2 V2
c

He(x)
(R − w1+w2)

2 δw1

=0,
(19a)  

β2
(
ρphp(H1(x) + H2(x) ) + ρs h2

)
ẅ2 δ w2 + c2 ẇ2 δ w2 + β1({M + D}

− a1 B )w″
2 δ w″

2  

+ β1
{

a3 B δ w″
2 + ga a3 {N + A}w′

2 δ w′
2

}
{

gaL
2

∫ 1

0

(
w′

2

)2
dx + L

∫ 1

0
a1 w″

2 dx

+
L3

ga

∫ 1

0
a2 dx

}

−
β1L2

ga
(Mp

+ a2 B) δ w″
2 + α3

V2
c He(x)

(R − w1 + w2)
2 δ w2 − α3

(Vdc + Vaccos(Ωt) )2He(x)
(1 − w2)

2 δ w2

= 0,
(19b)  

where the normalized parameters of the system are given by: 

Δm =
mp

ρs b h1 L
, c1 =

12 c L4

Es b h3
1 τ, c2 =

12 c L4

Es b h3
2 τ, α1 = 6

g2
a

h2
1
,

α2 =
6 ε L4

Es h3
1g3

a
, α3 =

6 ε L4

Es h3
2 g3

a
, β1 =

12
Es h3

2
, β2 =

h2
1

ρs h3
2
. (20)  

Also, functions H1(x), H2(x), and He(x) appeared in Eq. (19) are given 
below: 

H1(x) = H
(

Lp

L
− x
)

+H
(

x −
(

L − Lp

L

))

, (21a)  

H2(x) = H
(

x −
(
L − Lp

)

2L

)

+H
(

x −
(
L + Lp

)

2L

)

, (21b)  

He(x) = H
(

Le

L
− x
)

+H
(

x −
(

L − Le

L

))

. (21c) 

According to the physics of the mass sensor, where it deflects toward 
a static position and then oscillates around its static configuration, the 
deflections of micro-beams are divided into two static and dynamic 
counterparts. Afterward, since providing exact solutions for the problem 
at hand is almost impossible [27], an approximate solution will be 
developed through the Ritz method in the present work. According to 
the Ritz method, the deflections of micro-beams are discretized as: 

w1(x, t) =
∑n

i = 1
ϕ i(x) q s 1 , i +

∑N

j= 1
ϕj(x) q d 1 , j(t) (22a)  

w2(x, t) =
∑n

i = 1
ϕ i(x) q s 2 , i +

∑N

j= 1
ϕj(x) q d 2 , j(t) , (22b)  

where qs1,i and qs2,i, are the ith static generalized coordinates associated 
with the upper and lower micro-beams, respectively. In addition, qd1,j(t)
and qd2,j(t) are their corresponding jth dynamic counterparts. Further-
more, the ith linear un-damped mode shape of a clamped beam, which is 
taken as the ith admissible basis function discretizing the present system 
of boundary value problems, is given by [30]: 

ϕi(x) = (cos(βix) − cosh(βix) ) −
cos(βi) − cosh(βi)

sin(βi) − sinh(βi)
(sin(βix) − sinh(βix) ),

(23)  

where βi is the ith eigenvalue of the clamped beam that can be calculated 
as β1 = 4.7300, β2 = 7.8532, and β3 = 10.9956 [30]. Next, substituting 
Eqs. (22) with the corresponding dynamic counterpart eigenmode, on 
which we would like to focus, into Eqs. (19), integrating the outcomes 
over the whole dimensionless domain from 0 to 1 and following some 
straightforward mathematical manipulations, we obtain: 

Δmjq̈d1,j + c1q̇d1,j +
∑n

i=1
S11ijqs1,i +K11jqd1,j  

+α1

(∫ 1

0

(
∑n

i=1
ϕ′

iqs1,i

)2

dx + 2

{
∑n

i=1
S12ijqs1,i

}

qd1,j + K12jq2
d1,j

)

×

{
∑n

i=1
S12ijqs1,i + K12jqd1,j

}

− α2 V2
c

{
INT1j + INT2j

(
qd1,j − qd2,j

)
+ INT3j

(
q2

d1,j + q2
d2,j

)
+ INT4j

(
q3

d1,j

− q3
d2,j

)}

= 0
(24a)  

K21jq̈d2,j + c2q̇d2,j +
∑n

i=1
S21ijqs1,i +K22jqd2,j − K23j +

{

K24j

+ β1ga

∑n

i=1
S22ijqs2,i + K25jqd2,j

}

×

{
gaL
2

∫ 1

0

(
∑n

i=1
ϕ′

iqs2,i

)2

dx + L
∫ 1

0
a1

(
∑n

i=1
ϕ″

iqs2,i

)

dx + K26

+ gaL

{
∑n

i=1
S23ijqs2,i

}

qd2,j + K27qd2,j + K28jq2
d2,j

}

+α3 V2
c

{
INT1j + INT2j

(
qd1,j − qd2,j

)
+ INT3j

(
q2

d1,j + q2
d2,j

)
+ INT4j

(
q3

d1,j

− q3
d2,j

)}
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− α3(Vdc + Vaccos(Ωt) )2
{

INT5j + INT6jqd2,j + INT7jq2
d2,j + INT8jq3

d2,j

}

= 0
(24b) 

where all the introduced coefficients in this equation are given in 
Appendix A. It is notable that the static configuration of the present 
system under the action of the electrical actuations can be determined 
by neglecting the time-dependent terms in Eqs. (24). Then, having the 
static configuration of the system, the dynamic equations associated 
with the present system can simply be obtained around the pre- 
determined static configuration. 

3. Results and discussions 

3.1. Static analysis 

As mentioned earlier, the deformations of the upper and lower 
micro-beams are divided into two static and dynamic counterparts 
induced by the application of DC and AC voltages, respectively. The 
static configuration of the system under the action of electrostatic 
excitation can be obtained by neglecting the time-dependent terms in 
Eqs. (24). It is worth mentioning that the resulting algebraic equations 
will be solved numerically through the use of the Newton-Raphson 
procedure [31]. 

Before going through further analysis of the system, the present static 
findings need to be validated. To this end, an electrostatically coupled 
system without the piezoelectric layers is first considered (i.e., the 
properties related to the piezoelectric layers are set to zero). Table 1 
provides the geometric and material properties of the electrostatically 
coupled system. Also, the electrostatic coupling voltage between the two 
micro-beams is set to Vc = 10 V. It should be noted that the thicknesses of 
the upper and lower micro-beams are assumed to be the same in this 
case. Fig. 2 shows the equilibrium path of the lower micro-beam versus 
the applied DC voltage. This figure compares the present findings with 
the results obtained from finite element simulation as well as those 
published in Ref. [23]. As seen, the present static findings are in excel-
lent agreement with those reported by Lyu et al. [23] and also the results 
obtained from FE simulations performed in COMSOL Multiphysics 

commercial software [25]. 
Fig. 3 illustrates the 3-D FE model caried out in COMSOL Multi-

physics [25]. This simulation was performed by employing the elec-
tromechanical forces in the multiphysics menu, which can combine the 
physics of solid mechanics and electrostatics. The mechanical con-
straints of the system were established in the physics of solid mechanics 
by defining micro-beams as linear elastic materials with fixed-end con-
straints. Furthermore, the electrodes on micro-beam surfaces were 
selected as volume terminals in the physics of electrostatic to apply the 
electrostatic attraction between the two micro-beams. It is worth 
mentioning that, since the electrostatic actuation between the two 
micro-beams is only applied over the electrode areas, these regions are 
shown in different colors in Fig. 3. In addition, to discretize the micro- 
beams and the air gaps between them the tetrahedral elements were 
selected. Furthermore, the highly nonlinear Newton–Raphson proced-
ure was employed as the solution methodology. 

In addition to the validation provided earlier, it is also necessary to 
validate the present findings for a system subjected to piezoelectric 
excitation. To this end, a single micro-beam equipped with two piezo-
electric layers is considered. It is worth mentioning that the effect of the 
electrostatic coupling between the two resonators has been neglected by 
setting Vc = 0 in this comparison. The geometric and material properties 
of this bimorph micro-beam are given in Tables 2 and 3. It is notable that 
the upper and lower piezoelectric layers are both excited by the same 
voltage. Fig. 4 illustrates the variation of the pull-in voltage versus the 
piezoelectric voltage. The results are compared and validated by those 
available in the literature [32]. It can be seen that the present findings 
are in good agreement with those obtained by Rezazadeh et al. [32]. 

Consider an electrostatically coupled system with geometric and 
material properties listed in Tables 4 and 5. To study the combined in-
fluences of the piezoelectric excitation and the electrostatic coupling 
between the two micro-beams, Fig. 5 demonstrates the variation of the 
system pull-in voltage versus the piezoelectric voltage for different 
values of the electrostatic coupling voltages. It should be noted that the 
upper and lower micro-beams are assumed to be identical, and the 
piezoelectric layers are excited by the same voltage. Based on the results 
presented in Fig. 5, it can be observed that, increasing the piezoelectric 
excitation at the same coupling voltage decreases the pull-in voltage of 
the system. The reason behind this observation is that increasing the 
piezoelectric excitation causes a compressive force to be applied on the 
lower micro-beam and so reduces its stiffness. Another conclusion that 
can be drawn from Fig. 5 is that the electrostatic coupling has a signif-
icant impact on the occurrence of pull-in instability, so that increasing 
the coupling voltage increases the pull-in threshold of the system. This is 
due to the fact that increasing the coupling voltage can increase the 
attraction between the upper and lower micro-beams, which needs to be 
compensated by increasing the DC voltage. Therefore, as observed, the 
utilization of piezoelectric and electrostatic actuations between the 
micro-beams offers greater control over the onset of the pull-in insta-
bility as well as the static behavior of the present system. 

3.2. Eigenvalue loci veering analysis 

This section explores the influence of the piezoelectric excitation and 
the electrostatic coupling between the two micro-beams on the veering 
phenomenon. As mentioned in the introduction section, introducing a 
slight disorder to one of the resonators unbalances the system, leading to 
the occurrence of the mode-localization phenomenon. To find the bal-
ance state of a tunable system, one should investigate the variation of 
the system’s eigenvalues with respect to the disorder parameter. The 
eigenvalue problem associated with the present system can simply be 
obtained by neglecting the damping terms and then linearizing the 
reduced governing equations of motion in Eq. (24) around its static 
configuration determined in the previous section. 

As mentioned earlier, there exist no previous studies dealing with the 
influence of piezoelectric excitation on the veering phenomenon. Hence, 

Fig. 2. Equilibrium path of the lower micro-beam for a system with properties 
presented in Table 1 and Vc = 10 V. 

H. Ali Alam-Hakkakan et al.                                                                                                                                                                                                                 



Composite Structures 337 (2024) 118086

7

to verify the accuracy of the findings, neglecting the influence of 
piezoelectric excitation, the present system with properties listed in 
Table 1 is considered again. The electrostatic actuation applied to the 
lower micro-beam and the coupling voltage between the two micro- 
beams are set to Vdc = 1 V and Vc = 10 V, respectively. Fig. 6(a) and 
6(b) illustrate the variation of the system’s natural frequencies versus 
the thickness of the lower micro-beam as the disorder parameter where 
the second and third eigenmodes of the micro-beams are coupled to each 
other, respectively. In this figure, the Ω1 and Ω2 represent the first and 
second eigen frequencies of the whole system. This figure also compares 
the present findings by those reported by Lyu et al. [23] as well as three- 
dimensional (3-D) FE simulations carried out in COMSOL. It can be 
observed from Fig. 6 that the present findings align more closely with 
the FE results than those presented by Lyu et al. [23]. To ensure the 
accuracy of the present Ritz and FE models, Fig. 7 provides another 
comparison between the present findings and those published by Zhao 
et al. [24]. As this figure depicts, both the present Ritz and FE results are 
in excellent agreement with those reported in the literature [24]. So, it 
can generally be concluded that the present work provides more accu-
rate results in comparison to those reported in Ref. [23]. 

Fig. 3. 3-D model created in COMSOL Multiphysics software [25].  

Table 1 
Geometric and material properties of the electrostatically coupled system 
studied in Ref. [23].  

L(μm) b(μm) h(μm) gc(μm) ga(μm) E(GPa) ρ(kg/m3)

210 4 1 2 1 169 2320  

Table 2 
Geometric and material properties of the substrate associated with the system 
studied in Ref. [32].  

L(μm) b(μm) h(μm) ga(μm) E(GPa) ρ(kg/m3)

350 50 3 1 169 2331  

Table 3 
Geometric and material properties of the piezoelectric layers associated with the 
system studied in Ref. [32].  

L(μm) b(μm) h(μm) E(GPa) ρ(kg/m3) e31 

350 50  0.01  78.6 7500  − 9.29  

Fig. 4. Variation of the pull-in voltage versus piezoelectric excitation for a 
single bimorph micro-beam with properties presented in Tables 2 and 3. 

Table 4 
Geometric and material properties of the electrostatically coupled micro-beams 
investigated in Fig. 5.  

L(μm) b(μm) h(μm) gc(μm) ga(μm) E(Gpa) ρ(kg/m3)

210 4 1 2 1 169 2320  

Table 5 
Geometric and material properties of the piezoelectric layers associated with the 
system investigated in Fig. 5.  

L(μm) b(μm) h(μm) E(GPa) ρ(kg/m3) e31 

70 4  0.005  78.6 7500  − 9.29  
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To investigate the influence of the electrostatic coupling between the 
two micro-beams on the veering phenomenon, the present system with 
properties given in Tables 4 and 5 is considered. The upper and lower 
micro-beams are assumed to have similar thicknesses and a similar 
voltage across the piezoelectric layers is applied. In this study, the third 
eigenmodes of the micro-beams are coupled with each other, and Vdc is 
set to 1 V. Fig. 8 shows the variation of the natural frequencies of the 
system versus the piezoelectric voltage as the disorder parameter for 
different coupling voltages. As this figure depicts, the value of the 
coupling voltage seriously affects the occurrence of the veering phe-
nomenon so that it happens only in systems with a small coupling 
voltage. To investigate this issue with more detail, Table 6 provides the 
eigenvector values for the veering point as well as for some points prior 
to and beyond this point. It is worth mentioning that the upper to lower 
micro-beam mid-point deflection ratios are picked as the representative 
of the eigenvector value. In addition, the first digit in the superscript of 
the parameters presented in Table 6 denotes the micro-beam number. 
Specifically, the superscripts 1 and 2 refer to the upper and lower micro- 
beams, respectively. The second digit indicates the system mode num-
ber, where superscripts 1 and 2 represent the first and second mode- 
shape of the coupled system, respectively. It is worth noting that, as 
shown in Table 6, the absolute eigenvector values coincide when the 
veering phenomenon occurs, and this phenomenon occurs only in sys-
tems with weak couplings as expected [16]. 

As mentioned earlier, the results shown in Table 6 reveal that despite 
the strongly coupled system (i.e., the case with Vc = 35V), the absolute 
eigenvector values become identical at the veering point. In addition, 
getting away from the veering point drastically changes these values just 
in the case of weakly coupled systems. This means that both the vibra-
tion modes are excited identically at the veering point (the so-called 
balance state) and taking distance from this point results in the locali-
zation of the vibration mode around one of the resonators (the one 
without the disorder), and suppressing the other one’s oscillations only 
in the weakly coupled system. This localization phenomenon is the 
sensing principle of mode-localized mass micro-sensors [33]. 

As previously discussed, any factor influencing the stiffness of the 
resonator has the potential to alter the position of the veering point, 
serving as a means to tune mode-localized mass sensors. Given that 

electrical actuation can only decrease the structure’s stiffness, and 
consequently lacks tunability, the notion of employing piezoelectric 
actuation arises. Piezoelectric actuation, capable of both increasing and 
decreasing resonator stiffness, presents itself as a viable solution. It is 
worth noting that utilizing piezoelectric actuation can offer additional 
degrees of freedom for tuning the sensor. Regarding this issue, Fig. 9 
investigates the combined effects of the piezoelectric and electrostatic 
actuations on the eigenvalues loci of the system. As this figure depicts, 
increasing the DC voltage changes the balance condition of the system 
and shifts the veering point to the left. The reason behind this obser-
vation is that applying electrostatic actuation reduces the stiffness of the 
structure, which needs to be compensated by applying a tensile force 

Fig. 5. Variation of the pull-in threshhold versus the piezoelectric excitation for 
different values of the coupling voltages. The system properties are listed in 
Tables 4 and 5. 

Fig. 6. Comparison of the first and second system’s natural frequencies ob-
tained by the present Ritz and FE models as well as those obtained by Lyu et al. 
[23], when (a) the second and (b) the third eigenmodes of the micro-beams are 
coupled with each other. 

H. Ali Alam-Hakkakan et al.                                                                                                                                                                                                                 



Composite Structures 337 (2024) 118086

9

through increasing the piezoelectric excitation in the inverse direction. 
As another investigation, the influence of the initial gaps between the 

fixed and movable electrodes (i.e., ga and gc) on the occurrence of the 
veering phenomenon is better to be studied. It is notable that, according 
to Eq. (7), the electrical attraction between each two electrodes is 
inversely proportional to the square of the initial gap between them. So, 
it is completely expectable that increasing the initial gaps results in 
weakening the electrical attraction between the electrodes. However, to 
have a comprehensive point of view about how changing these gaps 
affects the occurrence of the veering phenomenon, Fig. 10 illustrates the 
eigenvalue loci of the present system for different values of ga and gc. The 
voltage applied to the piezoelectric layers is set to Vp = -50 mV and the 

other geometric and material properties of the system remain un-
changed as those previously given in Tables 4 and 5. As Fig. 10 shows, 
increasing the value of the initial gap between the fixed electrode and 
the lower micro-beam reduces the influence of the electrical interaction 
between them which can partially be compensated by increasing the 
applied voltage (i.e. Vdc). This leads to shifting the position of the 
veering point to the right (see Fig. 10(a)). Additionally, it can be 
observed that despite the coupling voltage (i.e. Vc), increasing the initial 
gap between the two micro-beams (i.e. gc) results in weakening the 
electrical coupling between them and so strengthening the occurrence of 
the veering phenomenon. That is, the lower the coupling voltage, the 
smaller the initial gap (see Fig. 10(b), 10(d) and 10(f)). Finally, it should 
be indicated that once the initial gaps of the system are selected, the 
proper values for the applied voltages, as the design parameters of the 
system, should be obtained to have a sufficiently strength veering phe-
nomenon required for having a mode-localized mass sensor. 

3.3. Dynamic analysis 

As the present system is nonlinear, its dynamic behavior cannot 
accurately be predicted through the linear eigenvalue loci analysis 
provided in the previous section. Therefore, this section is devoted to the 
dynamic analysis of the present system. To this end, since studying a 
dynamical system in the frequency domain can provide a more 

Fig. 7. Comparison of the first and second system’s natural frequencies ob-
tained by the present Ritz and FE models as well as those obtained by Zhao et al. 
[24], when (a) the second and (b) the third eigenmodes of the micro-beams are 
coupled with each other. 

Fig. 8. Eigenvalue loci of the present electrostatically coupled system under 
different coupling voltages. The properties are assumed to be as those given in 
Tables 4 and 5 and Vdc = 1 V. 

Table 6 
Eigenvectors associated with different points of the eigenvalue loci presented in 
Fig. 8.  

Vp(mV) Vc = 10 V  Vc = 35V 

W11
mid/W21

mid W12
mid/W22

mid  W11
mid/W21

mid W12
mid/W22

mid 

− 132 − 26.5032 0.0383  − 2.6118 0.3891 
− 88 − 12.9656 0.0784 − 1.7668 0.5751 
− 43.826 − 1.0080 1.0081 − 1.1079 0.9172 
0 12.0852 − 0.0841 − 0.6956 1.4608 
44 23.2593 − 0.0437 − 0.4714 2.1555  
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comprehensive point of view about its behavior in comparison to 
focusing on its time response, the method of harmonic balance [34] is 
adopted here to obtain the frequency response function associated with 
the present system (see Appendix B for more details). For this purpose, 
the present electrostatically coupled system with properties presented in 
Tables 4 and 5 is considered again. Also, the AC and coupling voltages 
are set to Vac = 20 mV and Vc = 10 V, respectively. It is worth 
mentioning that to calculate the damping force between two micro- 
beams, the quality factor is set to Q = 1/2ζ = 8000, where ζ is the 
damping ratio. It is assumed that the voltages applied across the 
piezoelectric layers are the same, and the third eigenmodes of the micro- 
beams are coupled with each other. It is worth noting that the system is 
actuated at its balanced state. Hence, the piezoelectric and DC voltages 
are set to the values corresponding to the veering point shown in Fig. 9. 

Fig. 11 represents the frequency response curves associated with the 
upper and lower micro-beams under different combinations of the 
piezoelectric and electrostatic actuations. As observed, the curves 
contain two peaks around the natural frequencies of the system each of 
which refers to its corresponding mode of vibration. In addition, the 
results indicate that increasing the values of the applied DC voltage, 
leading to an increase in the piezoelectric excitation corresponding to 
the system’s veering point amplifies the amplitudes of both the upper 
and lower micro-beams’ vibrations. This causes the system to exhibit 
more pronounced nonlinearity. 

3.4. Sensitivity 

As mentioned earlier, the main objective of the present work is to 
increase the sensitivity of mode-localized mass micro-sensors by intro-
ducing piezoelectric excitation to these systems. Therefore, this section 
aims to investigate the influence of equipping the lower electrode with 
thin-film piezoelectric patterns on the sensitivity of the device. The 
sensitivity of resonant mass sensors can generally be determined by 
calculating either the resonance frequency position shift or the vibra-
tional amplitude change of the device before and after the attachment of 
the added mass [31]. It has been shown that measuring the change in the 
vibrational amplitude can provide a better representation of the system 
sensitivity in comparison to calculating the shift in the resonance 

frequency position for a mode-localized mass sensor [35]. Therefore, the 
amplitude-based method is employed here to calculate the sensitivity of 
the present mass sensor. The sensitivity metric based on this method is 
defined as [23]: 

Sa
j =

⃒
⃒
⃒
⃒
⃒

(
W2,j

W1,j
−

W0
2,j

W0
1,j

)

/
W0

2,j

W0
1,j

⃒
⃒
⃒
⃒
⃒
Δm (25)  

where j = 1, 2 refers to the 1st and 2nd mode of the coupled system, W0
1,j 

and W0
2,j are the amplitude of the upper and lower micro-beams at the 

corresponding balanced state, and W1,j and W2,j are those associated 
with the case with the added mass. 

Before going through the sensitivity analysis of the present system, 
the influence of the added mass on the frequency response curves of the 
micro-beams will be investigated. To this end, the values of the DC and 
piezoelectric voltages are taken as Vdc = 3 V and Vp = − 46.366 mV, 
which correspond to the veering point of the present system. The posi-
tion of the applied mass on the upper micro-beam is set to x0 = 0.208 as 
it may present the maximum sensitivity of micro-beams whose third 
eigenmodes are weakly coupled with each other [24]. This is due to the 
fact that this position is related to the maximum amplitude corre-
sponding to the third mode shape of the clamped micro-beam. Fig. 12 
depicts the frequency responses of the upper and lower micro-beams 
under different values of the added mass. As observed, the system’s 
resonance frequencies are very close to each other at the balance state (i. 
e., when there exists no added mass). Thus, when the system is excited 
by an excitation frequency within the system’s resonance zone, both the 
upper and lower micro-beams simultaneously oscillate with high am-
plitudes. Assuming the excitation frequency remains unchanged, the 
case with the introduced small mass to the upper micro-beam is 
considered. It can be observed that introducing a small mass shifts the 
position of the resonance frequencies. However, since the coupling is so 
weak, the lower frequency, which is very close to that of the upper 
micro-beam with the added mass, is shifted more than the higher one, 
which is very close to that of the lower micro-beam. Therefore, the 
higher resonance frequency of the system remains in the vicinity of the 
excitation frequency and the other one moves away from it. So, the 

Fig. 9. Combined effects of the piezoelectric and electrostatic excitations on the third eigenvalues loci of the present system. The system properties are given in 
Tables 4 and 5 and Vc = 10 V. 
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vibration amplitude of the upper micro-beam is suppressed and 
considering the input energy of the system does not change, the vibra-
tion amplitude of the lower micro-beam is drastically increased. This 
means that the vibration mode is strongly localized around the resonator 
on which the disturbance is not introduced. This is the main concept of 
the mode-localization phenomenon, where attaching a small mass to the 
upper micro-beam clearly suppresses the amplitude of its vibration. 

Particularly, as Fig. 12 demonstrates, introducing the added mass 
decreases the maximum vibration amplitude of the upper micro-beam 
around its 2nd system’s mode from 0.01158 µm to 0.00628 µm. At the 
same time, the maximum vibration amplitude of the lower micro-beam 
around the same mode is increased from 0.011176 µm to 0.02191 µm, 

which results in the increase of the nonlinear behavior of this micro- 
beam. This means that the vibration modes of the unbalanced system 
are strongly localized around the lower micro-beam, which causes an 
increase in its vibration amplitude and its nonlinear behavior. This 
drastic change in the vibration amplitude of both micro-beams is the 
main sensing principle adopted in mode localized mass micro-sensors. 

Following the present investigation, the sensitivity of the system 
under various combinations of piezoelectric and electrostatic actuations 
needs to be examined. To this end, three different values of the DC 
voltages and their corresponding piezoelectric voltages that keep the 
system at its balance state are considered again (see Fig. 9). The position 
of the applied mass is also set to x0 = 0.208. Fig. 13 presents the relative 

Fig. 10. Eigenvalue loci of the present electrostatically coupled system for different values of ga and gc. The value of the piezoelectric is set to Vp = -50 mV and the 
other properties are assumed to be as those given in Tables 4 and 5. 
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shift of the amplitude associated with the 1st and 2nd vibration modes of 
the whole system for the different combinations of the piezoelectric and 
DC voltages mentioned above. According to Fig. 13, increasing the 
added mass values has a greater impact on the relative amplitude shift 
corresponding to the 2nd system’s vibration mode in comparison to the 
first one. Additionally, despite the 1st system’s mode, the findings 
associated with the 2nd system’s mode are improved drastically when 
piezoelectric excitation is introduced. Therefore, the sensitivity of the 
device around the 2nd system’s vibration mode is considered as the 
sensing approach. To this end, Table 7 presents the sensitivity of the 
system under various combinations of the piezoelectric and DC voltages 
when the added mass to the upper micro-beam is 1 pg. Upon comparing 
the findings associated with the present system with those of the system 
without piezoelectric layers, it is evident that the sensitivity can be 
further enhanced by employing piezoelectric excitation. In this regard, 
the sensitivity of mode-localized mass micro-sensors without 

piezoelectric layers is 111.7309 % per pg. However, by setting the DC 
voltage to 3 V and adjusting piezoelectric excitation, the sensitivity 
reaches a value of 243.0497 % per pg. This implies that the sensitivity is 
enhanced by more than two times compared to the non-adjustable sys-
tem without piezoelectric layers. Therefore, due to the capability of the 
piezoelectric excitation to tune the stiffness of the system and its effect 
on the increase of the system sensitivity, employing adjustable 
piezoelectric-based mode-localized mass sensors in comparison to the 
traditional ones is highly recommended. 

4. Concluding remarks 

The main objective of this study was to introduce a new generation of 
high-sensitive piezoelectric-based mode-localized mass micro-sensors. 

Fig. 11. Frequency responses for the (a) upper and (b) lower micro-beams 
under different combinations of the piezoelectric and electrostatic actuations 
when the third eigenmodes of the micro-beams are coupled with each other. 
The system properties are set to those given in Tables 4 and 5, also Vac = 20 mV. 

Fig. 12. Frequency responses of the (a) upper and (b) lower micro-beams after 
adding a mass when the third eigenmodes of the micro-beams are coupled with 
each other. The system properties are set to those presented in Tables 4 and 5 
with Vdc = 3 V and Vp = − 46.366 mV. 
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To this end, a system consisting of two electrostatically coupled micro- 
beams was considered where the lower one was equipped with a 
pattern of piezoelectric layers. The nonlinear reduced equations of 

motion associated with the introduced tunable system were obtained by 
employing Hamilton’s principle together with the Ritz discretization 
procedure. Linearizing the reduced equations of motion around the 
static configuration of the system, the veering phenomenon associated 
with its eigenvalue loci was investigated. Nonlinear dynamics of the 
proposed system was also assessed by adopting the harmonic balance 
method. The accuracy of the present findings for the static and eigen-
value analyses were compared and successfully validated by those 
available in the literature, as well as the results obtained through 3-D 
finite element simulations performed in COMSOL Multiphysics com-
mercial software. The main conclusions of the present study are sum-
marized below:  

• It was observed that piezoelectric excitation, as a mechanism that 
can both decrease and increase the stiffness of the structure, provides 
more degrees of freedom than the electrical attraction, which can 
only decrease the micro-beam stiffness, to tune mode-localized mass 
micro-sensors.  

• It was found that the electrostatic coupling between the lower and 
upper micro-beams has a significant impact on the occurrence of the 
pull-in instability associated with lower micro-beam. That is, 
increasing the electrostatic coupling between the two micro-beams 
increases the pull-in threshold of the system. The reason behind 
this observation is that applying electrostatic coupling increases the 
attraction between the upper and lower micro-beams, which needs to 
be compensated by increasing the DC voltage between the lower 
resonator and the fixed electrode underneath it.  

• It was observed that the occurrence of the veering phenomenon 
seriously depends on the value of the initial gap between the 
movable electrodes as well as the coupling voltage applied between 
them. That is, only systems with small electrical coupling can inci-
dent the veering phenomenon.  

• The results revealed that increasing the gap between the lower 
micro-beam and the fixed electrode shifts the position of the veering 
point to the right.  

• It was found that applying a positive piezoelectric voltage reduces 
the micro-beam stiffness via the application of a compressive force 
and a negative one increases it. Therefore, it can be said that 
piezoelectric excitation can play a crucial role in tuning the balance 
state of the proposed mode-localized mass micro-sensor.  

• It was seen that the attachment of a small mass has a significant 
impact on the vibration amplitude of both the upper and lower 
micro-beams. That is, introducing a small particle to the upper 
micro-beam results in a significant suppression of its vibration 
amplitude, causing the vibration modes to be localized around the 
lower micro-beam. This substantial alteration in vibration amplitude 
is regarded as the key sensing principle of mode-localized mass 
sensors.  

• It was observed that the sensitivity of the sensor is improved by more 
than two times when compared to traditional mode-localized mass 
micro-sensors without piezoelectric layers. Therefore, utilizing the 
piezoelectric excitation in mode-localized mass sensors not only can 
introduce ultra-sensitive devices but also this approach can provide 
more degrees of freedom to tune the system. 
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Fig. 13. The relative shift of the amplitude associated with the (a) 1st and (b) 
2nd system’s mode under different combinations of piezoelectric and electro-
static actuations when the third eigenmodes of the micro-beams are coupled 
with each other. The system properties are given in Tables 4 and 5. 

Table 7 
The sensitivity of the present system under various combination of the piezo-
electric and DC voltages. Added mass is set to 1 pg.   

No 
piezoelectric 

Vp = − 44.778 
mV 

Vp = − 46.366 
mV 

VDC = 1 V VDC = 2 V VDC = 3 V 

Sensitivity (% per 
pg)  

111.7309  148.0727  243.0497  
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Appendix A 

The coefficients appearing in Eqs. (24) are defined as: 

Δmj = 1+ϕj(x0)ϕj(x0)Δm, K11j =

∫ 1

0

(
ϕ″

j

)2
dx, K12j =

∫ 1

0

(
ϕ′

j

)2
dx , (A1)  

K21j =

∫ 1

0
β2
(
ρphp(H1(x) + H2(x) ) + ρs h2

)
ϕ2

j dx, K22j = β1

∫ 1

0
{(M + D) − a1 B }

(
ϕ″

j

)2
dx  

K23j =
β1L2

ga

∫ 1

0
(Mp + a2 B)ϕ″

jdx, K24j = β1

∫ 1

0
a3 Bϕ″

jdx, K25j = β1 ga

∫ 1

0
a3 {N + A}

(
ϕ′

j

)2
dx,

K26 =
L3

ga

∫ 1

0
a2 dx, K27 = L

∫ 1

0
a1 ϕ″

j dx , K28j =
gaL
2

∫ 1

0

(
ϕ′

j

)2
dx  

S11ij =

∫ 1

0
ϕ″

iϕ
″
jdx , S12ij =

∫ 1

0
ϕ′

iϕ
′
jdx, S21ij =

∫ 1

0
β1({M + D} − a1 B )ϕ″

iϕ
″
jdx ,

S22ij =

∫ 1

0
a3 {N + A}ϕ′

iϕ
′
jdx , S23ij =

∫ 1

0
ϕ′

iϕ
′
jdx

(A2)  

INT1j =

∫ 1

0

ϕjHe(x)dx
(
R −

∑n
i=1ϕiqs1,i +

∑n
i=1ϕiqs2,i

)2, INT2j = 2
∫ 1

0

ϕ2
j He(x)dx

(
R −

∑n
i=1ϕiqs1,i +

∑n
i=1ϕiqs2,i

)3 (A3)  

INT3j = 3
∫ 1

0

ϕ3
j He(x)dx

(
R −

∑n
i=1ϕiqs1,i +

∑n
i=1ϕiqs2,i

)4 , INT4j = 4
∫ 1

0

ϕ4
j He(x)dx

(
R −

∑n
i=1ϕiqs1,i +

∑n
i=1ϕiqs2,i

)5  

INT5j =

∫ 1

0

ϕjHe(x)dx
(
1 −

∑n
i=1ϕiqs2,i

)2, INT6j = 2
∫ 1

0

ϕ2
j He(x)dx

(
1 −

∑n
i=1ϕiqs2,i

)3 , INT7j = 3
∫ 1

0

ϕ3
j He(x)dx

(
1 −

∑n
i=1ϕiqs2,i

)4,

INT8j = 4
∫ 1

0

ϕ4
j He(x)dx

(
1 −

∑n
i=1ϕiqs2,i

)5  

Appendix B 

In this study, the harmonic balance method is employed to obtain the frequency response curves associated with the present system. This method is 
used to convert the nonlinear differential equations governing the micro-beam’s deflection into the nonlinear algebraic equations governing their 
corresponding amplitude. According to the main idea of this technique [34], the dynamic counterparts associated with the upper and lower micro- 
beams are assumed to take the following forms: 

qd1 =
∑N

n=1

{
Qc1,ncos((2n − 1)Ωt) + Qs1,nsin((2n − 1)Ωt)

}
(B1)  

qd2 =
∑N

n=1

{
Qc2,ncos((2n − 1)Ωt) + Qs2,nsin((2n − 1)Ωt)

}
(B2)  

where Qc1,n, Qc2,n, Qs1,n, and Qs2,n (n = 1, …, N) denote the coefficients corresponding to each harmonic and also Ω is the excitation frequency. 
Substituting Eqs. (B1) and (B2) into the reduced equations of motion in Eq. (24) and equating the coefficient of each harmonic, a set of nonlinear 
algebraic equations relating to the harmonic’s coefficients and Ω are obtained. The resulting equations are solved numerically using MATLAB [36] 
command fsolve with appropriated initial guesses. 
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