
Marine Pollution Bulletin 202 (2024) 116364

Available online 20 April 2024
0025-326X/© 2024 Elsevier Ltd. All rights reserved.

Determinants of fishing grounds footprint: Evidence from dynamic spatial 
Durbin model 

Milad Aminizadeh , Hosein Mohammadi *, Alireza Karbasi 
Agricultural Economics Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran   

A R T I C L E  I N F O   

Keywords: 
Ecological footprint 
Fishery sector 
Sustainable environment 
Environmental Kuznets curve 
STIRPAT model 
Spatial spillover effects 

A B S T R A C T   

Despite a growing literature on fishing grounds footprint, there is no study analyzing fishing footprint regarding 
spatial effects between neighboring countries. Thus, we explored whether the fishing grounds footprint of 156 
countries is spatially correlated. For this purpose, we applied the dynamic spatial Durbin model to examine the 
direct and indirect effects of GDP per capita, biological capacity, trade openness, population, and urbanization on 
fishing grounds footprint in the short-term and the long-term during 2001–2021. The results revealed that: (1) 
there exists a positive and significant spatial dependence in fishing grounds footprint between countries; (2) 
inverted U-shaped environmental Kuznets curve hypothesis is valid in the short-term and the long-term; (3) 
fishing grounds footprint is negatively influenced by biocapacity and urbanization in neighboring countries, 
while population directly increases the fishing footprint. Finally, some suggestions were put forward to reduce 
fishing grounds footprint and to achieve a sustainable fisheries environment.   

1. Introduction 

Seafood plays an important role in food and nutrition security (Asche 
et al., 2015; Jimenez et al., 2020; Ojea et al., 2023) and is part of a 
healthy human diet (Aminizadeh et al., 2024; Baptista et al., 2020; de 
Boer et al., 2020; Garlock et al., 2022; Thilsted et al., 2016). The fish-
eries and aquaculture industries contribute to the economic livelihood of 
>12 % of people (Béné et al., 2015; Love et al., 2021; Tigchelaar et al., 
2022; WWF, 2010; Yıldırım et al., 2022). More recently, the Food and 
Agriculture Organization (2022) reported that global seafood con-
sumption and production grew rapidly, and outpaced the growth of the 
global population over the past five decades. Seafood consumption has 
risen from nearly 40 million tons in 1970 to over 157 million tons in 
2020. Similarly, total world aquaculture and fisheries production 
reached approximately 178 million tons in 2020 from about 60 million 
tons in 1970 (FAO, 2022). 

In order to increase production and respond to consumer demand, 
overfishing through illegal and destructive industrial fishing methods 
such as dynamite and cyanide fishing has increased and has become a 
serious global problem in recent years (Dulvy et al., 2021; FAO, 2022; 
Lucas et al., 2021; Sarvala et al., 2020). According to the Food and 
Agriculture Organization (2020) approximately 31 % of fishing grounds 
are experiencing overfishing (FAO, 2020). Population growth is faster 

than the growth of underwater biological capacity, which could cause 
economic and social problems and threaten welfare and food security 
(WWF, 2020). Considering the increase in global population in future 
years, one can predict that demand for seafood will grow, leading to 
great environmental concerns about fisheries resources. Thus, refor-
mative policies and urgent actions are necessary to encourage sustain-
able fisheries production (Adalı et al., 2023; Clark et al., 2018). 

The analysis of fishing grounds footprint has attracted significant 
research attention in recent years due to the role of human activity 
pressure on marine environment degradation (Amin et al., 2022). The 
ecological footprint index measures the effect of human activities on 
environmental degradation (Caglar et al., 2021; Dembińska et al., 2022; 
M. Li et al., 2023; Z. Li et al., 2023; R. Li et al., 2023; Mamghaderi et al., 
2023), and is a suitable environmental indicator compared to other 
indices that represent limited aspects of environmental degradation (Al- 
Mulali et al., 2015; Bello et al., 2022). On the one hand, it is essential to 
understand the factors that decrease or increase the fishing footprint. On 
the other hand, many subjects in environmental issues like ecological 
footprint are inherently spatial (Wang et al., 2013). This means natural 
resource consumption in neighboring countries potentially affects a 
country’s consumption (Ramezani et al., 2022; Zambrano-Monserrate 
et al., 2020). Therefore, the fishing grounds footprint of countries could 
potentially be spatially related (Karimi et al., 2022). If the spatial effects 
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are significant, researchers and decision-makers should consider these 
effects in order to choose appropriate environmental policies to reduce 
fishing grounds footprint. 

The purpose of our study is twofold. Firstly, we examine the spatial 
dependence of fishing grounds footprint and its determinants. Secondly, 
we determine the difference between the direct and indirect effects of 
GDP per capita, biological capacity, trade openness, population, and 
urbanization on fishing grounds footprint in terms of the short-term and 
the long-term. 

Regarding the first purpose, the question is whether we can find 
spatial dependence between countries in fishing grounds footprint. In 
recent years, most studies (e.g., Hou et al., 2023; Li and Li, 2020; Liu and 
Nie, 2022; Liu and Song, 2020; Marbuah and Amuakwa-Mensah, 2017; 
Wang and Yang, 2019; Wang et al., 2013; Zambrano-Monserrate et al., 
2020) have emphasized the importance of considering spatial effects in 
environmental issues such as ecological footprint. However, previous 
studies have rarely analyzed the spatial dependence in fishing grounds 
footprint. For instance, studies by Amin et al. (2022) and Karimi et al. 
(2022) showed that there is no significant spatial dependence in the 
fishing grounds footprint of countries. One possible reason for the 
absence of spatial dependence in fishing footprint is the small sample of 
countries. Hence, the effect of spatial correlation in fishing grounds 
footprint remains unknown and needs further exploration. 

Regarding the second purpose of this study, we investigate the direct 
and indirect effects of factors affecting the fishing grounds footprint in 
the short-term and the long-term horizons using the dynamic spatial 
Durbin model (SDM). Understanding the difference between these ef-
fects is important to analyze the environmental policies that countries 
encounter (Zambrano-Monserrate et al., 2020). No research exists, to 
our knowledge, investigating our second study purpose. Clark et al. 
(2018) apply a fixed effect panel data model to investigate the factors 
affecting fishing grounds footprint. They found that total population, 
GDP, and Meat consumption increase the total fisheries footprint. Clark 
and Longo (2019) revealed that GDP and population positively affect 
fishing footprint, while the effect of urbanization is negative. They 
confirmed that the environmental Kuznets curve (EKC) is valid for the 
relationship between GDP per capita and fishing grounds footprint. 
Karimi et al. (2022) found that the EKC hypothesis is valid in the fishing 
footprint for Asia-Pacific countries. They indicated that the fishing 
footprint is not affected significantly by energy intensity, urbanization, 
and natural resource rents. Additionally, they found that the economic 
freedom index has a significantly positive effect on fishing grounds 
footprint. Other studies have analyzed the factors affecting the fishing 
grounds footprint by time series methods for a group of countries and 
each country, such as Ulucak and Lin (2017) for USA, Solarin et al. 
(2021) for 89 countries, Yilanci et al. (2022) for China, Yilanci et al. 
(2023) for Indonesia, and Adalı et al. (2023) for top ten fishing 
countries. 

Despite a growing literature on fishing grounds footprint, there is no 
study analyzing fishing footprint regarding spatial effects between 
neighboring countries. This study uses spatial econometrics to analyze 
the spatial dependence and main determinants of fishing grounds foot-
print between 156 countries due to the data availability. In addition, the 
dynamic SDM model is used to estimate the short-term and the long- 
term direct, indirect, and total effects of GDP, biological capacity, 
trade openness, population and urbanization on fishing grounds foot-
print. Our study contributes to the literature of fishing footprint by 
finding a significant spatial effect between countries. Moreover, the 
finding validates the environmental Kuznets curve (EKC) hypothesis 
between economic growth and fishing grounds footprint in the short- 
term and the long-term. Biocapacity and urbanization has a negative 
and significant on fishing footprint in neighboring countries. This 
finding is essential for policymakers, decision-makers and academics. 

The remainder of this study is structured as follows. Section 2 de-
scribes the methodology and data used. Section 3 presents the results 
and discussion. Section 4 concludes this study with policy 

recommendations. 

2. Data and method 

2.1. Theoretical formwork 

The IPAT and the Stochastic Impacts by Regression on Population, 
Affluence, and Technology (STIRPAT) models are the most commonly 
used methods to study the determinants of environmental degradation 
(Kwakwa, 2023; Liu and Liu, 2019; Lv et al., 2021; Ofori et al., 2023; 
Owusu et al., 2024; Wang et al., 2023a,b,c; Xu et al., 2021; Yu et al., 
2023). The STIRPAT model links economic factors to environmental 
performance (Ashraf et al., 2022). 

Ehrlich and Holdren (1971) proposed an IPAT model to analyze the 
effects of population, affluence, and technological factors on the envi-
ronment. The model is shown in the equation below: 

I = PAT (1) 

The main limitation of the IPAT model is that the population, 
affluence, and technology have the same effect on environmental 
pollution (York et al., 2003). Therefore, the STIRPAT model was pro-
posed by Dietz and Rosa (1997) to overcome the limitation of the IPAT 
model. Researchers can extend the STIRPAT model based on their 
research purposes. In recent years, many studies have used the STIPAT 
model to analyze the factor drivers of ecological footprint (Jabeen et al., 
2023; M. Li et al., 2023; Z. Li et al., 2023; R. Li et al., 2023). The general 
form of the STIRPAT model is as follows: 

Iit = α0Pα1
it Aα2

it Tα3
it eit (2)  

where, i (i = 1, …, N) represents cross-sections and, t (t = 1, …, T) shows 
year 2001–2021. I represents the ecological degradation impacts 
measured by the fishing grounds footprint index, P represents the pop-
ulation factor measured by population and urbanization, A represents 
the affluence factor measured by GDP per capita and fishing grounds 
biocapacity, and T demonstrates the technological factor measured by 
trade openness. α0 shows the constant term of the model. α1, α2, and α3 
reflect the effect of change of independent variables on the dependent 
variable. eit shows the stochastic part of the model. 

Theoretical and empirical literature reveals that income (Clark et al., 
2018; Yilanci et al., 2022), fishing grounds biocapacity (Jabeen et al., 
2023; Zambrano-Monserrate et al., 2020), trade openness (Amin et al., 
2022; Yilanci et al., 2023), population (Clark and Longo, 2019; Clark 
et al., 2018), and urbanization (Karimi et al., 2021; Yıldırım et al., 2022) 
are main determinants of fishing grounds footprint. To estimate the ef-
fects of determinants on fishing grounds footprint, the extended STIR-
PAT model is given as follows. 

LnEFit = β0 + β1LnGDPit + β2LnGDP2
it + β3LnBCit + β4LnTOit

+ β5LnPOPit + β6LnURit + uit
(3)  

where, EF represents fishing grounds footprint. Several studies have 
used ecological footprint to measure ecological degradation (Alvarado 
et al., 2021; Balsalobre-Lorente et al., 2023; Kazemzadeh et al., 2023; 
Wang et al., 2013). GDP represents GDP per capita (constant 2015 US $), 
and GDP2 shows GDP per capita squares used for testing the EKC hy-
pothesis. Some studies tested the EKC and revealed mixed results. Some 
studies confirm the EKC is valid for the relationship between income and 
environmental degradation (Amin et al., 2022; Clark and Longo, 2019; 
Karimi et al., 2022; Mahmood, 2023a,b; Mahmood et al., 2023a,b,c; 
Wang et al., 2023a,b,c Yilanci et al., 2023). Wang et al. (2024a,b,c) 
supported the EKC hypothesis between economic growth and environ-
mental degradation across four income groups. The studies by Mahmood 
et al. (2020) for North African countries, Mahmood (2023a,b) for Gulf 
Cooperation Council (GCC) countries, and Wang et al. (2023a,b,c) for 
OECD countries. However, there are studies that did not support EKC 
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hypothesis. For instance, Wang et al. (2013) indicated that EKC is not 
supported. Jahanger et al. (2022) revealed that the EKC hypothesis is 
not valid in the Asian region. M. Li et al. (2023), Z. Li et al. (2023) and R. 
Li et al. (2023) found that the EKC hypothesis is not valid for ecological 
footprint. Therefore, In this study, we theorize that the fishing grounds 
footprint will be positively affected by GDP (i.e., ∂EFit

∂GDPit
> 0), and nega-

tively affected by GDP squared (i.e., ∂EFit
∂GDP2

it
< 0), implying that after a 

certain level of income per capita, fishing grounds footprint begin to 
decline. BC represents fishing grounds biocapacity. As biological ca-
pacity is the capacity of ecosystems to absorb ecological footprints, it is 
hypothesized that fishing grounds footprint will decrease with expand-
ing the biological capacity (Jabeen et al., 2023). However, empirical 
evidence (e.g., Zambrano-Monserrate et al., 2020) indicated that 
countries with higher biological capacity are tempted to overexploit 
their resources. Thus, biocapacity can decrease or increase fishing 
grounds footprint (i.e., ∂EFit

∂BCit
< 0 or > 0). 

TO shows trade openness (the ratio of exports plus imports to GDP). 
Trade openness plays an important role in technology diffusion because 
countries with open economies can import new environmentally 
friendly technologies from high-tech industries in developed countries. 
Wang et al. (2024a,b,c) revealed that trade openness had the mediating 
effect in the impact of new technologies such as artificial intelligence on 
pollution emission reduction. In contrast, trade openness can increase 
fishing ground footprint through the composition effect and the scale 
effect. Increase in production for export purposes boosts pressures on 
natural resources. Additionally, increase in imports of products leads to 
the emission of pollutants. On the other hand, developed countries with 
strict regulations shift the polluting industries to developing countries 
with lax environmental regulations (Copeland and Taylor, 2013; Jabeen 
et al., 2023; Mohammadi et al., 2023; Le et al., 2016). In this regard, 
Wang et al. (2024a,b,c) found that trade openness has asymmetry effects 
on CO2 emissions. Trade openness leads to decrease CO2 emissions at 
10 %–50 % quantile levels and increase CO2 emissions at 80 %–90 % 
quantile levels. Additionally, Mahmood (2020) found that there exists 
inverted U-shaped relationship between trade openness and carbon 
emissions. Moreover, Wang et al. (2024a,b,c) showed that trade pro-
tectionism increases the environmental degradation in lower-income 
nations. By contrast, Mahmood (2023a,b) confirmed that trade open-
ness has a significantly positive effect on carbon productivity. On the 
other side, the studies by Al-Mulali et al. (2016), Destek et al. (2018), 
and Destek and Sinha (2020) have found no significant relationship 
between trade openness and environmental degradation. Therefore, 
trade openness can either inhibit or promote fishing grounds footprint (i. 
e., ∂EFit

∂TOit
< 0 or > 0). 

POP shows the population. The population of countries plays a sig-
nificant role in increasing ecological footprint (Clark and Longo, 2019; 
Clark et al., 2018;). Aghasafari et al. (2021) revealed that CO2 emissions 
positively affected by population size. Hence, it is expected that fishing 
grounds footprint will increase with growth of population (i.e., 
∂EFit

∂POPit
> 0 ). UR represents urbanization. Some studies investigated the 

effect of urbanization on ecological footprint and suggested mixed re-
sults, such as negative effect (Charfeddine and Mrabet, 2017; Clark and 
Longo, 2019; Danish et al., 2020), and positive effect (Al-Mulali and 
Ozturk, 2015; Mahmood and Furqan, 2021; Nosheen et al., 2020). In this 
regard, Ramezani et al. (2022) showed that urbanization had negative 
direct and positive indirect effects on ecological footprint in MENA re-
gion. In addition, Mahmood et al. (2023a,b,c) suggested that urbani-
zation had not significant direct, indirect and total effects on pollution 
emissions in MENA region. Therefore, urbanization can either to 
decrease and increase fishing grounds footprint (i.e., ∂EFit

∂URit
< 0 or > 0). 

2.2. Econometric methodology 

2.2.1. Spatial autocorrelation analysis 
The Moran’s I statistic determines the geographical autocorrelation 

from the global perspective of the research object. The Moran’s I index is 
as follows: 

I =

∑n

i=1

∑n

j=1
wij(xi − x)

s2
∑n

i=1

∑n

j=1
wij

, s2 =

∑n

i=1
(xi − x)

n
(4) 

The value for Moran’s I ranges between − 1 to 1. The negative values 
show that there is a negative spatial correlation, and positive values 
imply that there is a positive spatial correlation. Zero value indicates no 
spatial autocorrelation. 

2.2.2. Spatial Durbin model 
The most commonly used spatial econometric models in environ-

mental economics literature are the spatial autoregressive model (SAR), 
the spatial error model (SEM), the spatial autocorrelation model (SAC), 
and the spatial Durbin model (SDM). The SAR model contains a spatially 
lagged dependent variable (Anselin, 1988; Elhorst, 2014; Iqbal et al., 
2022; Mahmood et al., 2023a,b,c). The SEM model incorporates spatial 
autocorrelation in the error term (Lee and Yu, 2010; Zhou et al., 2023). 
The SAC model extends the SAR model by allowing for a spatially auto- 
correlated error (Belotti et al., 2017; Mohammadi et al., 2022). The SAR, 
SEM, and SAC models do not consider spatially lagged independent 
variables in explaining the dependent variable, leading to specification 
bias (Elhorst, 2010; Jiang et al., 2018). Hence, the SDM model is the best 
spatial model since it contains both the spatially lagged independent and 
dependent variables. In addition, the SDM model produces consistent 
and unbiased estimates (Elhorst, 2014). For this reason, the SDM model 
has been widely used in various studies in the field of environment 
(Mahmood, 2022a,b; Wang et al., 2023a,b,c; Zhao and Sun, 2022). The 
SDM model is as follows: 

Yit = ρWYit + βXit + θWXit + μi + λt + εit (5)  

where Yit is the fishing grounds footprint in country i in year t, ρ denotes 
the spatial lag coefficient of the fishing grounds footprint, W denotes the 
spatial weight matrix, Xit represents the independent variables in 
country i in year t, β represents the influence of the independent vari-
ables on fishing grounds footprint, θ is the spatial lag coefficients of the 
independent variables, μi and λt denote the space fixed effect and time 
fixed effect, respectively, and εit denotes the random error vector. 

The short-term effect of the independent variables cannot be calcu-
lated with static SDM (Zhou et al., 2023). In the environmental system, 
the effect of independent variables on the dependent variable needs to 
take a period of time and is often difficult to complete in a short time. 
Therefore, a continuous dynamic process is necessary in analysis of 
ecological footprint. Hence, the spatial model needs to consider both 
spatial effect and dynamic characteristics (Zhao and Sun, 2022). The 
dynamic SDM can investigate the spatial effects of fishing grounds 
footprint from both the short-term and the long-term perspectives while 
reducing the problem of endogeneity caused by omitted variables 
(LeSage and Pace, 2009; Wu et al., 2023). For these reasons, previous 
empirical studies (e.g., Wang et al., 2013; Zambrano-Monserrate et al., 
2020; Zhao and Sun, 2022) have emphasized on the use of dynamic SDM 
in environmental investigations. Thus, the dynamic SDM is used to 
reflect the changes of spatial effects over time in this study. The dynamic 
SDM can be expressed as follows: 

Yit = τYi,t− 1 +ψWYi,t− 1 + ρWYit + βXit + θWXit + μi + λt + εit (6)  

where τ and ψ represent the temporal lag coefficient and the spatio-
temporal lag coefficient of the fishing grounds footprint, respectively. 
All other parameters and variables are defined in Eq. (5). 
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LeSage and Pace (2009) stated that the estimated coefficients in 
spatial models do not indicate the marginal effects of independent var-
iables on dependent variable and consequently lead to wrong conclu-
sions. The decomposition method proposed by LeSage and Pace (2009) 
can identify direct and indirect effects in response to changes in the 
independent variables. In this study, we calculate the direct and indirect 
effects in the short-term and the long-term to further increase the 
credibility of the findings. Therefore, we rewrite the dynamic SDM in 
vector form as follows: 

Yit = (I − ρW)
− 1
(τI +ψW)Yi,t− 1 +(I − ρW)

− 1
(βXit + θWXit)

+ (I − ρW)
− 1
(μi + λt + εit)

(7)  

where, I denotes an identify matrix. All other parameters and variables 
are defined in Eqs. (5) and (6). 

The direct effect is the average value of diagonal elements of the 
matrix, which reflects the effect of the independent variable of country i 
on the fishing grounds footprint in country i, whereas the indirect effect 
is the average value row sum of non-diagonal elements of the matrix, 
which represents the effect of independent variables in neighboring 
countries on fishing grounds footprint in country i (Elhorst, 2014). The 
sum of direct and indirect effects is the total effect. The equations of 
direct and indirect effects in the short-term and the long-term are shown 
in Table 1 (Belotti et al., 2017). 

2.2.3. Spatial weight matrix 
Spatial weight matrix (Wij) is the core element of spatial econometric 

models to reflect the spatial relationship of countries (Hu and Wang, 
2020). To comprehensively analyze the spatial correlation characteris-
tics of fishing grounds footprint, this study adopted two spatial weight 
matrices based on the existing literature (Feng and Wang, 2020; Jiang 
et al., 2018; Quito et al., 2023; Zambrano-Monserrate et al., 2020). One 
is k nearest neighbors spatial weights matrix (W1). Following Mei et al. 
(2017) and Zambrano-Monserrate et al. (2020), we choose the eight 
nearest neighbors using the test and error method. The second is an 
inverse distance-based spatial weights matrix (W2). The forms of the two 
matrices are as follows: 

W1 =

{
Wij = 1, if canton to the set of the nearest neighbors;

Wij = 0, otherwise (8)  

W2 =

⎧
⎪⎨

⎪⎩

Wij =
1
dij
, i ∕= j;

Wij = 0, i = j
(9)  

where, dij denotes the distance between country i and country j. 

2.3. Data 

This study analyzes the existence of a spatial effect for 156 countries 
during the period from 2001 to 2021. The choice of the sample countries 
and the time series length is determined by the availability of data on 
fishing footprint, biocapacity, trade openness, and urbanization. Table 2 
shows the descriptive statistics (minimum, maximum, mean, and stan-
dard deviation) of the variables. EF is fishing grounds footprint which 
refers ecological footprint of consumption. This index is calculated by 

summing ecological footprint of production and the net ecological 
footprint of trade for a country (Lin et al., 2018). BC is fishing grounds 
biocapacity which represents the amount of biologically productive 
inland waters and marine available in a country (Lin et al., 2018). Data 
for fishing grounds footprint and fishing grounds biocapacity are ob-
tained from the Global Footprint Network (Global Footprint Network, 
2023), which provides a reliable foundation for ecological footprint 
analysis. GDP per capita is measured as constant 2015 US$. Population 
is measured in thousand persons. Trade openness is the ratio of exports 
plus imports to GDP. Urbanization is urban population as a percentage of 
total population. Data for GDP per capita, population, trade openness 
and urbanization obtained from the World Bank WDI database (World 
Development Indicators, 2023), which provides a reliable data for socio- 
economic analysis. For reducing the effect of heteroskedasticity, all the 
variables were transformed in natural logarithm. Hence, the estimated 
direct, indirect and total effects are elasticities. 

3. Results and discussion 

3.1. Spatial autocorrelation tests 

Table 3 presents the results of Moran’s I tests for spatial autocorre-
lation in fishing grounds footprint and each independent variable. 
Moran’s I is positive and highly statistically significant, implying that 
there is spatial dependence in fishing grounds footprint and all inde-
pendent variables for every year. Therefore, fishing footprint in the local 
country is influenced by neighboring countries. This finding is consistent 
with previous studies (Mahmood, 2022a,b; Mahmood et al., 2020; Wang 
et al., 2023a,b,c; Zambrano-Monserrate et al., 2020), which confirmed 
that environmental behavior in neighboring countries affects a country’s 
behavior. 

3.2. Spatial regression 

The next step is to identify the best spatial model according to the 
described procedures of Belotti et al. (2017). The results of four speci-
fications of spatial models under W1 are shown in Table 4.1 The LR-test 
results suggest that the SDM would not be simplified to the SEM and 
SAR. Because the SDM and SAC models are not nested, the Akaike in-
formation criterion (AIC) and Bayesian information criterion (BIC) are 
employed to choose the appropriate model. Our results indicate that the 
AIC and BIC in SDM are lower than SAC, suggesting SDM is an appro-
priate specification. Finally, considering the significance of the lagged 
dependent variable, dynamic SDM is the best modeling approach for 
investigating the relationship between fishing grounds footprint, GDP, 
biological capacity, trade openness, population, and urbanization. Our 
main finding shows that the rho coefficient is positive and significant, 
confirming that there are significant spatial effects between the fishing 
grounds footprint of the countries. This means a country’s fishing foot-
print also depends on the fishing grounds footprint in its neighboring 
countries. The result contradicts that of Amin et al. (2022) and Karimi 

Table 1 
Direct and indirect effects in the short-term and the long-term.   

Short-term Long-term 

Direct {
(I − ρW)

− 1
× (βI + θW)

}d {
(I − ρW − (τI + ψW)

− 1
× (βI + θW)

}d 

Indirect {
(I − ρW)

− 1
× (βI + θW)

}nd {
(I − ρW − (τI + ψW)

− 1
× (βI + θW)

}nd 

Note: The superscript d and nd denote the diagonal and non-diagonal elements, 
respectively. 

Table 2 
Descriptive statistics.  

Variables Minimum Maximum Mean Standard deviation 

LnEF  − 0.208  18.409  13.235  2.564 
LnGDP  5.574  11.630  8.622  1.433 
LnBC  3.649  18.958  13.659  2.518 
LnTO  1.418  6.081  4.318  0.503 
LnPOP  11.305  21.069  15.923  1.866 
LnUR  2.136  4.605  3.998  0.446  

1 The results of spatial models based on W2 (distance matrix) are available 
upon request. 
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et al. (2022) who show that there is no significant spatial dependence in 
the fishing grounds footprint among Asia-Pacific countries. The possible 
reason for the difference in results can be related to the difference in the 
sample of countries. Ponce et al. (2023) showed that limited information 
of countries leads to inconsistent results for spatial models. These results 
have important implications for future studies because overlooking the 
spatial effects produces biased and inconsistent parameter estimation 
(Amidi and Fagheh Majidi, 2020; Zambrano-Monserrate et al., 2020). 

3.3. Spatial effect analysis 

The results of the short-term and the long-term direct, indirect, and 
total effects are presented in Table 5. The results indicate that GDP per 
capita positively affects the fishing grounds footprint of countries. The 
total effect of GDP per capita on fishing grounds footprint is positive and 
statistically significant at 1 % level in the short-term and long-term. In 
terms of the short-term, increasing 1 % of GDP increases the fishing 
grounds footprint by 6.85 %, mostly attributable to the indirect effect. In 
the long-term analysis, a 1 % increase in GDP will lead fishing grounds 
footprint to increase by 13.19 %, about 70 % of the total effect is 
attributable to the indirect effect. This result is similar to previous 
findings (Clark et al., 2018; M. Li et al., 2023; Z. Li et al., 2023; R. Li 

et al., 2023; Liu et al., 2022; Yilanci et al., 2023; Zambrano-Monserrate 
et al., 2020), which revealed that ecological footprint is significantly 
influenced by economic growth. 

The results reveal that the total, direct, and indirect effects of 
squared GDP per capita are negative and statistically significant at 1 % 
level in the short-term and the long-term, confirming the existence of the 
inverted U-shaped EKC between GDP per capita and fishing grounds 
footprint. Therefore, our result proves that the EKC hypothesis is valid in 
our sample of countries. This shows that countries ignore the fishing 
environment at the initial level of economic growth, which leads to in-
crease in fishing grounds footprint. However, after a turning point, the 
country begins to care about the fishing environment and improve its 
relationship with it. As the economy grows, society realizes the vital role 
of the environment in human life and development, pays increasing 
attention to environmental sustainability issues, and has the ability to 
implement actions to conserve resources and protect the environment. 
The turning point of the Kuznets curve for fishing footprint is at 10518 
US dollars in the short-term and at 10713 US dollars in the long term. 
Considering that the average GDP per capita of the sample countries is 
less than the calculated turning point, economic growth of these coun-
tries has adverse environmental impacts. This finding is consistent with 
previous research (Amin et al., 2022; Clark and Longo, 2019; Danish 

Table 3 
Global Moran’s I index values of study variables.  

Year EF GDP BC TO POP UR 

2001 0.042*** 
(3.709) 

0.034*** 
(3.058) 

0.174*** 
(12.839) 

0.062*** 
(4.947) 

0.017** 
(2.076) 

0.159*** 
(11.538) 

2002 0.042*** 
(3.691) 

0.034*** 
(3.059) 

0.175*** 
(12.869) 

0.058*** 
(4.637) 

0.017** 
(2.080) 

0.157*** 
(11.428) 

2003 0.041*** 
(3.640) 

0.034*** 
(3.055) 

0.174*** 
(12.783) 

0.054*** 
(4.414) 

0.017** 
(2.083) 

0.156*** 
(11.334) 

2004 0.040*** 
(3.605) 

0.034*** 
(3.055) 

0.171*** 
(12.602) 

0.069*** 
(5.560) 

0.018** 
(2.085) 

0.154*** 
(11.234) 

2005 0.040*** 
(3.619) 

0.034*** 
(3.054) 

0.172*** 
(12.637) 

0.069*** 
(5.580) 

0.018** 
(2.087) 

0.153*** 
(11.144) 

2006 0.041*** 
(3.650) 

0.034*** 
(3.050) 

0.174*** 
(12.809) 

0.077*** 
(6.140) 

0.018** 
(2.089) 

0.152*** 
(11.062) 

2007 0.041*** 
(3.647) 

0.034*** 
(3.050) 

0.178*** 
(13.123) 

0.079*** 
(6.209) 

0.018** 
(2.091) 

0.150*** 
(10.961) 

2008 0.038*** 
(3.476) 

0.034*** 
(3.040) 

0.181*** 
(13.366) 

0.066*** 
(5.341) 

0.018** 
(2.094) 

0.149*** 
(10.852) 

2009 0.039*** 
(3.555) 

0.034*** 
(3.041) 

0.180*** 
(13.269) 

0.053*** 
(4.132) 

0.018** 
(2.097) 

0.147*** 
(10.740) 

2010 0.037*** 
(3.369) 

0.034*** 
(3.041) 

0.178*** 
(13.143) 

0.071*** 
(5.636) 

0.018** 
(2.101) 

0.145*** 
(10.620) 

2011 0.037*** 
(3.392) 

0.034*** 
(3.043) 

0.177*** 
(13.065) 

0.076*** 
(5.962) 

0.018** 
(2.106) 

0.144*** 
(10.496) 

2012 0.038*** 
(3.520) 

0.034*** 
(3.046) 

0.176*** 
(12.956) 

0.083*** 
(6.462) 

0.018** 
(2.109) 

0.142*** 
(10.386) 

2013 0.038*** 
(3.508) 

0.034*** 
(3.046) 

0.175*** 
(12.893) 

0.090*** 
(6.957) 

0.018** 
(2.110) 

0.140*** 
(10.276) 

2014 0.038*** 
(3.504) 

0.034*** 
(3.045) 

0.176*** 
(12.957) 

0.094*** 
(7.215) 

0.018** 
(2.111) 

0.139*** 
(10.161) 

2015 0.038*** 
(3.550) 

0.034*** 
(3.046) 

0.176*** 
(12.983) 

0.110*** 
(8.403) 

0.018** 
(2.113) 

0.137*** 
(10.066) 

2016 0.041*** 
(3.660) 

0.034*** 
(3.046) 

0.178*** 
(13.086) 

0.116*** 
(8.811) 

0.018** 
(2.115) 

0.136*** 
(9.971) 

2017 0.041*** 
(3.691) 

0.034*** 
(3.047) 

0.179*** 
(13.191) 

0.129*** 
(9.720) 

0.018** 
(2.117) 

0.135*** 
(9.877) 

2018 0.040*** 
(3.641) 

0.034*** 
(3.048) 

0.180*** 
(13.207) 

0.129*** 
(9.743) 

0.018** 
(2.121) 

0.133*** 
(9.785) 

2019 0.039*** 
(3.594) 

0.034*** 
(3.049) 

0.181*** 
(13.311) 

0.123*** 
(9.308) 

0.018** 
(2.126) 

0.132*** 
(9.695) 

2020 0.039*** 
(3.586) 

0.034*** 
(3.049) 

0.180*** 
(13.229) 

0.114*** 
(8.724) 

0.018** 
(2.131) 

0.131*** 
(9.607) 

2021 0.039*** 
(3.582) 

0.034*** 
(3.049) 

0.178*** 
(13.115) 

0.128*** 
(9.665) 

0.018** 
(2.138) 

0.130*** 
(9.522) 

Average 0.040*** 
(3.630) 

0.034*** 
(3.049) 

0.178*** 
(13.138) 

0.091*** 
(7.024) 

0.018** 
(2.103) 

0.145*** 
(10.573)  

*** p < 0.01. 
** p < 0.05. 
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et al., 2020; Karimi et al., 2022; Saqib and Benhmad, 2021; Sharif et al., 
2020; Wang et al., 2023a,b,c; Yilanci et al., 2022; Yilanci et al., 2023), 
which validated the EKC hypothesis for ecological footprint. However, a 
number of studies failed to find the EKC hypothesis. For instance, Al- 
Mulali et al. (2015) showed that the EKC hypothesis is valid in upper 
middle- and high-income nations but not in lower middle- and low- 
income nations. Jahanger et al. (2022) revealed that the EKC hypothe-
sis is valid for the Latin American and Caribbean and African regions but 
not for the Asian region. In addition, M. Li et al. (2023), Z. Li et al. 
(2023) and R. Li et al. (2023) found that there exists a non-linear rela-
tionship between GDP and ecological footprint, but it is not support the 
EKC hypothesis. Similarly, the EKC hypothesis is not supported for China 
(Yilanci and Pata, 2020; Pata and Caglar, 2021), for India and China 
(Khan et al., 2020), and for Tunisia (Ajmi and Inglesi-Lotz, 2020). 

Our results indicate a negative relationship between fishing grounds 
footprint and fishing biocapacity. The total effect of biological capacity 
on fishing grounds footprint is negative and statistically significant at 5 
% level in the short-term and long-term horizons. However, biological 
capacity has no significant direct effect on the fishing grounds footprint. 
Each 1 % increase in biological capacity decreases the fishing grounds 
footprint in 0.201 % in the short-term, mainly attributable to the indi-
rect effects. Regarding the long-term effects, a 1 % increase in biological 
capacity decreases fishing grounds footprint in 0.388 %, approximately 

97 % of the total effect is attributable to the indirect effects. The sig-
nificance of the indirect effect in the short-term and long-term suggests 
that the fishing grounds footprint of a country is affected by the fishing 
grounds biocapacity of neighboring countries. The research by Jabeen 
et al. (2023) for 25 Belt and Road Initiative countries supports our result. 
However, the studies by Wang et al. (2013) for 150 countries, Zam-
brano-Monserrate et al. (2020) for 158 countries and Sarkodie (2021) 
for 188 countries contradict this finding. Zambrano-Monserrate et al. 
(2020) stated that countries with higher biological capacity are tempted 
to consume their natural resources. 

The short-term and the long-term direct, indirect, and total effect of 
trade openness on fishing grounds footprint is positive but statistically 
insignificant. The studies by Jabeen et al. (2023) and Zambrano-Mon-
serrate et al. (2020) implied that international trade has a significant 
positive effect on the ecological footprint. Greater international trade 
puts more pressure on natural resources and the environment (Jabeen 
et al., 2023). Mahmood et al. (2019) showed that trade openness had a 
significantly positive direct and spillover effects on CO2 emissions in 
East Asia countries. They stated that trade openness leads to produce 
more industrial products and so exacerbate the environmental pollution. 
In addition, Mahmood (2020) found that there exists inverted U-shaped 
relationship between trade openness and carbon emissions. The results 
showed that all sample countries are in the first phase of this inverted U- 

Table 4 
The results of spatial models under W1 matrix.  

Variable SAR Dynamic 
SAR 

SEM SAC SDM Dynamic SDM 

LnEFt-1  0.610*** 
(0.068)    

0.605*** 
(0.068) 

LnGDP 4.085*** 
(1.292) 

1.866*** 
(0.690) 

4.041*** 
(1.336) 

4.242*** 
(1.369) 

2.983** 
(1.316) 

1.535** 
(0.659) 

LnGDP2 − 0.213*** 
(0.071) 

− 0.103*** 
(0.038) 

− 0.210*** 
(0.073) 

− 0.223*** 
(0.075) 

− 0.150** 
(0.071) 

− 0.086** 
(0.037) 

LnBC − 0.039 
(0.069) 

− 0.009 
(0.033) 

− 0.038 
(0.068) 

− 0.042 
(0.072) 

− 0.020 
(0.060) 

− 0.006 
(0.028) 

LnTO 0.047 
(0.174) 

0.022 
(0.097) 

0.048 
(0.177) 

0.043 
(0.172) 

0.151 
(0.192) 

0.047 
(0.098) 

LnPOP 0.719** 
(0.323) 

0.335** 
(0.162) 

0.755** 
(0.330) 

0.690** 
(0.287) 

0.860 
(0.777) 

0.690* 
(0.353) 

LnUR − 1.778* 
(0.984) 

− 0.897 
(0.572) 

− 1.743* 
(0.990) 

− 1.840* 
(0.988) 

− 2.024* 
(1.160) 

− 0.890 
(0.638) 

Rho 0.083 
(0.055) 

0.124** 
(0.060)  

0.150* 
(0.081) 

0.030 
(0.065) 

0.109* 
(0.063) 

Lambda   0.061 
(0.062) 

− 0.096 
(0.138)   

Variance sigma2_e 0.856*** 
(0.268) 

0.585*** 
(0.194) 

0.857*** 
(0.268) 

0.897*** 
(0.269) 

0.847*** 
(0.265) 

0.582*** 
(0.192) 

WLnEFt-1  − 0.152*** 
(0.056)    

− 0.180*** 
(0.058) 

WlnGDP     9.923*** 
(3.309) 

4.331** 
(2.201) 

WlnGDP2     − 0.549*** 
(0.193) 

− 0.230* 
(0.123) 

WlnBC     − 0.177 
(0.158) 

− 0.170* 
(0.085) 

WlnTO     − 0.120 
(0.394) 

0.027 
(0.176) 

WlnPOP     0.138 
(1.009) 

− 0.300 
(0.432) 

WlnUR     − 2.969 
(1.802) 

− 1.577* 
(0.067) 

LR-SDM-SAR     12.66** 22.55*** 
LR-SDM-SEM     13.11** 13.92* 
AIC 8808.984 7056.944 8811.379 8809.960 8783.546 7053.679 
BIC 8857.739 7117.400 8860.134 8864.810 8868.868 7150.408 
Number of groups 156 156 156 156 156 156 
Number of years 21 20 21 21 21 20 
Number of observations 3276 3120 3276 3276 3276 3120  

*** p < 0.01. 
** p < 0.05. 
* p < 0.10. 
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shaped relationship, therefore, trade openness leads to environmental 
degradation. In this regard, Wang et al. (2024a,b,c) found that the 
environmental degradation was exacerbated by trade protectionism 
particularly in lower-income nations. They stated that although trade 
protection appears to contribute to mitigate the environmental degra-
dation in high-income nations, it has the adverse effect on environment 
in other income groups. In contrast, the studies by Liu et al. (2022) in 
Pakistan and Yilanci et al. (2023) in Indonesia show that trade openness 
can mitigate the increase in the ecological footprint by transferring 
environmentally friendly and clean technologies. In addition, the studies 
by Zhang et al. (2018) and Mahmood (2023a,b) confirmed that trade 
openness has a significantly positive effect on carbon productivity. In 
this regard, Wang et al. (2024a,b,c) found that trade openness had the 
mediating effect in the impact of artificial intelligence on energy tran-
sition and pollution emission reduction. However, our findings do not 
support two views expressed regarding the significant positive and 
negative role of trade openness in the fishing grounds footprint. Some 
studies suggest that the effect of trade openness is not significant. For 
example, Destek et al. (2018) indicated that trade openness had no 
significant effect on the ecological footprint in Belgium, Finland, Greece, 
Ireland, and Spain. Similarly, Destek and Sinha (2020) showed that no 
significant relationship between trade openness and ecological footprint 
in Austria, Chile, Finland, France, Ireland, Mexico, New Zealand, and 
Sweden. In this regard, Al-Mulali et al. (2016) demonstrated that trade 
openness had no significant effect on CO2 emissions in East Asia and the 
Pacific and the Middle East and North Africa regions. 

Our findings show that the total effect of population on fishing 
grounds footprint is, as expected, positive and statistically significant at 
10 % level. A 1 % increase in population increases the fishing grounds 
footprint by 0.427 % in the short-term and 0.817 % in the long-term. 
However, in both horizons, there are no significant indirect effects. 
Greater population leads to increase the natural resources consumption 
and so more pressure on the environment (Aghasafari et al., 2021). This 
result is consistent with the findings of Clark et al. (2018) for 162 
countries, and Clark and Longo (2019) for 161 countries, 136 less- 
affluent countries and 25 affluent countries. However, Zhang et al. 

(2018) found that China’s carbon productivity is positively influenced 
by population size. They stated that population growth by the 
improvement of human capital leads to enhance the productivity. In this 
regard, Jahanger et al. (2022) revealed that human capital plays a 
decreasing role in pollution emissions. 

Finally, our results reveal that urbanization negatively affects the 
fishing grounds footprint. Increasing 1 % of urbanization reduces the 
fishing grounds footprint by 2.88 % and 5.61 % in the short-term and 
long-term, respectively. In addition, urbanization has no direct signifi-
cant effect on fishing grounds footprint in both horizons. The study by 
Clark and Longo (2019) for 161 countries supports our finding that 
increasing urbanization reduces the fishing grounds footprint. Char-
feddine and Mrabet (2017) also showed that a significant negative 
relationship between urbanization and ecological footprint in MENA 
region. Danish et al. (2020) found that ecological footprint is signifi-
cantly reduced by urbanization in all BRICS countries. Similarly, 
Ramezani et al. (2022) showed that urbanization had negative direct 
and positive indirect effects on ecological footprint in MENA region. By 
contrast, Al-Mulali et al. (2016) showed that urbanization significantly 
exacerbated the environmental pollution in Central and Eastern Europe, 
the Americas, Middle East & North Africa, South Asia, and East Asia and 
the Pacific regions but not in Western Europe and Sub Saharan Africa 
regions. Similarly, Mahmood and Furqan (2021) found that urbaniza-
tion has positive and significant direct and indirect effects on environ-
mental degradation in the GCC region. On the other side, Mahmood 
et al. (2023a,b,c) suggested that urbanization had not significant direct, 
indirect and total effects on pollution emissions in MENA region. 

3.4. Robustness checks 

Robustness check is conducted to ensure the reliability of the spatial 
regression results in two ways. First, considering the importance of 
choice of the spatial weight matrix to estimate the spatial models, the 
dynamic SDM is estimated with inverse distance-based spatial weights 
matrix (W2), and the results are presented in Table 5. The results of the 
short-term and the long-term direct, indirect, and total effects using 

Table 5 
Results of the short-term and the long-term direct, indirect, and total effects of the dynamic SDM under two weight matrices.  

Matrix Variable Short-term effects Long-term effects 

Direct 
effect 

Indirect 
effect 

Total 
effect 

Direct 
effect 

Indirect 
effect 

Total 
effect 

W1 LnGDP 1.639** 
(0.640) 

5.215** 
(2.331) 

6.853*** 
(2.426) 

3.874** 
(1.638) 

9.321** 
(4.710) 

13.195*** 
(4.767) 

LnGDP2 − 0.092*** 
(0.035) 

− 0.278** 
(0.131) 

− 0.370*** 
(0.135) 

− 0.218** 
(0.091) 

− 0.493** 
(0.262) 

− 0.711*** 
(0.264) 

LnBC − 0.008 
(0.027) 

− 0.193** 
(0.093) 

− 0.201** 
(0.100) 

− 0.010 
(0.070) 

− 0.378** 
(0.188) 

− 0.388** 
(0.197) 

LnTO 0.051 
(0.097) 

0.037 
(0.189) 

0.088 
(0.213) 

0.125 
(0.249) 

0.030 
(0.380) 

0.155 
(0.413) 

LnPOP 0.679* 
(0.347) 

− 0.252 
(0.435) 

0.427* 
(0.244) 

1.744* 
(0.905) 

− 0.927 
(1.048) 

0.817* 
(0.472) 

LnUR − 0.944 
(0.619) 

− 1.934* 
(1.053) 

− 2.877** 
(1.256) 

− 2.300 
(1.576) 

− 3.308 
(2.291) 

− 5.608** 
(2.610) 

W2 LnGDP 1.514** 
(0.667) 

13.697** 
(6.509) 

15.212** 
(6.481) 

3.513** 
(1.714) 

17.802* 
(9.504) 

21.315** 
(9.203) 

LnGDP2 − 0.082** 
(0.036) 

− 0.745** 
(0.351) 

− 0.826** 
(0.350) 

− 0.189** 
(0.094) 

− 0.968* 
(0.512) 

− 1.158** 
(0.496) 

LnBC 0.001 
(0.022) 

− 0.658* 
(0.383) 

− 0.658* 
(0.383) 

0.017 
(0.059) 

− 0.939* 
(0.550) 

− 0.921* 
(0.541) 

LnTO 0.032 
(0.096) 

0.124 
(0.390) 

0.157 
(0.402) 

0.079 
(0.244) 

0.132 
(0.565) 

0.211 
(0.562) 

LnPOP 0.478 
(0.328) 

− 0.151 
(1.098) 

0.327 
(0.837) 

1.221 
(0.858) 

− 0.762 
(1.897) 

0.458* 
(1.179) 

LnUR − 0.980 
(0.643) 

− 3.378 
(2.525) 

− 4.359 
(2.678) 

− 2.409 
(1.629) 

− 3.726 
(3.652) 

− 6.136 
(3.831)  

*** p < 0.01. 
** p < 0.05. 
* p < 0.10. 
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inverse distance-based matrix (W2) are very similar with the estimated 
results using eight nearest neighbors matrix (W1). Second, we estimate 
alternative models for analyzing the effect of main determinants of 
fishing footprint. The spatial effects are estimated using dynamic SDM 
with only time-lagged dependent variable (Table 6), static SDM 
(Table 7), and dynamic SAR (Table 8). The results revealed that the EKC 
hypothesis between economic growth and fishing footprint is valid. In 
addition, urbanization has negative and significant effect on the fishing 
footprint. The effect of population size on the fishing grounds footprint is 
positive in both static SDM and dynamic SAR models, but not in dynamic 
SDM with time-lagged dependent variable model. According to the re-
sults, trade openness has no significant relationship with fishing grounds 
footprint in all models. 

4. Conclusion and policy implications 

The study analyzed the relationship between fishing grounds foot-
print, GDP per capita, fishing grounds biocapacity, trade openness, 
population, and urbanization for 156 countries from 2001 to 2021 using 
the extended STIRPAT model. This study provides an important and 
valuable contribution to the limited existing literature on fishing 
grounds footprints by achieving two objectives. Firstly, to examine the 
spatial dependence of fishing grounds footprint. Secondly, to determine 
the direct, indirect, and total effects of independent variables on fishing 
grounds footprint in the short-term and the long-term. For the first aim, 
we applied Moran’s I test for fishing grounds footprint and independent 
variables. For the second aim, we used dynamic SDM with fixed effects. 

The main results of this study are as follows. Firstly, the value of 
Moran’s I is positive and significant, indicating there is significant 
spatial dependence in the fishing grounds footprint between countries. 
Secondly, The direct and indirect effects of GDP and GDP squared have 
positive and negative influences on the fishing grounds footprint in the 
short-term and the long-term, respectively, meaning that the inverted U- 
shaped EKC hypothesis is valid for fishing grounds footprint. Thirdly, 
the total effects of independent variables show that GDP per capita and 
population drive up fishing grounds footprint in the short-term and the 
long-term. In contrast, Biocapacity and urbanization are the most 
important determinants for the reduction of fishing grounds footprint in 
both horizons. Fourthly, the indirect effects of independent variables 
show that an increase in biocapacity and urbanization in the local 
country reduce the fishing grounds footprint in other countries in the 
short-term. In terms of the long-term, the indirect effect of urbanization 
is not significant. 

Based on the empirical results, some policy implications are put 
forward. First, considering the presence of significant spatial 

dependence in the fishing grounds footprint, policy-makers and 
decision-makers aiming to reduce fishing footprint should coordinate 
decisions and actions with their neighboring countries. In addition, re-
searchers should consider spatial effect as an important determinant of 
fishing grounds footprint. Second, the presence of EKC hypothesis em-
phasizes that economic growth not only does not inherently damage the 
environment, but also enhances individuals’ environmental awareness. 
Therefore, governments should promote more sustainable use of the 
fishery resource in parallel with economic growth. In addition, gov-
ernments should intensify global cooperation aimed at reducing the 
ecological footprint. In this regard, developed countries should assist 
developing countries to implement public policies to protect the envi-
ronment and achieve sustainable development. Third, due to the nega-
tive effect of urbanization on fishing footprints, governments should 
implement urbanization development policies in a planned and 
controlled manner. Urbanization development reduces the human 
pressure on natural resources in rural areas and improves environmen-
tally friendly behavior by earning higher income. 

There are some limitations in this study that need to be considered in 
future studies. First, although our study have provided several new and 
important insights about main determinants of fishing footprints, future 
research could address other independent variables not included in our 
study such as artificial intelligence (Wang et al., 2024a,b,c), financial 
development (Mahmood et al., 2023a,b,c), institutional quality (M. Li 
et al., 2023; Z. Li et al., 2023; R. Li et al., 2023), and globalization 

Table 6 
Results of the short-term and the long-term direct, indirect, and total effects of the dynamic SDM with only time-lagged dependent variable under eight nearest 
neighbors spatial weight matrix.  

Variable Short-term effects Long-term effects 

Direct 
effect 

Indirect 
effect 

Total 
effect 

Direct 
effect 

Indirect 
effect 

Total 
effect 

LnGDP 1.339** 
(0.658) 

3.512* 
(2.119) 

4.850** 
(2.171) 

3.490** 
(1.672) 

10.537* 
(6.065) 

14.028** 
(6.317) 

LnGDP2 − 0.074** 
(0.036) 

− 0.184 
(0.118) 

− 0.258** 
(0.121) 

− 0.192** 
(0.094) 

− 0.553* 
(0.335) 

− 0.748** 
(0.349) 

LnBC − 0.008 
(0.027) 

− 0.181** 
(0.089) 

− 0.189** 
(0.093) 

− 0.026 
(0.069) 

− 0.528* 
(0.273) 

− 0.554* 
(0.288) 

LnTO 0.047 
(0.091) 

0.062 
(0.182) 

0.109 
(0.199) 

0.119 
(0.232) 

0.171 
(0.527) 

0.291 
(0.585) 

LnPOP 0.724** 
(0.346) 

− 0.508 
(0.458) 

0.215 
(0.266) 

1.818** 
(0.868) 

− 1.241 
(1.249) 

0.577 
(0.819) 

LnUR − 0.808 
(0.639) 

− 1.435 
(0.884) 

− 2.244** 
(1.112) 

− 2.102*** 
(1.629) 

− 4.581 
(2.961) 

− 6.684* 
(3.621)  

*** p < 0.01. 
** p < 0.05. 
* p < 0.10. 

Table 7 
Results of the long-term direct, indirect, and total effects of the static SDM with 
only time-lagged dependent variable under eight nearest neighbors spatial 
weight matrix.  

Variable Direct effect Indirect effect Total effect 

LnGDP 3.057** 
(1.351) 

10.154*** 
(3.498) 

13.211*** 
(3.485) 

LnGDP2 − 0.155** 
(0.073) 

− 0.568*** 
(0.201) 

− 0.717*** 
(0.198) 

LnBC − 0.014 
(0.057) 

− 0.166 
(0.159) 

− 0.180 
(0.173) 

LnTO 0.147 
(0.185) 

− 0.119 
(0.384) 

0.028 
(0.378) 

LnPOP 0.863 
(0.728) 

0.143 
(0.937) 

1.005*** 
(0.373) 

LnUR − 1.978* 
(1.137) 

− 3.091 
(1.905) 

− 5.069*** 
(1.941)  

*** p < 0.01. 
** p < 0.05. 
* p < 0.10. 
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(Jahanger et al., 2022; Wang et al., 2024a,b,c). Second, although this 
study takes a holistic perspective about the fishing grounds footprint at 
global level, it is not considered heterogeneous effects across countries. 
Future studies could explore the heterogeneous effects of the main de-
terminants by grouping sample countries (Al-Mulali et al., 2016; M. Li 
et al., 2023; Z. Li et al., 2023; R. Li et al., 2023). Third, this study pro-
vides important contribution regarding the fishing grounds footprint by 
examining the spatial dependence, however, future studies can expand 
the literature by applying other methods such as threshold model (Wang 
et al., 2023a,b,c), and quantile regression (Li et al., 2024). Fourth, 
considering the limited data availability, this study encompasses 156 
countries. Future research can extend the sample of countries to achieve 
more comprehensive findings. 
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