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Introduction: Autism is a complex neurodevelopmental condition characterized 
by deficits in social interaction, communication, and restricted repetitive 
behaviors. Hyperbaric oxygen therapy (HBOT) has emerged as a potential 
treatment for autism, although its effects on behavior and gene expression are 
not well understood. The GRIN2B gene, known for its involvement in encoding 
a glutamate receptor subunit crucial for neuron communication and associated 
with autism, was a focus of this study.

Methods: Using a rat model induced by prenatal exposure to valproic acid, 
we examined the impact of HBOT on autism-like behaviors and GRIN2B 
gene expression. Male Wistar rats were categorized into four groups: control, 
VPA (valproic acid-exposed), VPA+HBOT [2 atmosphere absolute (ATA)], and 
VPA+HBOT (2.5 ATA). The rats underwent several behavioral tests to assess social 
behavior, anxiety, stereotype and exploratory behaviors, and learning. Following 
the behavioral tests, the HBOT groups received 15 sessions of HBOT at pressures 
of 2 and 2.5 (ATA), and their behaviors were re-evaluated. Subsequently, real-
time PCR was employed to measure GRIN2B gene expression in the frontal lobe.

Results: Our results indicated that HBOT significantly increased social interaction 
and exploratory behaviors in VPA-exposed rats, alongside elevated GRIN2B 
gene expression in their frontal lobe.

Discussion: Our findings imply that HBOT might have a potential role in 
ameliorating autism-related behaviors in the VPA rat model of autism through 
potential modulation of GRIN2B gene expression. However, additional research 
is essential to fully comprehend the underlying mechanisms and refine the HBOT 
protocol for optimizing its effectiveness in improving autism-related symptoms.
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Introduction

Autism is a neurodevelopmental condition in which the 
development of the brain is affected and it’s characterized by 
difficulties with social communication and interaction as well as 
restricted and repetitive interests and behaviors (American Psychiatric 
Association, 2013). While memory difficulty is not a diagnostic 
criterion for autism, studies indicate learning and memory 
impairments in individuals with autism (Goh and Peterson, 2012; 
Wang et  al., 2017). According to the World Health Organization, 
approximately 1 in 100 children worldwide is diagnosed with autism 
(Autism, 2023). Autism manifests on a spectrum, varying in symptom 
severity, associated traits, and accompanying conditions. As a result, 
there is no one-size-fits-all approach to autism therapies (Malik-Soni 
et al., 2021).

Glutamate is a major excitatory neurotransmitter and has a key 
role in neural plasticity as well as cognitive processes including 
memory and learning (Yoo et  al., 2012). Altered glutamatergic 
pathways are associated with autism (Nisar et al., 2022), potentially 
contributing to behavioral and cognitive deficits observed in 
the spectrum.

Evidence suggests autism affects both metabotropic and 
ionotropic glutamate receptors, implicating glutamate receptor 
dysregulation in autism’s manifestation (Choudhury et  al., 2012). 
N-methyl-d-aspartate (NMDA) receptors (NMDAR) are one of the 
several glutamate receptor subtypes that may disclose more 
physiological mechanisms and even offer promising probable 
therapeutic options for autism. NMDA receptors are neurotransmitter-
gated ion channels and NMDAR-mediated signaling has a role in 
proper development, plasticity, learning, memory, and high cognitive 
functions (Burnashev and Szepetowski, 2015). A study on valproic 
acid (VPA)-exposed mouse showed that activation of NMDAR 
regulated sociability (Burket et al., 2015).

It is well known that many of the physiological and 
pharmacological characteristics of NMDA receptors are influenced 
by the identification of their specific subunits (Cull-Candy and 
Leszkiewicz, 2004). NMDARs are heterotetrametric structures 
usually composed of two GluN1 subunits and two GluN2 subunits, 
comprising four subtypes (GluN2A-D) (Cull-Candy et al., 2001). 
Mutations in NMDAR subunits and changes in gene expression are 
implicated in various neurodevelopmental disorders, including 
autism (Rinaldi et  al., 2007; Yoo et  al., 2012; Burnashev and 
Szepetowski, 2015). The GRIN2B gene has been shown to have an 
important role in behavior. A study showed that the variations 
present in the GRIN2B gene have been associated with the decision-
making process (Ness et al., 2011). Also, it has been demonstrated 
that GRIN2B plays a critical role in working memory (Pergola et al., 
2016). Variations in the GRIN2B gene correlate with obsessive-
compulsive disorder and its symptom dimensions (Kohlrausch et al., 
2016). Genetic findings suggest GRIN2B involvement in 
schizophrenia and bipolar disorder pathophysiology (Martucci 
et al., 2006).

The frontal cortex, linked to higher cognitive functions and 
emotional regulation, significantly influences autism-related 
behaviors (Collins and Koechlin, 2012; Jones and Graff-Radford, 
2021; Friedman and Robbins, 2022; Mohapatra and Wagner, 2023). 
Altered frontal cortex activity and connectivity have been implicated 
in social interaction deficits, repetitive behaviors, and cognitive 

impairments observed in individuals with Autism (Hou et al., 2018; 
Margari et al., 2018; Zhu et al., 2022). Therefore, investigating the 
relationship between glutamatergic signaling, NMDA receptors, and 
the prefrontal cortex is important for understanding the neurobiology 
of autism.

There are anecdotal reports of individuals with autism 
experiencing symptom improvements through Hyperbaric Oxygen 
Therapy (HBOT) (Rossignol et al., 2007, 2012; Chungpaibulpatana 
et al., 2008; Rossigno et al., 2009; Hao et al., 2020). Exploring these 
reports could guide further investigations. Exploring the reported 
anecdotal benefits of HBOT in individuals with autism offers an 
avenue for further investigation, potentially paving the way for a 
non-invasive treatment option if proven effective through rigorous 
clinical trials.

HBOT involves inhaling nearly 100% oxygen at pressures 
exceeding sea level pressure (1 ATA) within a hyperbaric chamber 
[Undersea and Hyperbaric Medical Society (UHMS), 2019]. So far, 
HBOT has shown promise in enhancing cognitive function, spatial 
learning, and memory post-brain injury (Harch et al., 2007; Liu et al., 
2013), and exhibits neuroprotective effects (Yang et al., 2023).

Nevertheless, the effects of HBOT on autism are contradictory, 
and controlled clinical trials are limited (Granpeesheh et al., 2010; 
Jepson et al., 2011; Sampanthavivat et al., 2012). Thus, the present 
study aimed to investigate the effect of HBOT at pressures of 2 and 2.5 
atmosphere absolute on autistic-like behaviors and GRIN2B gene 
expression in the VPA-induced rat model of autism.

Materials and methods

Animals and groups

Male and female Wistar rats, nearly three months old and 
weighing approximately 200–250 grams, were housed in plastic cages. 
A total of 11 female and 11 male rats were utilized for the 
experimental procedures. Each female rat was involved in a single 
pregnancy only, and none were subjected to a second pregnancy 
during the study. All animals were kept in standard laboratory 
conditions at a temperature of 22 ± 2 degrees Celsius, with around 
50% humidity, and a 12-h light/dark cycle. Access to food and water 
was provided ad libitum. Mating cages were set up for male and 
female rats. The appearance of vaginal plugs was considered as the 
zero-day of pregnancy (Goyeneche et  al., 2003). Pregnant rats 
received a single intraperitoneal injection of 500 mg/kg VPA 
(Sajaddaru Co., Iran) dissolved in 3.3 mL/kg saline on embryonic day 
12.5, except for the control group which did not receive any injections 
(Favre et al., 2013). Pups were weaned on postnatal day 21 and they 
were examined for morphological malformation (Saft et al., 2014). 
Subsequent experiments were conducted on the male offspring. The 
pups were categorized into four groups:

(1) The intact control group consisted of wildtype rats (no 
interventions were administered), (2) Sham, VPA-exposed rats, 
received prenatal VPA but did not undergo any oxygen treatment, (3) 
HBOT-2 group comprised VPA-exposed rats that received hyperbaric 
oxygen therapy at 2 ATA and (4) the HBOT-2.5 comprised 
VPA-exposed rats that received hyperbaric oxygen therapy at 
2.5 ATA.
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Ethical consideration

All Experiments were carried out in accordance with the 
international ethical codes and complied with local institutional 
regulations at Ferdowsi University of Mashhad (Iran National 
Committee for Ethics in Biomedical Research). The project obtained 
ethical approval from the local FUM Ethical Review Committee (IR.
UM.REC.1399.117). The study’s reporting follows the 
ARRIVE guidelines.

Behavioral evaluation

Four days after separation from their mother, the pups underwent 
the three-chamber social interaction test, Y-maze, elevated plus maze, 
and Morris Water Maze (MWM) tests. These evaluations assessed 
social behaviors, repetitive behaviors, anxiety, and spatial memory, 
respectively.

All behavioral assessments were conducted on 25-day-old rats, 
between 9 am and 4 pm. One hour before testing, all animal-
containing cages were transferred to the laboratory to allow the 
animals to habituate to the testing room (Hånell and Marklund, 2014).

Social interaction test

This test assesses two key aspects of social behavior: “Sociability,” 
which is defined as the propensity to spend time with another rat 
rather than with a nonliving object, and “Social Novelty” which is the 
preference for spending time with an unfamiliar rat over a familiar 
one (Moy et al., 2004). The apparatus used was a box (100 × 40 × 40 cm) 
divided by separating walls, allowing free access to each chamber. The 
side chambers contained two identical wire cages. The test comprised 
four 10-min stages separated by 5-min intervals. To prevent residual 
odors from influencing the test, all three chambers and cages were 
cleaned with 75% ethanol both initially and before each stage. In the 
first stage (habituation), animals were allowed to freely explore the 
empty chambers and cages. In the second stage called pre-test, two 
identical nonliving objects were placed in the cages. The third stage 
was the Social Stimulus Stage: One wire cage contained an unfamiliar 
rat (social stimulus), while the opposite cage contained an unfamiliar 
inanimate object (non-social stimulus). In the last stage (Social 
Novelty Stage), the non-social object was replaced with a novel 
unfamiliar rat as the novel social stimulus and the social stimulus were 
at the same place. During these stages, interactions such as following, 
touching, grooming, and sniffing any body part were recorded using 
a video camera. The duration of interaction with each stimulus was 
manually measured. Animals used as stimuli were randomly chosen, 
matching the test rats in age, sex, and strain (Rein et al., 2020).

Elevated plus maze

This test aimed to measure anxiety-like behavior in rats. Rats were 
placed for 5 min in an apparatus consisting of two open arms and two 
closed arms (each arm 50 × 10 cm and the height 50 cm). Animals were 
positioned in the middle of the maze and time spent in each arm was 
recorded with a video camera connected to a computer using 

ANY-maze software. The maze was cleaned with 75% ethanol and 
allowed to dry after each test to eliminate the odors of previously 
tested rats. The total distance traveled and time spent in each arm was 
recorded (Markram et al., 2008; Hånell and Marklund, 2014).

Y-maze

The Y-maze can be  used to measure short-term memory, 
exploratory, and stereotyped patterns of behavior (Onaolapo, 2012; 
Wöhr et al., 2015). Hence, spontaneous alternation was determined 
using a Y-maze. The maze, consisting of three equal arms 
(40 × 5 × 30 cm) separated by 120-degree angles, resembles the shape 
of a Y. Rats were placed individually in the start arm and allowed to 
explore freely for 5 min (Onaolapo, 2012). The arms were labeled A, 
B, and C. A video camera connected to a computer running 
ANY-maze software tracked and recorded the sequence of arm entries 
and the total distance traveled. An alternation was defined as entry 
into all three arms consecutively. The percentage of alternation was 
computed using the formula: [(number of alternations) / (total arm 
entries −2)] × 100. After each trial, the apparatus was cleaned with 
75% ethanol and allowed to dry to remove any residual odors from 
previous rat trials (Onaolapo, 2012; Hånell and Marklund, 2014; Jung 
et al., 2020).

Morris water maze (MWM)

The MWM assesses spatial learning and memory capabilities 
(Vorhees and Williams, 2006). The apparatus consisted of a circular 
black pool, 150 cm in diameter and 50 cm deep, filled halfway with 
water maintained at approximately 25 ± 1°C. A platform, matching the 
pool’s color and measuring 9 cm in diameter and 25 cm in height, was 
submerged 1 cm below the water’s surface, making it nearly invisible 
during training sessions. On the first day, the platform was positioned 
1 cm above the water’s surface and marked with a red flag for visibility 
by the animals. The pool was enclosed with curtains to minimize 
distractions for the animals. Inside the pool, above the water’s surface, 
four high-contrast spatial cues were placed. The pool was divided into 
four quadrants by two axes, with directional markers (North, South, 
East, and West) at the ends of each line. Rats underwent 5 days of 
spatial training, with each session comprising five 60-s trials and 60-s 
inter-trial intervals. At the start of each trial, the rat began facing the 
pool’s wall at one of four positions. If the rat located the platform 
within 60 s, it remained on the platform for 5 s. However, if the rat did 
not find the platform, it was gently placed on the platform for 20 s. The 
escape latency and total distance traveled were automatically recorded 
using the ANY-maze video tracking software (Vorhees and Williams, 
2006; Markram et al., 2008; Bromley-Brits et al., 2011).

Hyperbaric oxygen treatment (HBOT)

HBOT was administered to 35-day-old rats using a hyperbaric 
chamber (Irsa Sakht Asia Co., IR). For this purpose, rats were placed 
in the hyperbaric chamber. After sealing the chamber, the pressure 
inside the chamber was gradually increased over a 5-min period until 
it reached the designated pressure levels. One group was pressurized 
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to 2 ATA, while the second group underwent pressurization to 2.5 
ATA. Once the chamber pressure attained the desired levels, the rats 
remained exposed to this pressure condition for 50 min. Throughout 
this time, a 100% oxygen environment was maintained. The oxygen 
flow rate was 6 liters per minute. Following the 50-min exposure, the 
chamber pressure was gradually reduced over a 5-min period to 
return to atmospheric conditions, totaling the rats’ exposure duration 
within the chamber to 60 min. After each HBOT session, the rats were 
returned to their cages. These sessions were conducted once daily for 
14 consecutive days (Simsek et al., 2012; Körpınar and Uzun, 2019).

All administrations were conducted between 9 AM and 11 AM to 
minimize potential effects.

Post-HBOT behavioral tests:
All behavioral tests were repeated after the completion of the 

HBOT sessions.

Tissue preparation

For tissue sampling, CO2 was used for euthanizing the animals. 
After opening the skulls, the whole brain was extracted, and the frontal 
lobe was immediately excised. The excised frontal lobe samples were 
placed in microtubes containing RNA later solution (Sinaclon Co., 
Iran) and stored at −80°C until molecular examinations commenced.

Real-time PCR

RNA extraction and cDNA synthesis were performed using RNX 
Plus (Sinnaclon Co, Iran) for total cellular RNA extraction from 
frontal lobe samples, following the manufacturer’s instructions. 
Primer sequences for the target gene and GAPDH gene (used as a 
reference gene) were designed and determined (shown in Table 1). 
The RNA was reverse transcribed into single-stranded cDNA using a 
cDNA synthesis kit (Pars tous Co, Iran) in accordance with the 
manufacturer’s protocol.

The real-time PCR procedure was conducted utilizing a Corbett 
real-time PCR apparatus. The cDNA samples were amplified 
employing SYBR-Green in a 20 μL reaction mixture comprising 10 μL 
of 2X TaqMan Universal PCR Master Mix, 1 μL of 20X TaqMan Gene 
Expression Assay, and 9 μL of cDNA template. The amplification 
process involved an initial denaturation step at 95°C for 10 min, 
followed by 40 cycles of denaturation at 95°C for 15 s, and annealing 
and extension at 60°C for 1 min. Subsequently, the real-time PCR data 
were analyzed using the comparative Ct method to ascertain the 
relative expression levels of the target genes, which were then 
normalized to the expression of the reference gene (Schmittgen and 
Livak, 2008). To confirm the specificity of the PCR products, a melting 
curve analysis was performed. Additionally, non-template controls 

were included in each run to identify any potential contamination or 
background signal.

Statistical analysis

The Behavioral tests and Real-time PCR results underwent 
analysis in R software (R Core Team, 2022). Initially, the data for each 
test were evaluated for normal distribution using the Shapiro–Wilk 
test. Subsequently, for the three-chamber social interaction test, 
exploratory behavior, and spontaneous alternation in the Y-maze test, 
the Welch t-test was used to compare the control group to each 
treatment group. For the elevated plus maze data, the non-parametric 
Mann–Whitney test was employed. Then, the paired t-test was applied 
to assess the pre-and post-treatment data for comparison. The MWM 
data underwent analysis using a repeated measure analysis of variance 
(ANOVA), adjusted with the Bonferroni correction, followed by 
Tukey’s post hoc test. Gene expression data were analyzed using 
one-way ANOVA, and Tukey’s post hoc test was conducted to 
determine the specific differences among groups. The repeated 
measure ANOVA was performed using the nlme package (Pinheiro 
and Bates, 2000), while post hoc tests were conducted using functions 
from the multcomp package (Hothorn et al., 2008). A significance 
level of p-value ≤0.05 was considered. The statistics reported in the 
text and figures represent the mean ± SEM.

Results

Tail malformation

Out of the 36 rats exposed to VPA in utero, 28 exhibited tail 
malformations, indicating that 80% of the VPA-exposed rats showed 
abnormalities in their tails. Apart from tail malformations, no other 
body malformations were observed (Figure 1).

The observed tail malformations were classified into two groups: 
(1) Rats that exhibited a single bend along their tail, and (2) Rats that 
displayed multiple bends along their tail, often having two bends, with 
one case showing four bends (Figure 1).

Behavioral tests

Three-chamber social interaction test

Social preference
Prior to treatment, HBOT-2 rats spent relatively less time with the 

social stimulus compared to the control group, although this difference 
was not statistically significant (t = 1.6247, df = 12.687, 
p-value = 0.1288). However, significant differences were observed 
when comparing the control group with HBOT-2.5 (t = 2.2817, 
df = 12.771, p-value = 0.04032) (Figure 2A).

In comparison to VPA-exposed rats, control animals spent 
significantly less time with the non-social stimulus. This difference 
was statistically significant between the control and VPA-exposed rats 
of the HBOT groups [control and HBOT-2 (t = −2.5722, df = 8.3353, 
p-value = 0.03194), control and HBOT-2.5 (t = −1.4812, df = 14.668, 
p-value = 0.1597)] (Figure 2B).

TABLE 1 Forward and reverse sequences of the GRIN2B and GAPDH 
gene.

GRIN2B Forward CCCTGGCTACCAGGACTTTG

Reverse GATGGGGCTTTGGAGCTTCT

GAPDH Forward CAGCAACTCCCACTCTTCCAC

Reverse GTGGTCCAGGGTTTCTTACTC
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Post-treatment, there was no significant difference observed in the 
duration of interaction with the social stimulus within the HBOT-2 
group (t = −0.28618, df = 9, p-value = 0.7812). Conversely, the 
HBOT-2.5 group exhibited a significant increase in time spent with 
the social stimulus post-treatment (t = −3.8013, df = 10, 
p-value = 0.003478) (Figure 2A).

Comparison of the time spent with social stimulus between the 
control group with the post-treatment data of both HBOT-2 
(t = 0.59695, df = 17.983, p-value = 0.558) and HBOT-2.5 (t = −0.32648, 
df = 10.545, p-value = 0.7505) groups did not yield a significant 
difference (Figure 2A).

After receiving HBOT sessions, HBOT-2 rats spent less time with 
the non-social stimulus (t = 0.77831, df = 8, p-value = 0.4588). 
Conversely, HBOT-2.5 rats exhibited a significant increase in 
interaction duration with the non-social stimulus post-treatment 
(t = −4.2893, df = 10, p-value = 0.001588) (Figure 2B).

Comparatively, VPA-exposed rats interacted significantly more 
with the non-social stimulus after treatment in comparison to control 
rats [control and HBOT-2 (t = −3.9507, df = 12.784, 
p-value = 0.001711), control and HBOT-2.5 (t = −5.7189, df = 12.62, 
p-value = 7.925e-05)] (Figure 2B).

Social novelty

In the novelty preference test, the percentage of s interaction’animal 
with the unfamiliar social stimulus has been measured by calculating 
the interaction time with the unfamiliar stimulus compared to the 

total interaction time (time interacted with unfamiliar social stimulus/
(time interacted with unfamiliar social stimulus + time interacted with 
familiar social stimulus) × 100).

Before treatment, VPA-exposed rats exhibited impaired preference 
in interacting with the unfamiliar social stimulus compared to the 
control group [HBOT-2 and control (t = 2.5196, df = 11.854, 
p-value = 0.02714) and HBOT-2.5 and control (t = 1.3114, df = 16.765, 
p-value = 0.2074)] (Figure 2C).

Following HBOT administration, interaction with the unfamiliar 
social stimulus increased in both groups, with statistical significance 
observed only in HBOT-2 [HBOT-2 before and after (t = −4.4773, 
df = 9, p-value = 0.001538)], while not in HBOT-2.5 [HBOT-2.5 before 
and after (t = −2.0733, df = 10, p-value = 0.06492)] (Figure 2C).

Comparison of post-treatment data with the control group did not 
reveal a significant difference [HBOT-2 and control (t = −0.58468, 
df = 10.445, p-value = 0.5712), HBOT-2.5 and control (t = −0.058536, 
df = 10.545, p-value = 0.9544)] (Figure 2C).

Elevated plus maze

In this test, the percentage of time spent in the open arms relative 
to the total test time was calculated to measure anxiety (time spent in 
the open arms/total test time × 100). Similarly, using the same 
equation, the percentage of distance traveled in the open arms was 
also computed.

Compared to control rats, VPA-exposed rats exhibited increased 
time spent in the open arms. This difference was statistically significant 

FIGURE 1

Tail malformation in rats exposed to in utero VPA. (A) One bent in the tail. (B,C) Two bents in the tail. (D) Four bents in the tail.
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in HBOT-2.5 (t = −2.3226, df = 14.61, p-value = 0.03509), while not 
significant in HBOT-2 (t = −1.5596, df = 14.427, p-value = 0.1405) 
(Figure 3A).

Post HBOT administration, both groups displayed a decrease in 
the percentage of time spent in the open arms. This reduction was 
statistically significant in HBOT-2.5 (t = 3.7104, df = 11, 
p-value = 0.003439), but not in HBOT-2 (t = 1.7032, df = 10, 
p-value = 0.1194) (Figure 3A).

Comparing control rats with HBOT-2 rats after treatment did not 
reveal a significant difference (t = 0.47785, df = 17.177, 
p-value = 0.6388). However, a significant difference was observed 
between control rats and HBOT-2.5 rats after HBOT sessions 
(t = 2.7111, df = 9.7132, p-value = 0.02243) (Figure 3A).

While VPA-exposed rats showed increased distance traveled in 
the open arms compared to the control group, this difference was not 
statistically significant [control and HBOT-2 (W = 42.5, 
p-value = 0.6213), control and HBOT-2.5 (W = 37, p-value = 0.2469)]. 
Post HBOT sessions, there was a decrease in the percentage of distance 
traveled in the open arms, notably significant in the HBOT-2.5 group 
[HBOT-2.5 before and after (V = 75, p-value = 0.002441), HBOT-2 
before and after (V = 47, p-value = 0.2402)]. Furthermore, a significant 

difference was observed between HBOT-2.5 after receiving HBOT 
and the control group [HBOT-2.5 and control (W = 91.5, 
p-value = 0.006846), HBOT-2 and control (W = 59.5, p-value = 0.4703)] 
(Figure 3B).

Y-maze

Exploratory behavior
Exploratory behavior was assessed based on the distance traveled 

by the animals. The data indicated that VPA-exposed animals traveled 
a significantly shorter distance during the test [HBOT-2 and control 
(t = 2.5095, df = 14.887, p-value = 0.02415), HBOT-2.5 and control 
(t = 2.2142, df = 17.951, p-value = 0.04)] (Figure 4A).

Post-treatment with hyperbaric oxygen, HBOT-2 rats significantly 
increased their travel distance compared to before treatment 
(t = −2.4803, df = 10, p-value = 0.03253), while HBOT-2.5 rats 
exhibited a decrease, although not significant (t = 0.6981, df = 11, 
p-value = 0.4996) (Figure 4A).

After HBO administration, no significant difference was observed 
between HBOT-2 and the control group (t = −0.48742, df = 16.573, 

FIGURE 2

The effects of HBOT on social behavior using the Three-chamber Social Interaction test. (A) Duration of interaction with the social stimulus: VPA-
exposed rats displayed reduced interaction time, and HBOT notably increased this behavior. (B) Interaction time with the non-social stimulus: VPA-
exposed rats exhibited more interest in communicating with the non-social stimulus, with varying effects observed post-hyperbaric oxygen therapy 
across groups. (C) Percentage of time spent with the unfamiliar social stimulus: VPA-exposed rats showed decreased interaction time with the 
unfamiliar stimulus, which was enhanced following HBOT (*p-value  ≤  0.05, **p-value ≤ 0.01, ***p-value ≤  0.001, ****p-value  ≤  0.0001). n(Control)  =  9, 
n(HBOT-2)  =  11, n(HBOT-2.5)  =  12.
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p-value = 0.6323). However, a statistically significant difference was 
found between HBOT-2.5 and the control (t = 3.4413, df = 14.449, 
p-value = 0.003814) (Figure 4A).

Spontaneous alternation behavior
Spontaneous alternation behavior (SAB) assessed repetitive 

behavior. As shown in Figure 4B, no statistically significant differences 
were observed in the percentage of SAB between the control rats and 
VPA-exposed rats before intervention [control and HBOT-2 

(t = 1.8551, df = 16.982, p-value = 0.08102), control and HBOT-2.5 
(t = 1.1041, df = 17.667, p-value = 0.2844)].

Comparing pre-and post-treatment data indicated a significant 
increase in SAB in HBOT-2 rats after receiving HBOT (t = −2.4169, 
df = 10, p-value = 0.03625). Although there was a slight increase in 
HBOT-2.5 rats, it was not significant (t = −0.28192, df = 11, 
p-value = 0.7832) (Figure 4B).

When comparing control rats with those that received hyperbaric 
oxygen, no differences were observed [control and HBOT-2 

FIGURE 3

The effects of HBOT on elevated plus maze. (A) Percentage of time spent in the open arms: VPA-exposed rats spent more time in the open arms 
compared to the control group. Following HBOT sessions, both groups showed reduced time spent in the open arms. (B) Percentage of total distance 
traveled in the open arms: VPA-exposed rats traveled a greater distance in the open arms, but this distance decreased after HBOT sessions.  
(*p-value ≤ 0.05, **p-value  ≤  0.01). n(Control)  =  9, n(HBOT-2)  =  11, n(HBOT-2.5)  =  12.

FIGURE 4

The effects of HBOT on exploratory and spontaneous behavior in Y-maze. (A) Average distance traveled by rats: VPA-exposed rats traveled less than 
the control rats. HBOT at 2 ATA increased exploratory behavior, while 2.5 ATA showed no significant impact. (B) Percentage of spontaneous alternation 
behavior: No significant differences in repetitive behavior were observed between the control and VPA-exposed rats. However, the HBOT-2 group 
showed a significant increase in SAB percentage, indicating reduced repetitive behavior post-hyperbaric oxygen therapy. (*p-value  ≤  0.05, 
**p-value  ≤  0.01, ***p-value  ≤  0.001). n(Control)  =  9, n(HBOT-2)  =  11, n(HBOT-2.5)  =  12.
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(t = −0.14608, df = 14.238, p-value = 0.8859), control and HBOT-2.5 
(t = 1.0794, df = 10.998, p-value = 0.3035)] (Figure 4B).

Morris water maze

The maze was used to assess any impairments in learning and 
memory. Results from the repeated measure ANOVA indicated 
significant differences between groups (p-value <0.0001). As shown in 
Figure 5, the learning process was observed in the sham rats, yet no 
statistical differences were found between the control and the sham 
animals throughout all five days of training (p-value = 0.491).

Post-treatment analysis revealed a noteworthy decrease in the 
time taken by HBOT-2 rats to find the platform after receiving 
hyperbaric oxygen therapy, compared to the sham and control groups 
that did not receive HBOT (Sham and HBOT-2: p-value <2e-16, Sham 
and HBOT-2.5: p-value <2e-16, Control and HBOT-2: p-value = 1.75e-
11, Control and HBOT-2.5: p-value = 1.24e-11) (Figure 5A).

However, no statistical difference was found between HBOT-2 
and HBOT-2.5 (p-value = 1.000) (Figure 5A).

Real-time PCR

Gene expression analysis was conducted in 58-day-old rats. The 
gene fold data revealed significant differences between groups (p-
value = 1.82e-12). Tukey’s post hoc analysis illustrated that the 

expression of the GRIN2B gene was markedly higher in control rats 
compared to the sham rats (p-value ~0) (Figure 6).

It has been demonstrated in Figure  6 that the GRIN2B gene 
expression has significantly increased in rats after undergoing HBOT 
[sham and HBOT-2 (p-value = 0.0062312), sham and HBOT-2.5 
(p-value = 0.0088335)].

Despite this observed increase in gene expression post-treatment, 
the GRIN2B expression in both HBOT groups remained notably lower 
than in the control group [control and HBOT-2 (p-value ~0), control 
and HBOT-2.5 (p-value ~0)] (Figure 6).

Furthermore, following the administration of hyperbaric oxygen, 
there was no significant difference in gene expression between the 
HBOT-2 and HBOT-2.5 groups (p-value = 0.9970551) (Figure 6).

Discussion

Hyperbaric oxygen therapy shows promise as a potential 
approach for addressing cognitive disorders, as suggested by 
emerging research. The first aim of the present study was to 
investigate the effect of HBOT on several autism-related behaviors 
and then to measure if this treatment has effects at the gene level in 
animal models of autism. For the second purpose, we  chose the 
GRIN2B gene that plays a role in Glutamate signaling. Our findings 
confirm that a single injection of VPA on gestational day 12.5 induced 
autism-like behavioral patterns in rat offspring.

FIGURE 5

The effects of HBOT on learning using Morris Water Maze. (A) Escape latency to reach the platform within 5  days of the test: There was no significant 
difference in escape latency between the control and sham rats. However, both HBOT-receiving groups showed significantly lower escape latency 
compared to the control and sham groups. (B–E) Track plot of the swimming path. n(Control)  =  9, n(sham)  =  12, n(HBOT-2)  =  11, n(HBOT-2.5)  =  12.
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Morphological abnormalities

Our initial finding revealed that rats exposed to prenatal VPA 
exhibited tail malformations in 80% of the rats consistent with 
previous reports (Foley et al., 2012; Kim et al., 2013). In contrast, two 
studies, one utilizing 500 mg/kg of VPA and the other 600 mg/kg, 
reported tail malformations in 10 and 34% of rats, respectively (Favre 
et al., 2013; Saft et al., 2014). These studies suggest that exposure to 
valproic acid during critical stages of pregnancy, such as neural tube 
closure, may trigger teratogenic effects in offspring, however, the exact 
mechanism requires further investigation. Despite these varying 
observations, understanding the higher incidence of this anomaly in 
our rats compared to previous studies requires additional research 
into genetic and embryonic factors.

Behavioral tests

Social interactions
Our findings align with prior research (Bambini-Junior et al., 

2011; Jaramillo et al., 2014), indicating that prenatal VPA exposure 
leads to social deficits in rats. Specifically, VPA-exposed rats tend to 
spend more time interacting with inanimate objects and familiar 
individuals, rather than engaging with unfamiliar ones. The results 
indicated that HBOT at the pressure of 2 and 2.5 ATA generally 
reduced social reluctance and increased social interaction, consistent 
with the observations of Luo et al. (2020). In fact, our observations 
suggest a potential decrease in social anxiety and fear of encountering 
new individuals in VPA-exposed rats following HBOT.

It’s noteworthy that Spencer et al. (2005) measured the number of 
active approaches to the stimulus instead of the interaction duration. 
According to their theory, after the approach has taken place, the 
duration of the encounter is dependent on both rats, the one who 
initiates it and the recipient one. Although we did not measure this 
criterion, we acknowledge its potential significance as we noticed 
instances where the tested animal attempted interaction, but the 
stimulus appeared occupied with its own activities, such as grooming 
or exploring, and paid minimal attention to the tested 
animal’s presence.

Anxiety
This study assessed anxiety levels in rats using the elevated plus 

maze (EPM), a behavior often linked to autism. According to our 
results, VPA-exposed rats spent more time in open arms, indicative of 
lower anxiety levels compared to the control group. While our findings 
align with some studies (Schneider et al., 2005; Fereshetyan et al., 
2021), conflicting research suggests that prenatal VPA exposure 
actually increases anxiety levels (Jaramillo et  al., 2014; Rajizadeh 
et al., 2019).

Our study’s findings suggest a potential increase in anxiety levels 
in HBOT-treated rats, contrasting with previous studies that have 
shown promising outcomes in reducing anxiety levels in VPA-exposed 
rats (Peng et al., 2010) or even studies indicating no effect of HBOT 
on anxiety (Fischer et al., 2022). The differences observed in outcomes 
may be attributed to variations in experimental conditions. Moreover, 
autistic behaviors vary widely and can appear paradoxical in 
therapeutic settings due to their complexity and variety. According to 
a 2022 study (Fischer et  al., 2022), there’s a proposed critical age 
window for HBOT administration to reduce anxiety-like behavior, 
which might contribute to our observed differences.

Exploratory and repetitive behavior
In this study, we employed the Y-maze to measure exploratory 

behavior, that is, the desire to discover new environments compared 
to familiar environments, as well as to measure repetitive behavior. 
Our findings revealed that VPA-exposed rats traveled shorter 
distances within the maze compared to the control group. This 
observation might suggest either reduced interest in exploring new 
environments or heightened anxiety in unfamiliar settings. Post-
treatment, the group that received HBOT at 2 ATA displayed nearly 
the same behavior as the control group, exhibiting a substantial 
increase in distance traveled. However, in the HBOT-2.5 group, there 
was a slight decrease in distance covered. This contradictory effect 
between the two pressures might be linked to increased anxiety levels 
noted earlier in the HBOT-2.5 group, warranting more detailed 
investigations into underlying mechanisms.

Interestingly, the percentage of spontaneous alternation behavior 
in VPA-exposed rats did not significantly differ from the control 
group, suggesting a lack of pronounced repetitive behavior. This 
outcome contrasts with findings from some studies (Schneider and 
Przewłocki, 2004; Pelsőczi et  al., 2019; McKinnell et  al., 2021) 
reporting increased repetitive behaviors in similar models. Our 
findings suggested the potential for HBOT to ameliorate repetitive 
behavior in VPA-exposed rats; however, as there is a lack of research 
on HBOT’s effects specifically on rat behavior, we lack comparative 
data for our results.

FIGURE 6

The effects of HBOT on the GRIN2B expression. The sham group 
exhibited significantly lower gene expression compared to the 
control group (p-value ~0). However, both HBOT-receiving groups 
displayed a notable increase in gene expression in comparison to the 
sham group (HBOT-2 p-value  =  0.0062312, HBOT-2.5  
p-value  =  0.0088335). Despite this increase, gene expression in the 
HBOT-2 and HBOT-2.5 groups remained significantly lower than in 
the control group (p-value~0 for both) (****p-value  ≤  0.0001,  
***p-value  ≤  0.001). n(Control)  =  9, n(sham)  =  12, n(HBOT-2)  =  11, 
n(HBOT-2.5)  =  12.
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Overall, the association between prenatal VPA exposure and 
repetitive behavior in rats is likely to be complex, multifactorial, and 
likely influenced by a spectrum of individual and pre/post-natal 
environmental factors. Further research is crucial to unravel the 
intricacies of this relationship.

Spatial learning and memory
Our study did not reveal any statistical disparities between 

VPA-exposed rats and the control group in terms of spatial learning 
and memory, aligning with the findings of certain researchers 
(Markram et  al., 2008; Bambini-Junior et  al., 2011). However, 
contrasting studies have reported impaired spatial learning and 
memory in VPA-exposed rats (Hou et al., 2018; Rajizadeh et al., 2019; 
Kim et al., 2022).

In Figure  5, it’s evident that HBOT significantly reduced the 
escape latency to locate the platform across the five days of the 
experiment. Similar observations in other studies (Liu et al., 2013; 
Gottfried et  al., 2021), support the notion that HBOT holds the 
potential for enhancing spatial learning abilities in the VPA-exposed 
rat model of autism.

Molecular studies
Our study revealed significantly reduced expression of the 

GRIN2B gene, responsible for encoding the GluN2B subunit of the 
NMDA receptor, in VPA-exposed rats compared to the control group. 
These findings have been consistent across various research, including 
studies involving autistic patients (Burnashev and Szepetowski, 2015; 
Hu et al., 2016; Bell et al., 2018). However, contradictory reports exist, 
showing increased GRIN2B expression in autism (Rinaldi et al., 2007; 
Chuang et  al., 2014), contrasting our results. We  believe that the 
existing contradiction may be due to the complexity of the autism 
disorder or down-up regulation mechanisms.

According to the findings of our study, HBOT with absolute 
pressures of 2 and 2.5 atmosphere significantly increased the 
expression of the GRIN2B gene compared to the VPA-exposed group. 
Yet, even after HBOT, gene expression levels remained lower than 
those in the control group. Interestingly, there was no variance in gene 
expression between the HBOT-2 and HBOT-2.5 groups, suggesting 
that the increase of 0.5 ATA did not elicit a noticeable impact on 
gene expression.

HBOT’ mechanism of action
HBOT can affect behavior in several ways. First, HBOT can 

increase cerebral blood flow (Chen, 2007). This enhanced oxygen 
delivery may improve the function of brain cells, including neurons 
in the PFC, and potentially contribute to improved behaviors. 
Increased oxygen levels could promote synaptic plasticity and 
neurotransmission. Also, there are studies that found benefits related 
to a reduction in cerebral edema, apoptosis, cerebral glucose 
utilization, vascular density, and synaptic remodeling, each of which 
has effects on improved functional and cognitive outcomes (Schimmel 
et al., 2023).

The other impact of HBOT is through inflammation and oxidative 
stress. Hyperoxia generated during HBOT may stimulate the 
preservation of IκBα and thereby inhibit NF-κB release, resulting in 
less gene transcription of pro-inflammatory cytokines and, thus, an 
anti-inflammatory state despite oxidative stress (De Wolde et  al., 
2021). Some studies suggest that autism is associated with 

inflammation and oxidative stress in the brain (Rose et al., 2012; Liu 
et  al., 2022; Usui et  al., 2023). HBOT has anti-inflammatory and 
antioxidant effects. It may help reduce neuroinflammation and 
oxidative stress, which can contribute to improved gene expression 
and behavior.

It has been shown that HBOT increases the rate of angiogenesis 
(Tal et  al., 2017; Buckley and Cooper, 2022). This can improve 
perfusion and balance inflammation which leads to improved autism-
related behaviors in VPA-exposed rats. In addition, HBOT has been 
proposed to enhance neuroplasticity (Boussi-Gross et al., 2013; Efrati 
et  al., 2013). This increased neuroplasticity might play a role in 
improving social and behavioral deficits in the rat model.

Additionally, HBOT has the capacity to alter gene expression 
through two primary mechanisms: oxygen-responsive genes and 
epigenetic modifications. Studies have shown that HBOT can 
increase the levels of oxygen radicals (De Wolde et  al., 2021) 
although reactive compounds containing oxygen are usually 
harmful to cells when accumulated to relatively high 
concentrations, they are also instrumental in the control of the 
activity of a myriad of proteins, and control both the upregulation 
and downregulation of gene expression (Hancock, 2021). ROS 
species can mediate transcription factors, such as hypoxia-
inducible factor (HIF), AP-1, ATF, and NF-kappaB (Turpaev, 
2002; Hancock, 2021). So, changes in oxygen levels can lead to 
alterations in gene expression.

Epigenetic changes, such as DNA methylation and histone 
modifications, play a crucial role in regulating gene expression. Some 
research suggests that HBOT has been associated with changes in 
DNA methylation patterns and, hence it may potentially lead to 
changes in gene expression profiles (Liu et al., 2020).

Given the crucial function of this gene in the modulation of 
glutamatergic signaling and in the regulation of synaptic activity, 
its aberrant activation has been implicated in several neurological 
disorders, including autism (Yoo et al., 2012; Sceniak et al., 2019). 
Based on some research, a decrease in the expression or function 
of the GRIN2B gene can impair NMDA-dependent signaling and 
can disrupt the excitatory-inhibitory balance of the middle area 
of the frontal lobe causing some autism-like behaviors such as 
social interaction disorders (Rudebeck et  al., 2008; Yoo et  al., 
2012; Lee et al., 2016; Bell et al., 2018). The increased expression 
of the GRIN2B gene due to HBOT suggests a potential link to the 
improvement observed in behaviors. This elevation in GRIN2B 
expression might influence NMDA receptor function, which 
could potentially impact the excitation-inhibition balance in 
the brain.

Conclusion

Generally, the group that got HBOT at a pressure of 2 ATA 
showed greater improvement in social interaction and exploratory 
behaviors, and the group that received HBOT at a pressure of 2.5 ATA 
exhibited better improvement in the social novelty test. Molecular 
studies revealed the downregulation of the GRIN2B gene in 
VPA-exposed rats. HBOT at varying pressures enhanced GRIN2B 
gene expression, suggesting a potential mechanism for 
behavioral improvement.
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Finally, these findings strongly suggest that HBOT holds promise 
as a potential intervention for addressing the impairments associated 
with autism. However, further investigation is warranted to thoroughly 
understand its mechanisms and optimize its application for 
clinical intervention.
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